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Abstract 

The severe climate problem has forced the Chinese 
government to put forward the goal of "carbon peak" and 
"carbon neutrality", and the transportation industry is a 
key area of carbon emission reduction. Based on this 
background, this paper introduces the BCC model and the 
Malmquist-Luenberger index model to measure the 
carbon emission efficiency of China's provincial 
transportation industry from the static and dynamic 
perspectives from 2014 to 2020. At the same time, the 
Tobit model is used to estimate the influencing factors of 
carbon emission efficiency. The results show that: (1) the 
overall transportation carbon emission efficiency level is 
low. The comprehensive efficiency of 30 provinces is at 
[0.6634, 0.7154], which needs to be improved urgently. 
(2) The carbon emission efficiency of transportation is in a 
growing trend, and the ML index is 1.142, which is 
significantly higher than 1.0. In addition, the mean value 
of technical efficiency is 1.015, and the mean value of 
technological progress efficiency is 1.125. The two factors 
jointly affect comprehensive efficiency. (3) The carbon 
emission efficiency of different regions is heterogeneous. 
The carbon emission efficiency of East China and North 
China is better than that of Northeast China and South 
China, while the carbon emission efficiency of Northwest 
China and Southwest China is at the middle level in China. 
(4) External environmental factors, such as regional GDP, 
resident population and consumption level, have a 

significant impact on the carbon emission efficiency of 
transportation. 

Keywords: Transportation industry, carbon emission 
efficiency, BCC model, malmquist-luenberger index, tobit 
model 

1. Introduction 

In recent years, global warming has become an obstacle 
to economic and social development. Reducing the 
emission of carbon dioxide and other greenhouse gases is 
an urgent problem for mankind to overcome. In order to 
overcome this global problem, the United Nations 
established the Framework Convention on Climate Change 
in 1922. In 2020, the Chinese government set the goal of 
"carbon peak" by 2030 and "carbon neutrality" by 2060. 
The transportation industry is a key industry in the 
national economy and an important source of carbon 
dioxide emissions. According to relevant statistics, China's 
carbon emissions from transportation account for 24% of 
the national total. With the rapid development of 
automobile transportation, shipping transportation, civil 
aviation transportation and other businesses, the 
transportation industry has become a field of the rapid 
growth of greenhouse gas emissions. 

In 2019, the Outline of Building a Powerful Country in 
Transportation proposed to transform transport 
development from large-scale expansion to high-quality 
growth, and vigorously develop low-carbon and green 
transport. Transport carbon emission efficiency is a key 
indicator to measure the low carbon level of transport, 
which can fully reflect the technical and energy efficiency 
of the transport industry. Studying the carbon emission 
efficiency of transport is conducive to promoting the 
development of a low-carbon transport industry and 
effective measures to promote efficient emission 
reduction. 

At present, while the transport industry is developing 
steadily, it is faced with problems such as decreasing 
input-output efficiency year by year, gradually failing 
operating resources, and improper formulation of 
relevant rules. Transport carbon emission efficiency can 
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reflect the quality of the development of China's transport 
industry, and improving the total factor growth rate is an 
effective way to promote the productivity growth of the 
transport industry. In recent years, domestic and foreign 
experts and scholars have contributed their strength and 
wisdom to improve the total factor productivity of the 
transportation industry. Rebert and other experts and 
scholars established the definition of transportation 
productivity to measure the total factor productivity of 
the transportation industry, and relevant measurement 
methods were proposed subsequently. In the course of 
studying the productivity of China's road transportation 
industry from 2000 to 2004, Liu Yuhai and some other 
scientists found that the decrease in its productivity was 
almost caused by the lower level of technological 
progress. 

Domestic and foreign scholars' research on carbon 
emission efficiency mainly has two research perspectives: 
total factor and single factor (Trinks A et al., 2020; Hu X et 
al., 2017). Among them, single-factor carbon emission 
efficiency first refers to the ratio between GDP and carbon 
emissions, and then this research has been based on a 
single factor. Although it has the advantages of simplicity 
and easy understanding, it has not considered the 
coupling of related factors (Li et al., 2021; Zhou and Hong, 
2018).On the basis of single-factor productivity, total 
factor productivity (TFP) was proposed. TFP refers to the 
comprehensive productivity of all factors. Compared with 
single-factor efficiency, TFP results are more objective and 
comprehensive, so it is widely used in the study of the 
change of economic efficiency and the evaluation of 
environmental quality. For example, whether 
government-guided funds promote the improvement of 
enterprise total factors was verified in China (Cheng et al., 
2020). The impact of digital financial inclusion 
development on agricultural total factor productivity has 
been analyzed (Ren et al., 2022). An undesired SBM model 
has been constructed to analyze the driving factors of 
ecological environment by measuring the efficiency of 
eco-environmental planning in the Beijing-Tianjin-Hebei 
region from 2009 to 2018 (Sun Yu et al., 2022). The 
analysis of productivity drivers in the ICE industry has 
been conducted in recent years (Gokgoz F and Guvercin 
M.T., 2018). The impact of increases in total factor 
productivity in industry, agriculture and services on global 
poverty has been researched (Ivanic M and Martin W, 
2018). Based on the consideration of energy consumption 
and environmental degradation (Bampatsou C and Halkos 
G, 2019), the total factor productivity was decomposed to 
further analyze the influencing reasons of productivity. 
The total factor productivity of 35 NUTS-2 regions in 
Visegrad Group countries was estimated and its 
determinants were analyzed (Danska-Borsiak B, 2018). 

At present, there are mainly non-parametric and 
parametric methods for measuring carbon emission 
efficiency. Non-parametric methods are generally based 
on data envelopment analysis (DEA). For example, Based 
on SBM-DEA, X Lin proposed a measurement model of 
new economy and carbon emissions (Lin X et al., 2020; 

Guo et al., 2022), which took energy consumption as 
input, GDP as expected output, and carbon emissions as 
undesired output, and obtained the efficiency values of 
each continent. Based on the three-stage SBM-DEA model 
and ML model, the carbon emission efficiency of 11 
provinces and cities in the Yangtze River Economic Belt 
from 2011 to 2019 was calculated and analyzed 
dynamically and statically (Iftihar et al., 2018). The 
parameter method is generally based on stochastic 
frontier analysis (SFA). For example, SFA was used to 
measure the regional carbon emission efficiency in China 
(Sun and Geng, 2017), and the spatial and temporal 
differences of regional carbon emission efficiency were 
further analyzed and the convergence test was 
conducted. The SFA model was constructed and empirical 
analysis was conducted to explore the relationship among 
carbon emissions, green total factor productivity and 
economic growth (Zhan and Zhang, 2016). Compared with 
SFA, DEA avoids the strong hypothesis bias of SFA and has 
a better fit for multi-output activities (Zhao et al., 2022; 
Zhang et al., 2021; Huang et al., 2022). Therefore, 
generally speaking, DEA is more widely used. However, 
SFA can directly analyze the influencing factors, which can 
make up for the shortcomings of DEA in this aspect to a 
certain extent (Dong et al., 2017; Niu et al., 2022; Li and 
Zhu, 2020). 

In terms of efficiency measurement of carbon emissions in 
the transportation industry, DEA model is mainly used 
(Ren et al., 2020; Zhang et al., 2022; Wang et al., 2022), 
including static analysis and dynamic analysis. Among 
them, the static efficiency analysis includes Super-SBM 
and RAM models. For instance, the measurement of the 
total factor productivity of the transportation industry of 
provinces and cities in eastern China applied to the Super-
SBM and drew a conclusion that the total factor 
productivity of the transportation industry of provinces 
and cities in eastern China differed greatly (Lu and Xiao, 
2017). The RAM model was used to measure the 
economy, carbon emissions and joint efficiency of the 
transportation industry in 30 provinces and municipalities 
in China (Chen et al., 2019; Peng et al.2019). The Super-
SBM model was used to evaluate the carbon emission 
efficiency of the transportation sector in 30 provinces in 
China from 2004 to 2016, and to examine its spatial 
dependence and dominant drivers. Among them, ML 
(Malmquist Luenberger) or GML (Global Malmquist 
Luenberger) index models are used to study the dynamic 
efficiency. From the perspective of dynamic analysis 
alone, the GML index is generally used for measurement 
(Huang et al., 2018; Yu et al., 2022). For instance, GML 
index was used to analyze the total factor productivity of 
Chinese airlines from 2009 to 2013 and its dynamic 
changes. Based on the panel data of six central provinces 
from 2005 to 2016, GML index was applied to analyze the 
dynamic changes of carbon emission efficiency (Sun H et 
al., 2019). In order to make the measurement analysis of 
total factor productivity more comprehensive, some 
scholars conducted dynamic and static comprehensive 
analysis (Wang and Guo, 2018). The SBM model is used to 
analyze the carbon emission efficiency statically, and the 
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ML index model is used to analyze the intertemporal 
dynamic change. Taking nine national central cities that 
play a leading role in regional development as the 
research subjects (Jiang et al., 2020), we used the Super-
SBM model and ML productivity index to measure the 
carbon emission efficiency of the transport industry in the 
study areas from 2005 to 2016 from static and dynamic 
perspectives (Ren et al., 2022). 

Based on the measurement of carbon emission efficiency, 
some academics also analyzed the influencing factors. 
Currently, panel model and Tobit regression model are 
mainly used to analyze the influencing factors of carbon 
emission efficiency in the transportation industry (Peng 
and Wu, 2019). Based on the measurement of the total 
factor productivity of China's transport industry with DEA-
ML model and the performance of convergence analysis 
via σ convergence tests, a panel data regression analysis 
approach was used to analyze influential factors. The 
panel data model was based on the Super-SBM model to 
assess the energy efficiency of the transportation industry 
in 11 provinces with special economic zones from 2000 to 
2017 and was used to analyze the influencing factors (Xu 
and Li, 2021). Tobit model was used to analyze the 
influence of important factors on transport carbon 
emission efficiency in 15 countries from 2003 to 2010 
based on virtual frontier DEA (Cui et al., 2015). Tobit 
model was used to analyze the key influencing factors of 
urban transport carbon emissions (Yang et al., 2020). 

In conclusion, the academic research on the total factor 
productivity of transportation carbon emissions has 
achieved certain results, which provide valuable reference 
significance for subsequent research. However, most of 
these studies ignore the important context of carbon 
constraints and lack research on the latest data. In 
addition, in terms of research methods, many papers have 
the problem of a single research method, and do not 
systematically analyze the level of transportation carbon 
emission efficiency from static and dynamic perspectives. 

 

Figure 1. The framework and framework of the thesis research 

Compared with previous studies, the possible marginal 
contributions of this paper are as follows: (1) A 
measurement model of China's transportation carbon 
emission efficiency based on the BCC model is constructed 
to assess the level of carbon emission efficiency from a 
static perspective; (2) Using Malmquist-Luenberger index 
model and its decomposition efficiency, the dynamic 
change of transportation carbon emission efficiency was 
obtained. (3) Tobit model was introduced to analyze the 
influencing factors of transportation carbon emission 
efficiency, and the effects of different factors on carbon 

emission efficiency were explored from an empirical 
perspective. The basic ideas and framework of this paper 
are shown in Figure 1. 

2. Materials and methods 

2.1. Construction of carbon emission static efficiency 
model based on BCC model 

Data Envelopment analysis (DEA), a method based on the 
concept of relative efficiency, can estimate the 
effectiveness of a DMU based on multiple input and 
output data. DEA can also be used to analyze the causes 
and degrees of inefficiency caused by a DMU through 
redundant input or insufficient output, so as to provide 
information for decision makers (L.Luo, 2015). It was first 
proposed as an important non-parametric method for 
assessing productivity by renowned operations research 
scientists Chames, Cooper and Rod in 1978 (Gong et al, 
2017). DEA model was originally used by Chames to 
measure the efficiency of public sector and non-profit 
organizations, and has been widely applied to evaluate 
the efficiency of banks, universities, hospitals, insurance 
companies, manufacturing industry, service industry and 
many other fields. Among the DEA methods, the two most 
basic models are the CCR model and the BCC model, 
among which the input-oriented CCR model is the earliest 
and most widely used model (Du et al, 2022). In the first 
part of this paper, BCC model was selected to measure 
the pure technical efficiency (vrste), scale efficiency 
(scale), comprehensive efficiency (Crste) and returns to 
scale (VRS) of 30 provinces in China for 7 years, to further 
determine whether the input scale of each decision-
making unit (DMU) was appropriate, and to adjust the 
direction and strength of input scale. Because when some 
DMUs do not operate at the optimal scale, the technical 
efficiency is often affected by the scale efficiency. 
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Where ε> 0 is a non-Archimedean infinitesimal. When the 
pure technical efficiency is 1, it means that the decision 
making unit is technically effective. When the scale 
efficiency is 1, it means that the decision-making unit is 
scale effective. When the carbon emission efficiency of a 
decision making unit is both technology effective and 
scale effective, it is called an effective unit. When only one 
of them is valid, the unit is said to be weakly valid; when 
neither is achieved, the unit is said to be non-valid.  

2.2. Carbon emission efficiency model construction based 
on Malmquist-luenberger model 

The carbon emission efficiency of the transportation 
industry calculated by the BCC model is relative to the 
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static efficiency of the single-year frontier, which cannot 
completely and truly reflect the intertemporal change of 
the carbon emission efficiency of the transportation 
industry. In order to better analyze the dynamic 
characteristics of carbon emission efficiency in China's 
transport industry, we measure the dynamic level of 
carbon emission efficiency of the transportation industry 
in 30 Chinese provinces with the help of the Malmquist-
luenberger index proposed by Chung, Caves and other 
scientists, which takes into account the undesired output. 
With reference to the research of Shao and Wang (2020), 
an output-based Malmquist-luenberger productivity index 
model from period t to period t+1 can be obtained: 
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In the above formula, x, y respectively represent the input 
and output variables of the decision-making unit, and b 
represents the undesired output of the DEA model, and g 
represents the slack variables of different input-output 

factors. 0( , , ; )t t t t tD x y b g and 1 1 1 1 1
0 ( , , ; )t t t t tD x y b g+ + + + +  represent 

the distance function in period t and period t+1 respectively. 
At the same time, 1 1 1 1

0( , , ; )t t t t tD x y b g+ + + +  represents the hybrid 

distance function with the technology of period t as the 
reference set for period t+1. 1

0 ( , , ; )t t t t tD x y b g+  represents the 

hybrid distance function with the technology of period t+1 as 
the reference set for period t. According to this definition, if 
the value of ML index is greater than 1, it means that the 
carbon emission efficiency is effective. Otherwise, if the ML 
index is less than 1, it indicates that the carbon emission 
efficiency of transportation is insufficient. 

2.3. Influencing factor model construction of carbon 
emission efficiency based on Tobit model 

Considering the carbon emission efficiency of China's 
transportation obtained by using BCC model and 
Malmquist-luenberger index model is greater than 1.0, it 
has the characteristics of truncating. If the traditional least 
squares estimation method is used for the estimation of  
influencing factors, wrong model assumptions may occur, 
so the obtained results will have obvious bias. Tobit model 
can be used to solve this problem effectively. Tobit model 
was proposed by Tobin (1958), which can estimate 
continuous variables and dummy variables by maximum 
likelihood estimation. In order to further explore the 
influencing factors of transportation carbon emission 
efficiency, the following Tobit model was constructed by 
referring to Tobin's model: 
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In the above formula, Yit, Xit represent the explained 
variable and explanatory variable respectively; α0 
represents the constant term; αt represents the 
coefficient to be estimated. i= 1, 2,…,n represents the 
number of decision-making units, that is, the number of 

research samples; 2(0, )it  represents the stochastic 

error term. 

2.4. Index selection and data sources 

2.4.1. Input-output variable selection for DEA model 

According to the traditional production function theory, 
considering that although the transportation industry 
itself is a capital-intensive industry, it also requires a large 
amount of labor, such as loading, unloading and handling 
operations at stations, storage, passenger service, cruise 
service and freight intermediary, and the construction of 
transportation infrastructure is more labor-intensive 
production and services. Therefore, this paper selects four 
input indicators, including passenger volume by province, 
the number of employees in the transportation industry, 
proportion of transportation land in each province, and 
energy consumption in the transportation industry. Two 
output indicators are selected, namely the added value of 
the transportation industry as the expected output and 
the carbon emissions of the transportation industry as the 
non-expected output (Table 1). At the same time, since 
ML model and BCC require all indicators to be positive, 
the data on carbon emissions from the transportation 
sector, which is a non-expected output indicator, was 
standardized (Han and Fu, 2019). 

2.4.2.  Variable selection of Tobit model 

Explained variables: The comprehensive efficiency, pure 
technical efficiency and scale efficiency of the 
transportation industry derived from the former BCC 
model were selected as the explained variables. 

Explanatory variables: At present, most studies on the 
measurement of total factor productivity of transport 
carbon emissions focus on the influencing factors and 
measurement of carbon emissions. T.wang (2022)  and 
some other scientists believed that the domestic 
economic development level, energy utilization efficiency 
(vehicle technology level), the number and scale of freight 
transportation enterprises, and the industrial 
development level are the main factors affecting the 
carbon emissions of freight transportation in China. 
Therefore, on the basis of previous studies, this paper 
selected regional GDP, tertiary industry proportion and 
consumption level as environmental variables to analyze 
and study the carbon emission efficiency of transportation 
in each province based on the characteristics of 
transportation industry. 

2.4.3. Data sources 

This paper uses methodology of empirical research to 
measure the carbon emission efficiency of provincial 
transportation in China, and analyzes the factors affecting 
the carbon emission efficiency. Considering the 
availability, scientificity and rationality of the data, the 
research data in this paper mainly come from China 
Statistical Yearbook, China Energy Statistical Yearbook and 
other channels.  

From the descriptive statistics of the main variables in the 
construction of the model in this paper (see Table 2), it 
can be seen that the proportion of transportation land is 
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generally low and the polarization is significant, while the 
energy consumption is in a state of high. Therefore, the 
green and sustainable development of transportation 
industry in China is still facing severe challenges. There is 
clear regional heterogeneity in the value added and GDP 
of the transport industry.  

3. Research results 

3.1. Measurement results of carbon emission static 
efficiency in China's transportation industry 

Based on the input-output data of each year from 2014 to 
2020, the DEA-BCC model was selected and the annual 
carbon emission efficiency of the transportation industry 
in 30 provinces of China and its decomposition terms 
were obtained by using DEAP2.1 software. The 
decomposition terms include pure technical efficiency and 
scale efficiency. In order to more intuitively show and 
compare the carbon emission efficiency of the 
transportation industry in 30 provinces of China from 
2014 to 2020, we use Origin software to plot the results to 
show the trend of each indicator (Figure 2), and ArcGIS 
software was used to draw the map (Figure 3). At the 
same time, the average carbon emission efficiency of the 
transportation industry by provinces and cities (Table 3) 
and by regions (Table 4) were calculated. 

3.1.1. Analysis of changes in overall efficiency 

This paper presents an overall analysis of the changes of 
BCC efficiency index in the transportation industry of 30 
provinces in China from 2014 to 2020 (Figure 2). Carbon 
emission scale efficiency of China's transportation 
industry increased year by year from 2014 to 2017, while 
the pure technical efficiency and comprehensive 
efficiency were in a state of fluctuation. Since 2017, the 
three efficiencies have increased year by year, with the 
largest increase from 2017 to 2018.From the BCC index 
value in Figure 2, it is not difficult to find that the slump in 
the comprehensive efficiency of carbon emissions in 
China's transportation industry is mainly limited by the 
scale efficiency. For example, the bottom seven rankings 
of comprehensive efficiency, Beijing, Heilongjiang, 
Liaoning, Chongqing, Shaanxi, Sichuan and Gansu, except 
for Liaoning, have average scale efficiency values below 
0.7, and their returns to scale have been increasing during 
the seven years. Therefore, controlling the number of 
traditional fuel vehicles and gradually expanding the scale 
of new energy vehicles are effective ways to improve the 
carbon emission efficiency. 

 

Table 1. Indicator selection 

Input/output indicators Specific indicator units 

Input indicators 

Passenger volume by province 10,000 people 

Transportation industry employees 10,000 people 

Percentage of transport land % 

Energy consumption million tons of standard coal 

Output indicators 
Transportation Carbon Emissions million tons of CO2 

Value added in transportation industry billion 

Table 2. Statistical description of main variables 

Variable sample number mean standard deviation minimum value maximum value 

Passenger volume by province 210 57486.5 39728.93 3559.583 180789 

Labor force 210 27.78726 16.91788 2.2935 86.41 

Transportation land share 210 0.013876 0.011938 0.00078 0.06368 

Energy consumption 210 1394.35 970.129191 127.89 4370.21 

Carbon emissions of transportation 210 0.687124 0.217834 0 1 

The added value of transportation 210 1229.005 860.082 81.7 3636.06 

GDP 210 28272.83 22135.99 2303.32 110760.9 

Proportion of tertiary industry 210 50.14086 8.849359 29.7 83.8 

Permanent resident population 210 4638.09 2883.247 576 12624 

Consumption level 210 21216.31 28427.81 9303.4 312947 

 

3.1.2. Comparison carbon emission efficiency of 
transportation in different provinces 

Figure 2 reflects the average and ranking of the 
comprehensive efficiency of 30 provinces in China from 
2014 to 2020. Among them, the estimated value of the 
comprehensive efficiency of transportation carbon 
emission in Qinghai, Ningxia, Inner Mongolia Autonomous 
Region and Hebei Province is 1, indicating that the inputs 
and outputs of these four provinces are comprehensive 
and effective, that is, they meet the requirements of both 
technology and scale. It further indicates that in recent 
years, the carbon emission efficiency of the transportation 

industry in these regions has tended to be the optimum, 
and the efficiency of resource allocation and utilization 
has been significantly improved, achieving the state of 
obtaining the highest output with the existing investment. 

The average comprehensive efficiency of Shandong, Jilin, 
Anhui, Hubei and Shanghai ranged from 0.8 to 1 in the 
seven years, among which the comprehensive efficiency 
of Anhui, Hubei and Shanghai was more than 0.9, 
indicating the comprehensive efficiency is relatively 
effective, while the comprehensive efficiency of Shandong 
and Jilin is significantly less than 1, indicating non-DEA 
effective state. The pure technical efficiency of Shanghai 
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and Shandong is both 1, so the comprehensive efficiency 
is not 1 because of the impact of scale efficiency, which 
indicates that the management technology level of these 
two regions is approaching the optimum, but the 
investment scale is not yet optimal, and the investment 
scale should be further improved. The scale efficiency of 
Jilin, Anhui and Hubei provinces is greater than 0.95, and 
the comprehensive efficiency mainly encumbered by pure 
technical efficiency. Among them, the pure technical 
efficiency of Hubei province is 0.567, which is located in 
the bottom of the pure technology ranking of our 
provinces. Therefore, these regions should focus on 
improving pure technical efficiency by optimizing the 
business environment, upgrading management and 
technical indicators, and ensuring scientific decision-
making, while appropriately upgrading the scale of 
regional investment to accelerate the growth of scale 
efficiency. The regions with the average comprehensive 
efficiency below 0.5 are Beijing, Heilongjiang, Liaoning, 
Chongqing, Shaanxi, Sichuan and Gansu. The pure 
technical efficiency of Liaoning and Heilongjiang is 1, while 
the pure technical efficiency of the other four provinces 
except Beijing is between 0.8 and 0.94, and the pure 
technical efficiency of Beijing is 0.796. Therefore, the 
comprehensive efficiency of these regions has not 
reached the ideal state due to the influence of insufficient 
investment scale. These regions should strengthen the 
management technology level under the active and 
effective guidance and decision-making of the regional 
government, so as to promote the improvement of input-
output efficiency. However, the comprehensive carbon 
emission efficiency of the transportation industry in 
economically developed Beijing is only 0.3078, which is far 
lower than that in Qinghai, Ningxia and Inner Mongolia 
Autonomous Region. The reason is that although the 
transportation is developed in Beijing, the automobile 
pollution problem caused by the big city disease is serious 
and the carbon emission efficiency is insufficient. In 
contrast, Qinghai, Ningxia and Inner Mongolia Autonomous 
Region have a lower population density and a lower degree 

of industrialization, so the carbon emissions from 
automobiles and other transportation are low. 

3.1.3. Comparison of transport carbon emission efficiency 
in different regions 

In general, the whole country is divided into six regions 
according to the geographical location: East China, North 
China, Northwest China, Southwest China, Northeast 
China and South China. According to the results, the 
comprehensive efficiency of all regions shows an overall 
upward trend. There was a break point in 2017, and in the 
following three years, the comprehensive efficiency of 
carbon emission in all regions had a significant 
improvement, and the comprehensive efficiency of East 
China, Southwest China, and South China all had a 
significant continuous increase. There were significant 
differences in comprehensive efficiency among regions, 
especially the North-South gap. North China and 
Northwest China remained at the forefront in the past 
seven years, and formed a significant gap with Southwest 
China and South China. East China and Northeast China, 
which are both eastern regions, showed a polarization. 
The comprehensive efficiency of East China has been the 
first in seven years, and has developed in a good trend. 
However, the comprehensive efficiency of Northeast 
China fluctuated around 0.549 in recent years, and 
remained at a low level for a long time. 

 

Figure 2. Carbon emission rate of transportation by province in 

China 

Table 3. Average comprehensive efficiency ranking of provinces from 2014 to 2020 

Region The comprehensive efficiency Ranking Region The comprehensive efficiency Ranking 

Qinghai 1 1 Yunnan 0.762429 16 

Ningxia 1 1 Shanxi 0.633371 17 

Inner Mongolia 

Autonomous Region 

1 1 Fujian 0.607114 18 

Hebei 1 1 Jiangxi 0.622971 19 

Shanghai 0.990171 5 Hainan 0.604371 20 

Hubei 0.984914 6 Xinjiang 0.601143 21 

Anhui 0.905486 7 Guangxi 0.510457 22 

Jilin 0.891257 8 Guangdong 0.523971 23 

Shandong 0.831886 9 Gansu 0.497629 24 

Guizhou 0.6928 10 Sichuan 0.477057 25 

Tianjin 0.7608 11 Shaanxi 0.4738 26 

Jiangsu 0.771429 12 Chongqing 0.412086 27 

Zhejiang 0.705457 13 Liaoning 0.426743 28 

Hunan 0.667914 14 Heilongjiang 0.339371 29 

Henan 0.707571 15 Beijing 0.3078 30 
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As can be seen from Table 4, the carbon emission 
efficiency of East China, North China and Northwest China 
is relatively considerable under the influence of scale 
efficiency in recent years, while the pure technical 
efficiency is relatively low. Therefore, these three regions 
should improve the management and technology level of 
enterprises related to transportation industry and further 
improve the allocation structure of input factors. The 
provinces in Southwest China, Northeast China and South 
China can make full use of technological factors to 
maximize output, but they should further expand the 
scale of enterprises related to transportation industry. 

3.2. Results of Dynamic Measurement of Total Factor 
Production Efficiency of Carbon Emissions in China's 
Transportation Industry 

MAXDEA software was used to calculate the carbon 
emission ML index of transportation industry in 30 
provinces in China from 2014 to 2020, and the 30 
provinces and cities were divided into seven regions 
according to their geographical locations. 

3.2.1. Results of changes in the overall carbon emission 
efficiency of the transportation industry 

As shown in Table 5, during the study period, the annual 
average value of carbon emission ML index of China's 
transportation industry reached 1.142, with an overall 
increasing level, and the total factor productivity rises 
steadily, and the total factor productivity is greater than 1 
every year. The mean value of technical efficiency is 
1.015, and the average value of technological progress 
efficiency is 1.125. It can be seen that the improvement of 
total factor productivity benefits from the joint 
improvement of the two factors. However, except for 
2017-2018, technical progress was higher than technical 
efficiency, indicating that technical progress is the main 
factor driving the improvement of total factor 
productivity. From the perspective of pure technical 

efficiency and scale efficiency of technical efficiency 
decomposition, although the annual average value of both 
is greater than or equal to 1, the annual average value of 
pure technical efficiency is only 1, indicating that the pure 
technical efficiency of carbon emissions in transportation 
industry has not been significantly improved during the 
study period, and the pure technical efficiency needs to 
be improved. 

 

Figure 3. Changes of carbon emission BCC efficiency index of 

China's transportation industry 

 

Figure4. Changes of carbon emission ML efficiency index of 

China's transportation industry 

 

Table 4. Efficiency rankings by region (by geographic location), 2014-2020 

 Ranking Region  Ranking Region  Ranking Region 

The 
comprehensive 

efficiency 

1 East 

Pure 
technical 
efficiency 

1 Northeast 

The scale 
efficiency 

1 East 

2 North 2 East 2 North 

3 Northwest 3 Southwest 3 Northwest 

4 Southwest 4 Northwest 4 Northeast 

5 Northeast 5 North 5 Southwest 

6 South 6 South 6 South 

Table 5. Statistical table of average ML index from 2014 to 2020 

 Technical 
efficiency 

Advances in 
technology 

Pure technical 
efficiency 

The scale 
efficiency 

Total factor productivity 

2014-2015. 1.001 1.052 0.992 1.01 1.053 

2015-2016. 1.017 1.047 1.012 1.005 1.065 

2016-2017. 1.004 1.054 0.975 1.029 1.058 

2017-2018. 1.078 1.045 1.014 1.062 1.126 

2018-2019. 1.051 1.159 1.006 1.045 1.217 

2019-2020. 0.946 1.443 1.004 0.942 1.365 

average 1.015 1.125 1.000 1.015 1.142 

 

It can be seen from Figure 4 that during the study period, 
the pure technical efficiency index was 0.992 and 0.975 in 

2014-2015 and 2016-2017, respectively, reflecting that 
pure technical efficiency hindered the growth of technical 
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efficiency. In other years, the pure technical efficiency 
index and scale efficiency index were both greater than 1 
and showed an upward trend. Technical efficiency 
improvs in all years except 2019-2020, while technical 
progress efficiency stays on the rise and plays a key role in 
driving the rise of total factor productivity. Since technical 
progress was improved during the period, and the degree 
of improvement is basically on the rise, and technical 
efficiency is also improved during the period except for 
2019-2020, the ML index is elevated to a greater extent. It 
is found that, in different spatial and temporal 
distributions, the overall transportation industry in China 
have different degrees of emphasis on the improvement 
of emission technical efficiency and technological 
progress, and the coordinated development of the two is 
conducive to the improvement of total factor productivity. 
It is worth mentioning that the improvement degree of 
technical progress efficiency is significantly higher than 
that of technical efficiency, so more emphasis can be 
placed on technical efficiency in order to pursue more 
significant improvements of total factor productivity. 

3.2.2. Results of carbon emission efficiency of transport 
industry by province 

It can be seen from Table 6 that the total factor 
productivity of the other 29 provinces except Guizhou 
Province is all greater than 1, indicating that under the 
carbon constraint, China's transportation carbon emission 
efficiency has improved in the past seven years, and the 
low-carbon economy has developed significantly. From 
the perspective of decomposition efficiency, the technical 
efficiency index of Beijing, Tianjin, Jilin and other regions 
decreased, and the improvement of TFP was due to the 
technical progress of transportation industry. The 
technical progress coefficient decreased in Jiangxi, 
Sichuan, and Shaanxi, and the total factor productivity 
increased thanks to the technical efficiency of the 
transportation industry. In Hebei, Shanxi and other 
regions, the technical efficiency index and technical 
progress index both increased. It can be seen that the 
increase of TFP in these provinces is the result of the joint 
efforts of technical efficiency and technological progress. 

Table 6. Statistical table of regional average ML index 

Region Technical 
efficiency 

Advances in 
technology 

Pure 
technical 
efficiency 

The scale 
efficiency 

Total factor productivity 

Beijing 0.963 1.066 0.982 0.980 1.026 

Tianjin 0.911 1.152 0.997 0.913 1.049 

Hebei 1.000 1.085 1.000 1.000 1.085 

Shanxi 1.032 1.124 1.007 1.025 1.160 

Inner Mongolia 1.000 1.108 1.000 1.000 1.108 

Liaoning 1.013 1.023 0.996 1.017 1.036 

Jilin 0.993 1.020 1.012 0.981 1.013 

Heilongjiang 0.981 1.169 1.012 0.970 1.147 

Shanghai 0.964 1.195 1.000 0.964 1.151 

Jiangsu 1.042 1.040 1.000 1.042 1.084 

Zhejiang 1.024 1.039 1.019 1.005 1.065 

Anhui 1.044 1.040 1.003 1.040 1.086 

Fujian 1.023 1.060 0.985 1.039 1.084 

Jiangxi 1.054 0.982 0.991 1.063 1.035 

Shandong 1.009 1.124 1.004 1.005 1.135 

Henan 1.064 1.003 1.030 1.033 1.067 

Hubei 1.005 1.036 1.004 1.002 1.042 

Hunan 1.002 1.024 0.981 1.021 1.026 

Guangdong 1.040 1.029 0.991 1.050 1.071 

Guangxi 1.016 1.027 0.995 1.021 1.043 

Hainan 1.039 1.012 1.001 1.037 1.051 

Chongqing 1.006 1.024 0.994 1.012 1.030 

Sichuan 1.029 0.983 0.974 1.056 1.011 

Guizhou 0.895 1.033 0.978 0.915 0.924 

Yunnan 1.225 1.013 1.049 1.168 1.241 

Shaanxi 1.085 0.992 1.013 1.071 1.076 

Gansu 1.030 1.000 1.008 1.022 1.030 

Qinghai 1.000 2.198 1.000 1.000 2.198 

Ningxia 1.000 3.446 1.000 1.000 3.446 

Xinjiang 1.007 1.200 0.989 1.019 1.209 

Northeast 0.997 1.080 1.005 0.992 1.076 

East 1.004 1.080 0.998 1.006 1.083 

The central region 1.023 1.049 0.998 1.025 1.072 

West 1.029 1.392 1.000 1.028 1.421 

Mean 1.015 1.125 1.000 1.015 1.142 
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3.3. Analysis results of influencing factors of total factor 
productivity of carbon emissions in China's transportation 
industry 

3.3.1. Likelihood ratio test of Tobit model data 

First, the overall validity of the Tobit model was analyzed. 
Table 7 shows the Censor data analysis of the samples. 
According to the results, the data are complete and there 
is no left-right censored data. Table 8 shows the results of 
the Tobit regression model likelihood ratio test. It can be 
seen from Table 8 that the original hypothesis of the 
model test here is: the quality of the model is the same 
when the two explanatory variables (land use ratio, 

tertiary industry ratio, resident population, consumption 
level) are included; Here, the p-value is less than 0.05, 
which indicates that the original hypothesis is rejected, 
that is, the explanatory variables put into the model are 
valid and the model construction is meaningful. If AIC or 
BIC values can be used to compare multiple models, a 
smaller AIC or BIC value means that the model is relatively 
better constructed. According to the results, AIC or BIC 
values were -29.653 and -12.917, respectively, which are 
both less than 0, indicating that the model is well 
constructed. 

Table 7. Summary of censor data samples 

Item 
The total 
sample 

Data censored (Uncensored) Left-censored data The Right to delete loss (Right - censored) 

Number 210 210 0 0 

Proportion 100% 100.00% 0.00% 0.00% 

Table 8. Likelihood ratio tests for Tobit regression models 

Model -2 times the log-likelihood Chi-square value df p AIC values BIC values 

Only intercept 23.838      

The final model 39.653 15.815 4 0.003 -29.653 -12.917 

 

3.3.2. Estimation results based on Tobit model 

According to the regression results in Table 9, the resident 
population and consumption level have obvious effects on 
the comprehensive efficiency of transport carbon 
emissions, indicating that these factors have a significant 
impact on the carbon emission efficiency of the transport 
industry. Generally speaking, the higher the population 
density, the greater the demand for transportation and 
the more frequent the use of vehicles and other means of 
transportation, which will increase the carbon emission of 
transportation. Similarly, the higher the consumption 
level, the more residents will buy family cars, which will 
lead to the increase of urban transportation carbon 
emissions, thus affecting the transportation carbon 
emission efficiency. 

The proportion of land use can reflect the construction 
quality of transportation infrastructure. Generally, the 
more perfect the transportation infrastructure is, the 
more conducive to improving the transportation carbon 
emission efficiency. From the results, the regression 
coefficient is 0.016 and the p-value is 0.021, which is 
significant at 5% level. Therefore, it can also be considered 
that the proportion of transportation land has a significant 
positive impact on transportation carbon emission 
efficiency. Similarly, the ratio of the tertiary industry has a 
negative impact on the carbon emission efficiency of 
transportation. 

In conclusion, in order to improve the carbon emission 
efficiency of transportation, it is necessary to strengthen 
the construction of transportation infrastructure, improve 
the efficiency of transportation operation, and avoid the 
waste of energy consumption caused by traffic 
congestion. At the same time, it is necessary to reduce 
population density and speed up urbanization 
construction. For example, in places with high population 
density, such as Beijing, it will be beneficial to improve the 

efficiency of transportation carbon emissions by freeing 
up Beijing's non-capital functions. Finally, as the 
consumption ability of residents increases, it will help 
guide residents to consume reasonably and effectively, 
giving priority to the choice of new green transportation 
tools such as new energy vehicles. The improvement of 
transport carbon emission efficiency requires the optimal 
allocation of multi-factor combinations. Through the 
improvement of key factors, the transport carbon 
emission efficiency can be greatly improved. 

4. Research and discussion 

4.1. Comparison of transportation carbon emission 
efficiency in different years 

This paper comprehensively uses the BCC model to 
measure the carbon emission efficiency of China's 
transportation, and plots the distribution of comprehensive 
efficiency, scale efficiency and pure technical efficiency 
from 2014 to 2020, as shown in Figure 5. 

From the calculation results, it can be seen that the 
change curves of comprehensive efficiency, scale 
efficiency and pure technical efficiency of China's 
transportation carbon emission show a trend of 
increasing, then decreasing and then increasing during 
2014-2020. With 2017 being the inflection point, which is 
approximately a "U-shaped" change. This indicates that, 
with the continuous optimization of production factors 
and the rational allocation of resources, the carbon 
emission efficiency of China's transportation keeps 
growing. Meanwhile, from 2014 to 2020, the 
comprehensive efficiency values of East China, North 
China and Northwest China are all greater than 0.65. This 
indicates that the carbon emission efficiency of 
transportation in these regions is higher, and the degree 
of resource redundancy is lower. The carbon emission 
efficiency of transportation in Southwest, Northeast, and 
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South China is less than 0.65, which indicates that there is 
a high degree of factor redundancy in these regions and 

there is a large room for improvement. In particular, the 
efficiency value in 2017 is at the lowest level. 

Table 9. Summary of Tobit regression analysis results 

Item Regression coefficient Standard error Z value P values 95% CI 

Intercept 0.987 0.095 10.437 0 0.802 ~ 1.172 

Proportion of land use 0.016 0.007 2.312 0.021 0.002 ~ 0.029 

Proportion of tertiary industry -0.006 0.002 -3.449 0.061 -0.010 ~ -0.003 

Population of permanent residents -0.0013 0.001 -3.071 0.004 0.000 ~ 0.000 

Level of consumption -0.0026 0.003 3.556 0.008 0.000 ~ 0.000 

Log (Sigma) -1.513 0.049 -31.014 0 -1.609 ~ -1.418 

McFaddenR2 -0.663     

Dependent variable: overall efficiency 

 

From 2014 to 2015, the scale efficiency of transportation 
carbon emissions shows rapid growth, with the largest 
increase in North China. From 2015 to 2020, the scale 
efficiency of East China, Southwest China and North China 
shows a small range of variation and is generally stable. 
From 2014 to 2020, the pure technical efficiency of the six 
regions shows a "U-shaped" or inverted "U-shaped" trend. 
The changes in Northwest China and East China are more 
consistent, decreasing first, then increasing, then 
decreasing and then increasing again. This indicates that 
the carbon emission efficiency of transportation in China 
changes significantly from 2014 to 2020, and there are 
many factors affecting the efficiency, which may be 
related to the uncertain external environment. 

 

Figure 5. Changes of transportation carbon emission efficiency 

based on BCC model 

4.2. Comparison of ML index of transportation carbon 
emission in different provinces 

In order to further compare the regional heterogeneity of 
transportation carbon emission efficiency in China, a map 
from 2014 to 2020 was drawn with the help of ArcGIS 
software, as shown in Figure 6. It can be seen from Figure 
6 that the carbon emission ML index of Qinghai Province, 
Henan Province and Chongqing Municipality is lower than 
0.732 during 2014-2015, which is at a low level. The ML 
indexes of Ningxia, Shanxi, Shandong and Guangdong are 
greater than 1.0, and the change is fast. From 2015 to 
2016, the ML indexes of transportation carbon emission in 
Qinghai, Inner Mongolia, Gansu and Ningxia are lower 
than 0.7, indicating significant input redundancy. The ML 
indexes of Liaoning, Beijing, Hebei, Shanxi, Sichuan and 
Guangxi are greater than 1.0, showing rapid efficiency 
growth. From 2016 to 2017, the ML indexes of Shanxi, 

Hebei and Liaoning are less than 0.56, which is at the 
lowest level, which related to the severe environmental 
pollution in these regions. 

Similarly, the changes of ML index during 2017-2018, 
2018-2019 and 2019-2020 can be analyzed. During 2019-
2020, the ML indexes of transportation carbon emissions 
in China are mostly greater than 1.0. Among them, the ML 
indexes of Xinjiang, Inner Mongolia, Heilongjiang, Beijing, 
Shandong and Hebei are greater than 1.2, indicating that 
these regions have made significant achievements in 
improving transportation carbon emission efficiency. 
Therefore, from the above analysis, it can be seen that the 
transport carbon emission efficiency in China presents 
significant temporal heterogeneity and regional 
heterogeneity. 

 

Figure 6. ML efficiency Index of China's provincial transport 

industry from 2014 to 2020 

4.3. Discussion on dynamic efficiency of carbon emissions 
in Central China 

With a land area of 1.028 million square kilometers and a 
permanent population of about 368 million, central China 
is an important region for economic development. The 
central region mainly includes the six neighboring 
provinces of Shanxi, Henan, Anhui, Hubei, Jiangxi and 
Hunan. With the promotion of the strategy of rising 
central China, carbon emissions in the central region is 
growing rapidly. Therefore, it is necessary to specifically 
study the carbon emission efficiency of transportation in 
the central region. This paper plots the changes in 
technical efficiency of the six central provinces from 2014 
to 2015, 2017 to 2018, and 2019 to 2020, as shown in 
Figure 7. 
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From Figure 7, it can be seen that the technical efficiency 
of the six central provinces increased and decreased 
during 2014-2015, among which Shanxi showed the 
largest increase and Henan showed the largest decrease. 
From 2017 to 2018, the technical efficiency of the six 
provinces in central China all increased, among which, 
Henan technical efficiency from the maximum decline 
during 2014-2015 to the maximum rise today. The 
technical efficiency of Hubei province tended to be flat, 
with the smallest increase. From 2019 to 2020, the 
technical efficiency of the six central provinces also 
increased and decreased. Among them, Anhui Province 
shows the largest increase, while Shanxi Province shows 
the lowest decline. 

It can be seen that the changes of technical efficiency in 
the six central provinces are not stable and do not 
maintain the good momentum of medium-term 
development. From the perspective of technological 
progress, from 2014 to 2015, Shanxi Province showed the 
largest increase in technological progress, while Hubei 
Province showed the largest decline. From 2017 to 2018, 
the technological progress in Hubei Province increased 
the most, while the technological progress in Henan 
Province decreased the most. From 2019 to 2020, the 
technological progress in Shanxi Province increased the 
most, while the technological progress in Hubei Province 
decreased the most. During the three years, all the six 
provinces had rises and falls, and did not achieve technical 
progress well. Therefore, the improvement of the 
technical efficiency of the six provinces in central China 
needs to be strengthened. At the same time, it is urgent 
to strengthen the development of technical progress. 

4.4. Analysis of influencing factors of pure technical 
efficiency of transportation carbon emission 

As can be seen from Table 10, the proportion of land use, 
GDP, proportion of tertiary industry, resident population 

and consumption level are taken as explanatory variables, 
and the pure technical efficiency is taken as the explained 
variable for Tobit regression analysis. The final specific 
analysis shows that: The regression coefficient value of 
land use ratio is 0.010, showing a significance of 0.01 level 
(z=2.818, p=0.005<0.01), which means that land use ratio 
will have a significant positive impact on pure technical 
efficiency. The regression coefficient value of GDP was 
0.000, and shows a significance at 0.01 level (z=2.766, 
p=0.006<0.01), indicating that GDP would have a 
significant positive impact on pure technical efficiency. 
The regression coefficient value of the proportion of the 
tertiary industry was -0.003, and shows a significance of 
0.01 level (z=-3.133, p=0.002<0.01), indicating that the 
proportion of the tertiary industry will have a significant 
negative impact on pure technical efficiency. The 
regression coefficient value of the permanent resident 
population is -0.000, and shows a significance of 0.05 level 
(z=-2.425, p=0.015<0.05), which means that the 
permanent resident population will have a significant 
negative impact on the pure technical efficiency. The 
regression coefficient value of consumption level is -
0.000, but it does not show significance (z=-0.489, 
p=0.625>0.05), which means that consumption level does 
not have an impact on pure technical efficiency. 

The summary analysis shows that: the proportion of land 
use and GDP will have a significant positive impact on 
pure technical efficiency, and the proportion of tertiary 
industry and permanent population will have a significant 
negative impact on pure technical efficiency. However, 
consumption level does not have an impact on pure 
technical efficiency. In a similar analysis, scale efficiency 
can be taken as the dependent variable, and the relevant 
results are shown in Table 11, which will not be described 
in detail due to space limitation. 

Table 10. Summary of Tobit regression analysis results (pure technical efficiency) 

Item Regression coefficient Standard error Z value P values 95% CI 

Intercept 1.018 0.048 21.021 0 0.923 ~ 1.113 

Proportion of land use 0.01 0.003 2.818 0.005 0.003 ~ 0.016 

GDP 0 0 2.766 0.006 0.000 ~ 0.000 

Proportion of tertiary industry -0.003 0.001 -3.133 0.002 -0.005 ~ -0.001 

Permanent residents 0 0 -2.425 0.015 -0.000 ~ -0.000 

Level of consumption 0 0 -0.489 0.625 -0.000 ~ 0.000 

Log (Sigma) -2.215 0.049 -45.384 0 -2.310 ~ -2.119 

Dependent variable: pure technical efficiency 

Table 11. Summary of Tobit regression analysis results (scale efficiency) 

Item Regression coefficient Standard error Z value P value 95% CI 

Intercept 1.081 0.085 12.721 0 0.914 ~ 1.247 

Proportion of land use 0.007 0.006 1.211 0.226 -0.004 ~ 0.019 

GDP 0 0 1.804 0.071 -0.000 ~ 0.000 

Proportion of tertiary industry -0.006 0.002 -3.869 0 -0.009 ~ -0.003 

Permanent residents 0 0 -2.036 0.042 -0.000 ~ -0.000 

Level of consumption 0 0 -0.159 0.874 -0.000 ~ 0.000 

Log (Sigma) -1.652 0.049 -33.861 0 -1.748 ~ -1.557 

McFadden R2 -0.211     

Dependent variable: scale efficiency 
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5. Research conclusions 

In this paper, the DEA-BBC model, DEA-ML model and 
Tobit model were comprehensively used to estimate the 
change rate of carbon emission efficiency and total factor 
productivity of the transport industry in 30 provincial 
administrative regions in China during 2014-2020, and 
three other factors besides input-output were introduced 
to analyze the effects of various factors on the 
comprehensive efficiency of carbon emission. 

 

Figure 7. Changes of technical efficiency in central China 

Analysis from static model. On the whole, there is still a 
large room for improvement in the comprehensive 
efficiency of China's transportation carbon emissions, and 
the gap between them and the optimal production 
frontier is obvious. According to the measurement results 
of BCC model, only Qinghai, Ningxia, Inner Mongolia 
Autonomous Region and Hebei Province have 
comprehensive transportation carbon emission efficiency 
greater than 1.0, which is in an effective state. 

From the dynamic model analysis. Except Guizhou 
province, the total factor productivity of transportation 
carbon emissions in other provinces showed an upward 
trend. The progress of the pure technical efficiency of 
carbon emission is not obvious, which limits the technical 
efficiency to a certain extent. Technological progress is the 
driving factor for the increase of total factor productivity. 
The technical efficiency of the decomposition of total 
factor productivity of carbon emissions in all regions 
decreased in Northeast China, but increased in other 
regions. The technological progress index showed an 
overall upward trend, especially in the western region, 
where the index value reached 1.392, much higher than 
other regions. 

Analysis from the influencing factors. The external 
environment, such as the proportion of land use, the 
proportion of the tertiary industry in GDP, and the 
resident population, has a significant impact on the 
carbon emission efficiency of transportation. Therefore, in 
order to improve the efficiency of transportation carbon 
emissions, it is necessary to strengthen the construction 

of transportation infrastructure, improve the efficiency of 
traffic operation, and avoid the waste of energy caused by 
traffic congestion. At the same time, it is necessary to 
reduce population density and speed up urbanization. 
Improving transportation carbon emission efficiency 
requires multi-factor combination and optimal allocation. 
Through the improvement of key factors, transportation 
carbon emission efficiency can be greatly improved. 

Therefore, in order to promote the low-carbon 
development of the transportation industry, it is urgent to 
optimize the industrial structure, promote the use of 
clean energy and renewable energy in the transportation 
industry, improve the total factor productivity of carbon 
emissions by optimizing the energy consumption 
structure, improve the smooth flow rate of transportation 
and the efficiency of transportation organization, and 
avoid unnecessary energy consumption and carbon 
emissions. Finally, it is necessary to strengthen inter-
regional cooperation, expand the overall scale of 
production, and improve scale efficiency. 
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