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Abstract 9 

Investigating the spatiotemporal characteristics and factors of urban carbon emissions is essential to 10 

reduce carbon emissions and achieve dual carbon goals. In this study, we examined the change 11 

tendency of carbon emissions using the coefficient of variation, the Sen’s slope method, and the 12 

Mann–Kendall (MK) test and explored the effects of socioeconomic and environmental variables on 13 
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carbon emissions using GeoDetector, in Qingdao City. The results revealed that: (1) From 2000 to 14 

2020, carbon emissions increased annually, the area ratio of high carbon emissions increased and of 15 

low carbon emissions decreased yearly. Over 73% of carbon emissions have changed in a moderate 16 

way (0.1< CV < 1) and 80% of Qingdao City experienced an increased tendency (β > 0) in carbon 17 

emissions. (2) Carbon emissions diminished gradually from the urban center to the periphery. There 18 

were significant spatiotemporal disparities from one another in the subareas, Municipal districts had 19 

the largest variation degree (CV=0.32) and a huge growth trend of carbon emissions, while Laixi, 20 

Jiaozhou, and Pingdu were minor. (3) Socio-economic factors demonstrated a stronger ability to 21 

explain carbon emissions than environmental factors. GDP density, population density and floor area 22 

ratio were the key variables that affect the spatial distribution of carbon emissions, and the interaction 23 

between GDPD and PD can explain 81.9% of the carbon emissions in Qingdao. New technologies 24 

and materials, low-carbon energy consumption and lifestyles, and acceptable economic growth were 25 

the main strategies for Qingdao to become a low-carbon city. 26 

Keywords: urban; carbon emissions; spatiotemporal evolution; socioeconomic factors; 27 

environmental factors; GeoDetector. 28 

1. Introduction    29 

In China, over 90% of carbon emissions are generated from metropolitan regions (He et al., 2019). It 30 

is crucial to investigate the spatiotemporal characteristics and factors of urban carbon emissions in 31 

order to reduce carbon emissions and achieve dual carbon goals. At national and regional scales, 32 

researchers analyzed the energy utilization, spatiotemporal variation characteristics, and influence 33 

factors of carbon emissions in Fujian Province (Wei and Chen, 2021), Yangtze River Delta region, 34 

and Qinghai Plateau (Liu and Zeng, 2021) based on DMSP/OLS data (Du et al., 2021), IPCC 35 

inventory method (Wang et al., 2019), panel data (Zhang and Pan, 2019), STIRPAT model (Shen et 36 

al., 2020), system dynamics method (Yang and Wu, 2021), U-Kaya and LMDI model (Wang et al., 37 

2019), panel vector autoregression model (PVAR) (Zhao et al., 2021), and random forest (Liu et al., 38 
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2019). They found considerable spatiotemporal disparities in carbon emissions, with economic 39 

development, energy consumption, industrial structure, population and technology being the main 40 

contributors. At the metropolitan scale, Xu et al. (2022) examined the spatiotemporal pattern of land 41 

use and carbon emissions using information entropy and Tapio model and found that there was 42 

spatiotemporal heterogeneity in the decoupling of urban land use and carbon emissions. Wang et al. 43 

(2020) detected the spatiotemporal features and driving factors of energy consumption and carbon 44 

emissions using the panel measurement method, in 158 cities, and found that urbanization and 45 

industrial structure have significant impacts on carbon emissions and energy consumption. Ma et al. 46 

(2021) analyzed the impact of urbanization on carbon emissions based on the entropy approach and 47 

geographically weighted regression (GWR) model (Wang et al., 2019). They found regional 48 

variations in the impact of population and urbanization on carbon emissions, with urbanization and 49 

economies contributing to the increase. Wang and Chen (2020) examined how urbanization affected 50 

carbon emission efficiency using the STIRPAT model and found that technology, GDP per capita, 51 

and information all had a positive impact on carbon emissions. Huo et al. (2021) detected the 52 

relationship between urbanization and buildings’ carbon emissions based on the panel threshold 53 

regression and regression-enhanced random model (Zhang et al., 2021). They found that the impact 54 

of urbanization on building carbon emissions becomes more pronounced when per capita income and 55 

energy mix exceed a certain threshold. Population, economy, and technology were the key factors in 56 

building carbon emissions, which were positively correlated with per capita building area, energy 57 

intensity and have an inverted U-shape relationship with economic growth. Xu et al. (2021) analyzed 58 

the effect of urban three-dimensional structures on carbon emissions using the STIRPAT and ridge 59 

regression model, and found that building height and density were the primary factors driving the 60 

rapid growth of carbon emissions. 61 

These studies focused on accounting for carbon emissions, their spatiotemporal characteristics, and 62 

the effects of socioeconomic, land use, and building-related variables. There is a paucity of analysis 63 

of the shifting trends in carbon emissions and the results of factor interactions. For the creation of 64 
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low-carbon development strategies, it is crucial to investigate the spatiotemporal change trends in 65 

carbon emissions during the urbanization process and to identify the influence factors and the effect 66 

of factor interactions on carbon emissions. The coefficient of variation has been utilized to disclose 67 

the variation features of time series data because it can reflect the relative variation of spatiotemporal 68 

data and eliminate the influence of scale and dimension (Liu et al., 2021). Sen’s slope and Mann 69 

Kendal test have been frequently applied in trend analysis and testing studies of time series data (Ma 70 

et al., 2022) owing to their excellent calculation efficiency, insensitivity to measurement errors and 71 

outliers, independence from a particular distribution, and minimal interference from outliers (Ali et 72 

al., 2019). And GeoDetector was primarily used to investigate the impact of numerous elements on 73 

the spatiotemporal pattern (Pan et al., 2019) with its advantage of examining the spatial differentiation 74 

of geographical features, the explanatory power of factors, and detecting the interaction between 75 

factors (Zhou et al., 2020, Li et al., 2022).  76 

From 2000 to 2020, the GDP and urban construction land increased by 10 and 6 times, respectively, 77 

in Qingdao City. Although annual carbon emissions have declined since the 11th Five-Year Plan due 78 

to the implementation of low-carbon development policies, the growth of total carbon emissions and 79 

urban environmental issues have become more prominent. The purpose of this paper aims to identify 80 

the evolutionary tendency of carbon emissions and investigate the effects of socioeconomic and 81 

environmental factors on carbon emissions using the coefficient of variation, Sen’s slope trend, 82 

Mann-Kendall test, and GeoDetector, in Qingdao City. 83 

2. Study area  84 

Qingdao is a rapidly developing city in Shandong Province, China, with a total area of 11293 km2. It 85 

consists of 7 municipal districts (Shinan, Shibei, Licang, Laoshan, West Coast New Area, Chengyang, 86 

and Jimo) and 3 county-level cities (Jiaozhou, Pingdu, and Laixi), with areas of 5226 km2 and 6067 87 

km2, respectively. The municipal districts have a long history of urbanization, high socioeconomic 88 

growth and urbanization levels, and a concentrated population, economy, and industry. Its elevation 89 

ranged from 0 to 1090 meters, mountains account for 17.6% of the total area and are located in the 90 
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southeast and north of the city, while plains and basins account for 59.4% of the entire city (Figure 91 

1). It has experienced significant changes in industrial structure, construction landscape, and the 92 

ecological environment resulting from socioeconomic development and urban renewal policies from 93 

2000 to 2020. GDP rose to 1240.06 billion yuan from 118.31 billion yuan, with the ratio of the 94 

secondary industries falling to 35.2% from 46.1% and the tertiary industries rising to 19%. Both the 95 

urban built-up area and population increased by 639.1km2 and 2939.2 thousand, separately (Qingdao 96 

Municipal Bureau of Statistics, 2021). The implementation of low-carbon development policies from 97 

2006 resulted in a 45% reduction in carbon emissions per unit of GDP from 2005 to 2020. However, 98 

the general amount of carbon emissions is on the rise, and socioeconomic development considerably 99 

affects the spatiotemporal heterogeneity of those emissions. 100 

 101 

 102 

Figure 1. The study area 103 

3. Materials and Methods  104 

We detected the change characteristics of carbon emissions and explored the effects of socioeconomic 105 

and environmental factors on carbon emissions from 2000 to 2020, in Qingdao City. The flowchart 106 

of the applied methodology in the research is shown Figure 2. 107 
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Figure 2. The flowchart of methodology  109 

3.1. Data collection  110 

A time series raster data in Qingdao with a resolution of 1km×1km from 2000 to 2020 attained as 111 

follows: the carbon emissions data of fossil fuels attained from the ODIAC fossil fuel emission dataset 112 

(https://db.cger.nies.go.jp/dataset/ODIAC/). Annual average temperature data were from National 113 

Earth System Science Data Center (https://www.geodata.cn/). Land use and GDP density data were 114 

from the Resource and Environmental Science and Data Center 115 

(https://www.resdc.cn/DOI/doi.aspx?DOIid=33). Population density data were from the World 116 

population dataset (https://www.worldpop.org/geodata/listing?id=76). The 30m × 30m resolution 117 

digital elevation model was obtained from the Geospatial data 118 

cloud(https://www.gscloud.cn/sources/). Buildings’ 3D information (buildings’ frame and height) 119 

was extracted from high-resolution satellite images using the monoplotting function of Barista 120 

software, a manual method mainly based on the Digital Elevation Model, Ground Control Points and 121 

a set of Rational Polynomial Coefficients (Zhang et al., 2014). The height accuracy of buildings 122 

extracted by Barista is 91.8% (Zhang, 2015) based on buildings that were randomly measured in the 123 

field. ArcGIS was used to calculate the floor area ratio and building coverage ratio. And the building 124 

coverage ratio and floor area ratio were calculated using ArcGIS.  125 

https://db.cger.nies.go.jp/dataset/ODIAC/
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3.2. Data pre-processing 126 

The land use type (LST) was divided into 8 categories according to the composition of land use in 127 

the study area and the purpose of the study. The population density (PD, thousand people/km2), Gross 128 

Domestic Product density (GDPD, million yuan/km2), Building coverage ratio (BCR, %), Floor area 129 

ratio (FAR), Average temperature (T, ℃), Elevation (E, m) and Slope (S, °) were each divided into 9 130 

groups by natural breakpoint method (Ma et al., 2022) (Table 1). All the data were retrieved using 131 

10742 grids with a resolution of 1km×1km, in Qingdao City.  132 

Table 1. Classification of environmental and socioeconomic factors 133 

Types 

Environmental factors Socioeconomic factors 

T (℃) S (°) E(m) LST 
PD (thousand 

people/km2) 

GDPD (million 

yuan/km2) 
BCR (%) FAR 

1 8.9-10.4 0-2.23 0-26 CL 0-0.1 1.52-21.03 0-2.74 0-0.05 

2 10.4-10.9 2.23-4.97 26-56 F 0.1-0.3 21.03-30.28 2.74-8.23 0.05-0.16 

3 10.9-11.5 4.97-8.20 56-94 W 0.3-0.7 30.28-47.10 8.23-15.29 0.16-0.31 

4 11.5-12.1 8.20-11.92 94-149 RL 0.7-1.2 47.10-70.29 15.29-23.92 0.31-0.53 

5 12.1-12.6 11.92-16.40 149-231 UL 1.2-1.9 70.29-113.77 23.92-34.50 0.53-0.85 

6 12.6-13.0 16.40-21.62 231-342 GL 1.9-3.0 113.77-258.17 34.50-47.45 0.85-1.40 

7 13.0-13.3 21.62-27.58 342-486 UC 3.0-4.2 258.17-554.58 47.45-61.17 1.40-2.19 

8 13.3-13.6 27.58-35.28 486-690 R 4.2-5.9 554.58-1066.55 61.17-75.29 2.19-3.22 

9 13.6-14.2 35.28-63.37 690-1088  5.9-8.3 1066.55-9337.56 75.29-100 3.22-4.82 

Note: Cultivated land (CL); Forest (F); Water (W); Rural construction land (RL); Unused land (UL); 134 

Grassland (GL); Urban construction land (UC); Roads (R). 135 

3.3. Calculation method for carbon emission variation 136 

The variation of carbon emissions in Qingdao was analyzed using the coefficient of variation, Sen’s 137 

slope method, and the Mann Kendal test based on Python. The coefficient of variation (CV) was used 138 

to estimate the relative variance in carbon emissions from 2000 to 2020, which can be derived as 139 

indicated in Equation (1): 140 

𝐶𝑉 = 𝜎/𝜇                                     (1) 141 
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Where σ is the standard deviation of carbon emissions, unit (t); μ is the average value of carbon 142 

emissions. When CV<=0.1 means weak variation, CV>=1 means strong variation, and 0.1<CV<1 143 

means moderate variation. 144 

Sen’s slope is a non-parametric method for evaluating the propensity to change in time series data 145 

and has been shown to be quite reliable. It was used to estimate trends in carbon emissions from 2000 146 

to 2020. And according to Equation (2), Sen’s slope (β) is a median of all the slopes that calculated 147 

all the subsequent data points of a time series carbon emission. 148 

 𝛽 = 𝑚𝑒𝑑𝑖𝑎𝑛((𝐶𝐸𝑗 − 𝐶𝐸𝑖)/(𝑗 − 𝑖))                         (2) 149 

Where CEi and CEj represent the carbon emissions in i and j years, 1<i<j<n; β>0 and β<0 150 

indicated that the carbon emissions are increasing and decreasing, respectively. 151 

Mann–Kendall test is recommended by the World Meteorological Organization as the most popular 152 

test because it considers the data distribution and eliminates outliers. Mann–Kendall test (Z) was used 153 

to gauge the significance of the variation in carbon emissions, as shown in Equation (3), The value 154 

of Z indicates the direction of the trend. A value of minus Z indicates a decreasing trend and vice 155 

versa. If the absolute value of Z exceeds 1.64, the significance test is passed with 90% confidence 156 

and the value is significant at the 10% level. If the absolute value of Z is higher than 1.96, the 157 

significance test is passed with 95% confidence, and the value is significant at the 5% level. The 158 

significance level (P): 0.05<P<0.1 denotes a significant increase or decrease, and P<0.05 denotes an 159 

extremely significant increase or decrease. 160 

 𝑍 = (𝑆 − 1) √𝑉𝑎𝑟(𝑆)⁄ ，𝑆 > 0 161 

                        𝑍 = 0，𝑆 = 0                                     (3) 162 

𝑍 = (𝑆 + 1) √𝑉𝑎𝑟(𝑆)⁄ ，𝑆＜0 163 

Where S is the test statistic for carbon emissions (Ali et al. 2019). 164 
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3.4. Detecting driving factors of carbon emissions based on GeoDetector 165 

GeoDetector is a set of statistical methods to detect spatial distinction and identify the driving force 166 

(Wang and Chen, 2017). Factor detector (q) was used to detect the impact of socioeconomic and 167 

environmental factors on the carbon emissions’ distribution, and the q-statistic can be generated from 168 

Equation (4). The value of q is strictly within [0, 1], q=1 indicates that the factor (X) fully determines 169 

the spatial distribution of carbon emissions; q=0 denotes that there is no relationship between the 170 

factor (X) and carbon emissions. The larger value of q means the factor (X) has a greater influence or 171 

stronger explanatory power on carbon emissions. 172 

𝑞 = 1 − (∑ℎ=1
𝐿 𝑁ℎ𝜎ℎ

2)/𝑁𝜎2                           (4) 173 

Where N is the number of samples in the study area; L is the number of factor layers; h is the number 174 

of argument layers, h∈[1, L]; 𝜎2is the variance of the dependent variables. 175 

Interaction detector was used to evaluate whether the factors (X) interacting with one another will 176 

weaken or enhance the explanatory power of the dependent variable (Y), or whether these factors (X) 177 

are independent and their interaction has no impact on the dependent variable (Y). And the q-statistic 178 

divides the explanatory power of factors(X) to the dependent variable (Y) into 5 intervals (Table 2). 179 

The interactive explanatory power of socioeconomic and environmental factors to the carbon 180 

emissions was detected in Qingdao City. 181 

Table 2. Interaction between explanatory variables (Xs) 182 

Description Interaction 

𝑞(𝑋1 ∩ 𝑋2) < 𝑀𝑖𝑛(𝑞(𝑋1), 𝑞(𝑋2)) Weaken, nonlinear  

𝑞(𝑋1 ∩ 𝑋2) = 𝑞(𝑋1) + 𝑞(𝑋2) Independent  

𝑀𝑖𝑛(𝑞(𝑋1), 𝑞(𝑋2)) < 𝑞(𝑋1 ∩ 𝑋2) < 𝑀𝑎𝑥(𝑞(𝑋1), 𝑞(𝑋2)) Weaken, uni-, nonlinear  

𝑞(𝑋1 ∩ 𝑋2) > 𝑞(𝑋1) + 𝑞(𝑋2) Enhance, nonlinear 

𝑞(𝑋1 ∩ 𝑋2) > 𝑀𝑎𝑥(𝑞(𝑋1), 𝑞(𝑋2)) Enhance, bi- 

 183 

Ecological detector was used to identify the differences between the two factors in carbon emissions. 184 

It is measured by the F-statistic and can be calculated in Equation (5). At the significance level of 185 
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0.05, the result was expressed as ‘T’ means there was a significant difference between the effects of 186 

one factor (X1) and another factor (X2) on the dependent variable (Y), and the result was expressed 187 

as ‘N’ means there was no difference existed. 188 

𝐹 = (𝑁X1(𝑁X2 − 1)𝑆𝑆𝑊X1)/(𝑁X2(𝑁X1 − 1)𝑆𝑆𝑊X2)    189 

𝑆𝑆𝑊X1 = ∑ℎ=1
𝐿1 𝑁ℎ𝜎ℎ

2𝑥,    𝑆𝑆𝑊X2 = ∑ℎ=1
𝐿2 𝑁ℎ𝜎ℎ

2𝑥                    (5) 190 

Where NX1 and NX2 are the sample sizes of the factors; SSWX1 and SSWX2 are the sums of the 191 

variances in the argument layer; L1 and L2 are the number of layers; h is the number of argument 192 

layers, h∈[1, L]; 𝜎2 is the variance of the dependent variables. 193 

4.  Results and Discussion 194 

4.1. Spatiotemporal characteristics of carbon emissions 195 

The carbon emissions increased yearly due to the socioeconomic development in Qingdao, which is 196 

similar to the earlier research (Zheng et al., 2020). The average, maximum, and standard deviation 197 

(SD) of carbon emissions varied significantly from 2000 to 2020, in Qingdao (Figure 3). Rapid 198 

development of the population, economy, and secondary industry is the main driving force of this 199 

status.  200 

From 2000 to 2005, the maximum and SD of carbon emissions increased more quickly than the 201 

average value, and they increased by 15.93 ×104t/a, 1700t/a, and 40t/a, separately. GDP and secondary 202 

industries grew by 34.24 billion yuan/a and 42.26 billion yuan/a, respectively, urban land expanded 203 

from 119.1 km2 to 178.8 km2, and more high-carbon emitting companies were established, all 204 

contributing to the rapid growth of carbon emissions and variability characteristics. From 2005 to 205 

2015, the average, maximum, and SD of carbon emissions increased smoothly, increasing by 20t/a, 206 

4.82×104t/a, and 390t/a due to the steady growth of population, industry, GDP, and urban land 207 

(increased by 2 million population/a, 9.4 billion yuan/a, 60 billion yuan/a, and 38.8 km2/a, 208 

respectively). From 2015 to 2020, both the maximum and the SD of carbon emissions were growing 209 
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slowly, while the average carbon emissions were increasing rapidly at a rate of 160t/a, which is four 210 

times higher than in 2000-2005 and eight times higher than in 2005-2015. The structural optimization 211 

of industry and energy, the implementation of energy policies, and the rapid socioeconomic 212 

development have contributed to the changing character of carbon emissions during this period. 213 

 214 
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Figure 3. Carbon emissions in Qingdao City 216 

Figure 4 has shown that the area ratio of higher carbon emissions increased and of lower carbon 217 

emissions decreased yearly, and that carbon emissions gradually reduced from the urban centers to 218 

the periphery. From 2000 to 2020, most of the carbon emissions above 2000t/km2 were concentrated 219 

in urban centers, with their area ratio increasing from 3% to 12%. Carbon emissions in the 400-220 

2000t/km2 range were located around urban centers, with the area ratio increasing from 9% to 25%. 221 

Carbon emissions in the 200-400t/km2 range and below 200t/km2 were mainly in the urban periphery, 222 

where the area proportion reduced from 43% to 37% and 45% to 26%, respectively. Most of the 223 

carbon emissions below 200t/km2 were discovered in forests, grasslands, farms and mountains. 224 

Disparities in land use, economy and population were the primary determinants of the spatiotemporal 225 

heterogeneity in carbon emissions in Qingdao. The population, economy, industry, transport and 226 

energy consumption were concentrated in urban centers, which had the highest and fastest increase 227 

in carbon emissions. The density of population, economy, energy consumption and carbon emissions 228 
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were gradually reduced from the urban centers to the periphery. Forests, grasslands and mountains 229 

had the lowest carbon emissions. The increase in population, urban construction, GDP and energy 230 

consumption contributed to the increase in carbon emissions in the study area from 2000 to 2020. 231 

 232 

233 

9 234 

Figure 4. Distribution of carbon emissions 235 

4.2. Spatio-temporal distinction of carbon emissions among subareas 236 

The composition and variation of carbon emissions varied significantly from one another in the 237 

subareas (Pingdu, Laixi, Jiaozhou, and Municipal districts) (Figure 5) due to the diversity of 238 

urbanization, economic patterns, industrial structure, which is similar to the earlier research (Wang et 239 
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al. 2020). Generally, the area ratio of carbon emissions increased above 400t/km2 and decreased 240 

below 400t/km2, in these subareas, from 2000 to 2020. Compared with these subareas, the largest 241 

proportion and the fastest growth rate of carbon emissions were in Municipal districts above 242 

2000t/km2. Jianzhou noticed the fastest rise (41.1%) and decline (29.4%) in carbon emissions in 400-243 

2000t/km2 and 200-400t/km2, respectively. The largest reduction (38.6%) in carbon emissions below 244 

200t/km2 was found at Laixi. The majority of carbon emissions below 400t/km2 were produced in 245 

Pingdu (>85%) and Laixi (>75%). 246 

From 2000 to 2020, Municipal districts’ carbon emissions raised from 6.3% to 21% above 2000t/km2 247 

and from 13.9% to 28.1% in the 400-2000t/km2 range, and declined from 36.6% to 26.5% in the 200-248 

400t/km2 range and from 43.1% to 24.3% below 200t/km2, respectively. Jiaozhou’s carbon emissions 249 

raised from 1.1% to 10.4% above 2000t/km2, primarily manifested as a rapid increase (41.1%) in the 250 

400-2000t/km2 range and decrease (29.4%) in the 200-400t/km2 range. Laixi’s carbon emissions were 251 

reported to be declining rapidly below 200t/km2 and growing at roughly equal rates in the 400-252 

2000t/km2 and 200-400t/km2 ranges. Pingdu’s carbon emissions were expressed as a decrease below 253 

200t/km2 and an increase in the range of 400-2000t/km2. 254 

Population, economy, policy, industrial structure, energy consumption, and the phase of urban growth 255 

were the key determinants of the variation in carbon emissions in the subareas. Municipal districts 256 

acted as the political, economic, cultural and trade hubs of Qingdao. It has experienced rapid socio-257 

economic development and has the largest carbon emissions and the fastest growth rate compared to 258 

other sub-areas. Since 2005, many high-emission enterprises have relocated to Jiaozhou from 259 

Municipal districts, which coincided with the rapid growth of the population and economy, leading 260 

to a sharp rise in carbon emissions. Laixi and Pingdu had a tiny amount of land used for urban 261 

construction, a modest economy, and a declining population. However, they had a substantial quantity 262 

of land used for farming, forestry, grassland, and rural construction, all of which made them maintain 263 

lower carbon emissions. 264 
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 265 

Figure 5. Area percentage of carbon emissions in subareas 266 

4.3. The variation tendency of carbon emission 267 

The CV of carbon emissions ranged from 0.06 to 2, with weak variation (CV<=0.1), moderate 268 

variation (0.1<CV<1), and strong variation (CV>=1) accounting for 22.6%, 73.8%, and 3.6% of the 269 

whole research area, respectively. The majority of Qingdao's carbon emissions have changed in a 270 

moderate way over the last 20 years. Weak variation, moderate variation, and strong variation were 271 

distributed in the village and agricultural regions, urban areas, and forestry and grassland, 272 

correspondingly (Figure 6). Municipal districts in possession of moderate variation and strong 273 

variation over 45%, separately, and Pingdu accounted for over 48% of the weak variation and strong 274 

variation, respectively (Table 3). 275 

Carbon emissions differed significantly from one another in the subareas. Municipal districts 276 

(CV=0.32) had the greatest degree of variation in carbon emissions, while Laixi (CV=0. 2) had the 277 

least. Moderate variation accounts for 81.7%, 90.4%, 72.1%, and 56.2% of areas in Municipal 278 

districts, Jiaozhou, Laixi, and Pingdu, respectively, while Laixi and Pingdu both have over 26% of 279 

areas with weak variation. Various types of land-use were the primary cause of the distinct variation 280 

in carbon emissions. 281 

0

20

40

60

80

100

2
0
0

0

2
0
0

5

2
0
1

0

2
0
1

5

2
0
2

0

2
0
0

0

2
0
0

5

2
0
1

0

2
0
1

5

2
0
2

0

2
0
0

0

2
0
0

5

2
0
1

0

2
0
1

5

2
0
2

0

2
0
0

0

2
0
0

5

2
0
1

0

2
0
1

5

2
0
2

0A
re

a
 p

er
ce

n
a
g
e/

%

Pingdu Laixi Jiaozhou Municipal districts

≤200t 200t-400t 400t-2000t ＞2000t



 

15 

 

 282 

Figure 6. Distribution of coefficient of variation (a) and variation of carbon emissions (b) from 283 

2000 to 2020 284 

From 2000 to 2020, over 80% of Qingdao City experienced an increased tendency (β>0) in carbon 285 

emissions, and they were primarily concentrated in urban areas. Additionally, a significant increase 286 

in carbon emissions was detected across 56% of the study region (Table 3). Agricultural, forestry, and 287 

grassland zones showed a decreased tendency in carbon emissions (Figure 5). Municipal districts 288 

were responsible for 37.2% of carbon emissions with an increased tendency (β>0) and 8.1% with a 289 

decreased tendency (β<0). Pingdu, Laixi, and Jiaozhou accounted for 19%, 13.3%, and 11.3% of 290 

carbon emissions with an increased tendency (β>0), respectively. 291 

Carbon emissions have risen sharply over the past two decades in Qingdao. Municipal districts 292 

exhibited an increasingly evident upward tendency in carbon emissions, followed by Pingdu. The 293 

differences in carbon emissions were remarkably compatible with the spatial-temporal disparities in 294 

socioeconomic development and land-use patterns in the subareas.  295 

Table 3. Area percentage of CV and variation tendency for carbon emissions in subareas (%) 296 

Subarea 
CV β<0 β>0 

CV<=0.1 0.1<CV<1 CV>=1 P<0.05 - 0.05<P<0.1 P<0.05 - 

PingDu  49.4 22.4 48.6 1.1 8.7 3.8 4.3 10.9 

LaiXi  16.8 14.1 6.8 0.1 0.8 3.6 5.3 4.4 
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JiaoZhou  5.0 14.4 0.0 0.0 0.4 1.8 8.5 1.0 

Municipal districts 28.8 49.1 44.6 0.9 7.2 5.4 24.3 7.5 

Total 100 100 100 2.1 17.1 14.6 42.3 23.9 

Note: P<0.05, extremely significant; 0.05<P<0.1, significant; －, insignificant. 297 

4.4. The driving factors of carbon emissions 298 

The influence degree of factors on carbon emissions was calculated using the factor detector, and the 299 

q-statistic of all factors ranged from 0.003 to 0.728 (Table 4), the explanatory power of factors on 300 

carbon emissions, with GDPD > PD > FAR > T > BCR > E >LST > S is a descending order. In 301 

comparison to natural environmental factors, socio-economic factors (GDPD, PD, and FAR) 302 

demonstrated a stronger ability to explain carbon emissions. It is on par with the results of a previous 303 

research paper, which found that an inverted U-shaped link between GDP and carbon emissions meets 304 

the Kuznets curve (Wang and He, 2019), population, technology, and urban economic growth all had 305 

positive correlations with carbon emissions, whereas temperature and precipitation had negative 306 

correlations (Li et al., 2019). Inhabitants and buildings are the main components of a city and account 307 

for the bulk of energy consumption for daily activities and urban development. Thus, GDP density, 308 

population density, and floor area ratio were Qingdao's most important and powerful explanatory 309 

indicators of carbon emissions over the last two decades. 310 

Table 4. Q-statistic of the factor detector 311 

 T S  E LST PD GDPD BCR FAR 

q-statistic 0.074 0.003 0.006 0.005 0.595 0.728 0.039 0.553 

Significance 0 0 0 0 0 0 0 0 

 312 

The results of the interaction detector (Table 5) have demonstrated that a combination of 313 

socioeconomic and environmental factors has a larger effect on carbon emissions than either factor 314 

has on its own. The interaction between GDPD and PD, FAR, BCR, and T presented a double-factor 315 

enhancement in their explanatory power, with the order of the explanatory power being GDPD∩PD 316 

(81.9%)>GDPD∩FAR(79.4%)>GDPD∩BCR(75.5%)>GDPD∩T(74.2%)>PD∩FAR(72.3%)>PD∩317 

T(61.4%). The interaction of other factors was a nonlinear enhancement, with environmental factors 318 



 

17 

 

interacting with GDPD, PD, FAR and BCR accounting for more than 70%, 62%, 56% and less than 319 

10% of the spatial differences in carbon emissions, respectively. The interaction of GDPD, PD, and 320 

FAR with the rest of the factors can enhance the explanatory power of spatial differences in carbon 321 

emissions. In particular, the interaction between GDPD and PD had an explanatory power of 81.9% 322 

for the carbon emissions in Qingdao. 323 

Table 5. Results of the interaction detector and the ecological detector 324 

Indexes T S  E LST PD GDPD BCR FAR 

T 0.074 N N T T N N T 

S 0.079 0.003 N T T N T T 

E 0.082 0.011 0.006 T T N T T 

LST 0.098 0.012 0.014  0.005 T N N N 

PD  0.614* 0.667 0.622  0.634 0.595 N N N 

GDPD  0.742* 0.740 0.737 0.754  0.819* 0.728 T T 

BCR 0.175 0.051 0.048  0.054 0.717  0.755* 0.039 T 

FAR  0.566* 0.592 0.601  0.586  0.723*  0.794*  0.647* 0.553 

Note: ___is a nonlinear enhancement, and * is a double-factor enhancement. T denotes that Y(Xi) 325 

was a significant difference from Y(Xh), while N expresses the opposite meaning. 326 

The statistically significant differences between factors discovered by the ecological detector (Table 327 

5) have shown that there were significant differences between PD and environmental factors, GDPD 328 

and socioeconomic factors (BCR, FAR), BCR and environmental factors (S, E), LST, FAR and 329 

environmental factors (T, S, E). Other factors did not significantly differ from one another in their 330 

impact on carbon emissions.  331 

Generally, compared with the natural environment, socio-economic factors were the main drivers of 332 

Qingdao's carbon emissions from 2000 to 2020. GDP density, population density, and floor area ratio 333 

were the most powerful explanatory indicators for carbon emissions. 334 

This study solely uses Qingdao as a sample in order to investigate the spatiotemporal variation 335 

characteristics of carbon emissions during the last 20 years due to the limits of spatiotemporal data 336 

gathering. Regional restrictions apply to the changing features and spatiotemporal variations of 337 

carbon emissions in Qingdao, but they also perfectly encapsulate those of the majority of Chinese 338 

cities. In order to identify the general characteristics of urban emissions in China, the national scale 339 
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and longer time series data are required. Only the primary elements from the natural environment and 340 

socio-economic factors are chosen for analysis of the carbon emission factors due to data limitations, 341 

and the identification of factors has certain restrictions. Similar to the findings of other studies, socio-342 

economic factors have a large impact on urban carbon emissions. For the carbon emissions in Qingdao, 343 

the interaction between GDPD and PD has an explanatory power of 81.9%. This value must be 344 

verified by the analysis of multi-city, large-scale spatial, and longer time series datasets because of 345 

the limitations of time and space scale. The results of this study will offer guidelines for the 346 

development of low-carbon cities. 347 

5. Conclusion 348 

This study examined the spatiotemporal differences and driving factors of carbon emissions in 349 

Qingdao City from 2000 to 2020 using the coefficient of variation, Sen's slope, the Mann-Kendall 350 

test, and GeoDetector. The following conclusions are drawn: (1) Annual increases in carbon emissions 351 

and the area ratio of high emissions have been seen in Qingdao City for the previous 20 years. (2) 352 

Regional variances were apparent in carbon emissions. Carbon emissions were gradually reduced 353 

from the city center to the periphery. Municipal districts had the largest carbon emissions and the 354 

highest growth rates. (3) Socio-economic factors provided the strongest explanatory power for carbon 355 

emissions, particularly GDP density, population density, and floor area ratio. The interaction between 356 

GDPD and PD can explain 81.9% of the distribution in carbon emissions, whereas the effect of the 357 

natural environment factors was negligible. (4) New building energy-saving technologies and 358 

materials, low-carbon energy consumption and lifestyles, appropriate economic and population 359 

growth, and new technologies were the major strategies for the low-carbon city in Qingdao.  360 
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