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Abstract 

Recently, there has been a rise in research based on data-
driven based machine learning models to address the 
issue of processing speed posed by various physiological 
simulations. The majority of studies, however, have 
concentrated on creating models for particular water 
sources, drainage systems, and gauge stations area. 
Therefore, unless further data is supplied and the models 
are subsequently trained, their outcomes cannot be 
effectively applied to different scenarios. With its 
excellent spatio-temporal accuracy range with the 
advanced analytics, the forthcoming Global Navigations 
Satellite Systems (GNSSs) technology offers a novel 
method for the monitoring of flood disasters in dynamic 
manner. This study recommends a Multi-layered Neural 
Network (MNN) for flood monitoring, which combines a 
Convolutional Neural Networking (CNN) along with a 
backward propagation based (BP) learning network. The 
CNN component is used to obtain the abstracted features 

from full delay doppler maping images. The BP section is 
provided with GNSSs characteristics, such as reflection of 
surface with power range, and also the vegetation 
attributes from the Soil Moistening Active Passives 
(SMAP) satellite source data. In comparison to 
physiologically based models, the results shown that the 
CNN-oriented system makes accurate predictions on 
"unseen" areas of catchment with a substantially shorter 
processing time. The obtained results imply that, with 
respect to accuracy of prediction, the patch-enabled 
option is superior to the resizing-based option. 
Additionally, every experiment has demonstrated that the 
forecast of flow speed is more precise than the prognosis 
of water depth, indicating that the water deposition is 
more complex to information about global level elevations 
than the flow speed with velocity.  

Keywords: Spatio-temporal, flood disaster, MNN, satellite 
systems, physiological models and forecasting 

1. Introduction 

The East Asian areas border the North Pacific to 
progressively hit by a greater number of disastrous flood 
catastrophes as a direct result of the bigger and more 
powerful storms. ANNs models be effective and quickly 
forecasting river system floods in limited locations (Nevo 
et al., 2019; Salas et al., 2018). In Japan, typhoon- & 
heavy-rainfall-prone areas have seen river system 
disasters in the last 3–4 years (Realestate Blog, 2019). 
Most important Japanese rivers have real-time overflow-
risk detection. However, a quick-response effective flood 
technology that can foresee has not yet been put into 
practice in particular river sites. Utilizing flood detection 
systems, humans are ready to terminate a disaster. As a 
result, there could have been fewer casualties. A deep 
learning-enhanced ANN model is a contender when a 
prediction flood forecasting system is created for usage in 
real-world scenarios owing to the model's characteristics. 
The ANNs data-driven it lacks physics-based on metrics 
sets. For instance a rainfall-runoff models must be 
validated in a given area (Tokar et al., 2000). A physical 
model, like the rainfall-runoff model, needs many studies. 
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Depending only on previous data learning, the ANN model 
is capable of predicting a near-future trend. ANN 
predictions has minimal starting intricacy but 
advancement cost. The ANN-based flood model's primary 
advantages lie in its speedy reaction to the warning signs 
of a flood that will occur in the not-too-distant future and 
its straightforward execution using just historical data 
(Akhtar et al., 2009). ANNs approach has been used to 
forecast floods (Maier et al., 2010). ANN models using 
deep learning are used to forecast floods (Hitokoto et al., 
2016). The LSTMs design (Hochreiter and Schmidhuber, 
1997; Gers et al., 1999). were employed to evaluate the 
soil moisture in flooding (Yamada et al., 2016; Hu et al., 
2018; Le et al., 2019).  

In the majority of case reports, ANN models predicted 
exactly previous flood occurrences using a variety of 
datasets. ANN models often demand substantial 
computing expenses throughout the training procedure 
because of massive datasets. To decrease computing 
costs, we use transfer learning (Pratt, 1992). In a raw 
input that might be applied to other target areas, 
approaches were built using big datasets. Following a part 
regarding the pre-trained model's–training using target 
datasets, the trained and certified technique may deliver 
suitable results at a relatively minimal cost. The work 
concentrate on forecasting time information, such as 
water levels, for flood occurrences. The ideal method for 
processing time-series data is to use an LSTM architecture 
integrated into an ANN model. Deep learning and LSTM 
have been created. (Laptev et al., 2018) found that LSTMs 
with transfer training decreased inefficiencies in long-
term U.S. electric energy consumption patterns. However, 
LSTM has typically not proven effective, particularly for 
short-term, quickly changing, and non-periodic data, like 
data on flood waves. The following explanation fits this 
finding: Rarely can an unpredictable life value be 
predicted as from an exact value (Potikyan, 2019). 

For 2D-spatial image recognition, CNN (LeCun et al., 1998) 
is utilized. CNNs implementation with an ANNs model 
generated strong transfer learning outcomes (Kensert et 
al., 2019; Kolar et al., 2018). A new picture database is 
often classified using ImageNet (Visual Geometry Group, 
2019), and created using VGG16. Because it sequentially 
integrates from basic visual qualities on a bottom layer to 
data source knowledge representation on a protocol 
stack, CNNs with the proposed method perform well 
(Preethi and Asokan, 2020; Zeiler and Fergus, 2014). We 
came to the conclusion that a CNNs enhanced with deep 
learning is more reliable and practical than an LSTMs 
enhanced with supervised learning. Converting time 
information to image information for an ANNs model is 
tricky. How to depict time-series structures in 2D has been 
studied. 31 stocks were employed across 100-time 
intervals to estimate the near-term share market 
(Miyazaki and Matsuo, 2017). Data sets on geographical 
meteorological data, such as thermal effects at 8 places, 
were utilized to predict moisture in ten-minute intervals 
and eight-time scales (Suzuki et al., 2018). CNNs and 
transfer learning may forecast flood data via conversions 

A brand-new data-driven hydrological models were 
created in this study. The planned work's contributions 
are, 

• The approach integrates a CNNs with domain 
adaptation to anticipate time-series groundwater 
table in floods even within multiple areas 
acquiring CNNs methods in a single domain 

• The CNN-based flooding model's efficiency is 
used with strong data restoration capacity. 

• Reducing computational costs and Root mean 
squared error increased CNN classification 
technique. 

2. Related Works 

Researchers& disaster strategists have focused relating to 
flood predictions and alert technologies to lessen 
disasters and to plan effective responses. The modern 
techniques for preventing flooding over the last ten years 
are listed in Table 1. ANN is often used for flood 
prediction (Preethi and Asokan, 2021). (Sankaranarayanan 
et al., 2020) employed a deep neural network for 
speculating about floods. Training a multilayer ANN model 
that might predict a potential flood occurrence, the 
scientists utilized meteorological information including 
temperature and rainfall intensity. These models can 
evaluate the possible harm that severe rains might do to 
houses, buildings, and infrastructures. Similar to this, 
(Preethi and Asokan, 2019) utilized many hidden layers as 
opposed to in their ANN model, there is one, which 
produced results with much greater accuracy than a 
conventional ANN model. The zones of clouds, land, and 
water were independent of the satellite measurements 
using SVM, which resulted in overall classification results 
of 92% for their proposed floodplain mapping system. 
Their research is constrained, nonetheless, by the use of 
noise- and weather-dependent remotely detected images. 
Additionally, in darker areas like building foundations, 
behind bridges, and other covered areas, such photos 
cannot be taken. This reliance prevents the user from 
initiating rapid crisis actions because clouds are frequently 
present during rain-related floods. 

Elsafi (2014) employed an ANN model to predict flood 
events using upstream data from the Nile River in Sudan. 
A learnt ANN model was used to recreate the flows at 
particular river locations using data from upstream sites in 
order to forecast the occurrence of floods. Anusha and 
Bharathi (2020) investigated flood identification and 
modeling was employed as image processing method like 
factorizing to distinguish water patches from the input 
pictures. The SAR photographs of the target region were 
used to compile the dataset. To eliminate speckle noise 
from pictures, a median filter and image rectification were 
used. Every image was classified as "water" or "non-
water" using a pixel-based threshold. Similar findings 
were seen in research by (Preethi and Asokan, 2019), 
where the suggested CNN architecture increased the 
statistic from 0.615 to 0.687 in comparison to its 
monitored equivalent. Improved accuracy for flood-
affected open areas (FO) (0.506-0.684) reduces recall 
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(from 0.842 to 0.824), but both improve for FB. In 
different research (Zhao et al., 2020), CNN outperformed 
the SVM and RF with an accuracy of 0.91 for CNN & 0.89 
for LeNet-5 during the testing phase. (Hosseiny et al., 
2020) employed RFs for flood prediction and the MLP 
model for depth detection. For depth, the MLP model 
produced a regression coefficient of 0.89, while RF 
technique produced a detection accuracy of 98.5% for the 
flooded areas. Because of this, the cost of computations in 
mechanical or hydraulic modeling may be decreased by 
using this much less sophisticated technique to learn 
algorithms. 

Other studies stressed "warning communities" as a means 
of mitigating the disastrous impacts of floods and 
centered their attention on the usage of alert systems in 
flood conditions (Basha and Rus, 2007). A flash flood 
forecasting structure relies on a statistical model and uses 
a threshold occurrence mechanism during heavy 
downpours was developed by (Alfieri et al., 2011). A rain 
index was also created. The flood level is measured and 
estimated using computer vision from photographs that 
have been collected by (Preethi et al., 2021). People in the 
disaster zone might take pictures of these things and 
upload them to the server. For data processing of the 
picture, the scientists used the SIFT techniques. In 
planning an efficient disaster response, geo-tagging data 
was used to determine the region's geographic location. 
Flood sensor nodes are often used by (Mousa et al., 2016) 
to evaluate the level of flood waters using an ultrasonic 
distance locator and condition monitoring. 

The data from the sensor was analysed using the ANN 
approach to determine the water level in significant 
buildings, homes, and smart structures. Numerous studies 
have built and employed artificial intelligence (AI) systems 
to control risks by extracting data from social media 
(Wang et al., 2018; Smith et al., 2017). The emergency 
response has been sparked by status updates, image 
uploads, and opinions. AI algorithms have been trained to 
recognise these images and comments and to provide aid 
to the affected locations. Facebook employs CNN for 
tagging face identification, while Google does the same 
(Amit and Aoki, 2017). Numerous applications of UAVs 
have been studied and employed, including smart real 
estate investment (Ullah et al., 2018; Felli et al., 2018), 
intelligent buildings (Zhao et al., 2020), smart healthcare 
(Islam and Shin, 2020), and many more. UAVs are used for 
disaster risk management, post-disaster phase transition 
using IoT, public security in disaster and crisis response, 
energy-efficient work scheduling and physical evaluation, 
and flood protection (Kumar et al., 2020; Ejaz et al., 2020; 
Mehallegue et al., 2020). Various machine-learning 
methods have also been investigated for effective UAV-
based flood catastrophe control. Programs like ANN, CNN, 
SVM, segmentation methods, and others (Kastridis et al., 
2020; Liu et al., 2020; Rottondi et al., 2021) are examples 
of advanced solutions. 

In the newest study (Khosravi et al., 2020), CNN 
applications in UAV-based flood catastrophe management 
are highlighted. UAVs may fly anywhere and gather data, 
including images and actual harm evaluation. CNN has 

being utilised by UAVs to extract photos and videos for 
real-time flood assessments, as well as to assess flood 
damage to buildings, companies, and infrastructure (Ali 
and Choi, 2019; Ahmed et al., 2020). The current study 
examines Applications developed by CNN for handling 
after-flood catastrophes, planning an immediate response 
to begin rescue efforts, and recognizing significant 
infrastructure damage. CNN has been used in several 
flood research studies. (Mason et al., 2010) carried out 
research in which social media-posted photos of floods 
were put into embedded metadata to identify flood 
trends. To extract visual data from social media images, 
the CNN technique was applied to a trained ImageNet. 
Using word embedding, metadata provided textual data 
to a bidirectional RNN. Additionally, the word embedding 
was determined using glove vectors. The finalised images 
and text were then combined to provide a product with 
pertinent information about the disaster (Martino et al., 
2007) built a social media flood detection, retrieval, and 
visual and content analysis AI system. Cropping and pre-
filtering the photos based on linguistic and chromatic 
information were part of the pre-processing. Lopez-
Fuentes (Lopez-Fuentes et al., 2017) gathered disaster 
photographs and located the flood using the CNN 
approach using the Relation Network. To paraphrase a 
phrase that was used on CNN recently (Zha et al., 2015). 
In order to arrange the video and extract its 
spatiotemporal properties, the authors used systematic 
investigation. Nearby video input segment stacks and 
convolution layers are used in 3D-CNN research (Ji et al., 
2013). 

Two distinct CNN models with diverse inputs were used in 
the two-stream technique to regulate the spatial and 
temporal aspects of the video (Simonyan and Zisserman, 
2014). One input was an RGB picture for acquiring fractal 
dimension another was several frames with dense optical 
flow for temporal features. The final visual output is 
obtained by evaluating the weights of the two streams. Ye 
et al. (2015) employed the same two streaming neural 
network techniques and evaluated them using 
parameters, fusion, and predictions. Various image 
segmentation approaches have been applied during the 
last few years. These techniques classify images based on 
context and local information. First, the pixels are 
integrated into bigger-picture objects since a single pixel 
cannot convey exact semantic information (Sande et al., 
2003). The texture, size, and proximity of the picture are 
taken into account to extend the pixels into objects (Baatz 
and Schäpe, 2000). FCN models are utilized to segment 
conventional aerial images (Marmanis et al., 2016; 
Sherrah, 2016). High-resolution satellite pictures were 
characterized using the FCN framework by (Fu et al., 
2017), who determined that the accuracy, recall, and 
kappa coefficients were significant at 0.81, 0.78, and 0.83, 
respectively. While classifying satellite photos, (Nguyen et 
al., 2013) created a five-layered network technique that, 
on average, had an 83% classification accuracy. Another 
experiment attained 91% accuracy using the Cafenet and 
GoogleNet CNN architectures. These were used with the 
three different learning modalities required to classify the 
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land use pictures that RS had taken (Castelluccio et al., 
2015). 

DL applications using spectral data have shown higher 
categorization than SVM (Xue et al., 2020). It investigated 
the potential of SVM and convolutional neural networks 
for flood forecasting. Rainfall intensity and temperatures 
are utilized to train. The DNN had an efficiency of 91.18%, 
whereas the SVM had a reliability of 85.57%, as per the 
data. In another research, CNN outperformed SVM and 
random forest in identifying land use from RGB pictures 
(Jozdani et al., 2019). 

According to the literature, deep learning models are 
more effective than conventional image processing and 
artificial intelligence techniques for picture retrieval, 

categorization, and segmentation. As a result, the current 
work uses CNN and deep learning to identify floods using 
UAV aerial data. In order to develop effective and efficient 
disaster response plans, it is important to improve 
performance and research the application of machine 
learning for flood predictions. In order to extract visual 
features, modern UAVs have parallel processing and built-
in FPGS. Because of PL, CNN is frequently employed to 
improve picture segmentation, feature categorization, 
and texture categorization. The current study's 
recommended approach, the CNN method, is also very 
speedy and reliable 

 

Table 1. Recent Flood Management work overall view 

Methods Focus Metrics De Metrics 

DNNs Prediction of 

Flood 

More accuracy compared to conventional 

ANNs. 

The dataset is old. Entries from 1992 to 2002 are 

included.Distributional imbalance in the 

information were not taken into account. 

ANNs Flood Plain & 

Maps 

More than 90% overall recognition 

efficiency 

Noisy information being present in the training 

database.Older than average data (1965–2003). 

SVMs Prediction of 

Flood 

Less time is needed to analyze the data, 

which reduces the cost of evaluation. 

Utilize one factor for train; good when there's 

little data. 

Image 

Segmentation 

Flood recognition 

& Maps 

For flood analysis and design, the 

identification of drowned zones could be a 

important element. 

A large quantity of trees causes the method's 

processing to be extremely slower. 

RFs & MLPs Flood recognition 

& Flood intensity 

techniques 

The cost of large-scale hydraulic simulators 

has decreasedusing mls in combination 

Not feasible programs that demand real-time 

forecasts. 

 

 

Figure 1. Overall flow of the research 

2.1. Proposed methodology for flood prediction in 
catchment area 

In order to anticipate floods, this research suggests a 
MNN system that blends CNN with BPML.  In this 
approach, 2D DDMs are fed into the CNNs, which 
essentially populates abstractions features from images, 
while the BPNNs is fed seven typical GNSS-R properties, 
include mentioned together with these indications 
(Hochreiter, 1998), quality factor (Kratzert et al., 2019), 

the front of slopes (Tan et al., 2018), etc., as well as plant 
info using SMAP databases (Long et al., 2015). The 
likelihood that DDMs reside in the submerged area is 
represented by the model's reported findings. The 
suggested technique entails the following three steps: (1) 
condition characterized and characteristics retrieval; (2) 
developing and training a MNN model; and (3) MNN 
model prediction. Figure 1 shows the technique. 

2.2. Data pre-processing and features extraction 

Only CYGNSS information that meets these parameters is 
used in this investigation to assure reliable reversal 
outcomes. 

• If DDM's SNR is too low, the signal-to-noise ratio 
is low. To filter out the DDMs, the SNR must be 
inferior to 1.5 dB. 

• The fraction of signals with a left-handed circular 
polarisation quickly drops as the incidence angle 
increases, hence DDMs with incident angles 
greater than 65 are filtered out during this 
analysis (Chen et al., 2013; Chow et al., 1988). 

• This research exclusively uses DDMs with 
transmitting and receiving antenna gains larger 
than 0 (Leit et al., 2018). 

• Since peak areas migrate towards to the 
boundaries of DDMs with altitudes and CYGNSS's 
DTU10 topographic maps modeling doesn't 
effectively compensate for land topography, the 
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projected placements of exceptional places 
higher than 600 m are imprecise. The DDMs with 
highest frequencies between 7 and 10 squares 
are maintained as a result. Due to thermal 
distortion, certain DDM photos can't be ascribed 
to Earth. It estimated noise pixels in DDMs may 
be reduced this approach after filtering CYGNSS 
data. Figure 2 illustrates DDMs with and without 
estimated noise pixels. 

Dielectric constants and land surface quality fluctuate 
during floods, therefore they may be used to determine 
whether flooding has transpired. The investigation 
extracts 7 DDMs connected towards the 2 factors as BPNN 
inputs. SR, PR, LES, leading advantage of slopes, PPP, DDM 
average (Tehrany et al., 2013) and SNR (Geirhose et al., 
2019) (Figure 3).  

 

Figure 2. Analysis of the spatial co-ordinate system with delay-

Doppler connection 

A delay isoline is represented by the ellipse, while a 
doppler shift isoline is represented by the curves. The one 
and two measurement points in the left, particularly when 
studying, are represented by the blue and yellow 
postponed Doppler dots in DDMs, respectively. This is 
shown by the right simple adaption the painful reflection. 

 

Figure 3. (a) DDMs before removing noise pixels; (b) DDMs after 

removing noise pixels 

Table 2. Extraction of features from DDMs 

Extraction of Symbol Name of Features 

Peak The peak value of DDMs 

SNR Signal-to-Noise Ratio 

PR Power ratio 

SR Surface Reflectivity 

LES Leading Edge of Slope 

TES Tail edge Of the Slope 

DDMA Average of DDM 

2.3. Creation of MNN model 

The CNNs module, BP artificial neural subsystem, 
concatenation layer, physical hardware in its entirety, and 
a number of neurons are all parts of the MNNs model 
(Figure 4b) The CNNs module contains 16 and 32 *3 *3 
convolutional filters and two layers.E very Gaussian 
kernels may be seen as a features extracted that 
combines with the receiving DDMs to create local 
features. For example, the kthCNN modelprocesses the 
input DDM to create the image representation hk

(1). 

( )( )(1) (1) (1)
k k kh f W *X b= +

 
(1) 

where the input is X The kth convolutional network's mass 
and biases are DM,Wk(1) and bk(1)., * symbolizes the 
convolution layer, and f signifies the activation function. 

( )f z maximum(0,z)=
 (2) 

In the CNN component, the maximum a 2*2 size allows 
for the most pooling. And a duration of 2 is used to 
subsample the image features that are obtained by the 
convolution operation. This is done to limit the amount of 
unnecessary data while maintaining the key features. 

The BP module of the MNN paradigm is divided into two 
layers, each of which has 16 and 32 neurons. The signals 
are weighted and summarized by each neuron in the 
component, and the ReLU activation function then 
processes the results to produce an output feature. 
Consider, for instance, how the ith neuron FCs functions. 
yi

(1) may be described by the equation as results: 

( )( )(1) (1) (1)
i j ij iy f 1 x w b=  +

 
(3) 

Xj is the neuron's jth input feature; Wij
(1) and bi

(1) are its 
weight and bias. The ReLU activation function is denoted 
by f(). 

CNN and BP characteristics are added to the concatenated 
layer. After being non-linearly analyzed by a layer of 64 
neurons, aggregated characteristics are sent to the output 
neuron. Two softmax-activated neurons can be found in 
the hidden layers, which produce probabilities pi of using 
DDM input that corresponds to submerging area of 
significant site locality. The following is an expression for 
the probability pi: 

The CNNs & BPs characteristics are added to the synthesis 
layer. Since being non - linearly analyzed by a level of 64 
neurons, synthesized data are sent to the output units. 
Two neurons in the output nodes have the soft - max 
functional (Alzubaidi et al., 2023; ehrany et al., 2019; 
Tsubaki and Kawahara, 2013) and output probability pi 
from the inputs DDMs that correlate to the immersed 
area and the significant sites region.  The following is an 
expression for the likelihoods pi: 

( )

( )
i

i k

jj 1

exp v
p  where i 1,2

exp v
=

= =


 

(4) 

v 1 and v 2 are the inputs to the softmax function, and k is 
the frequency of the output layer neurons, set at 2. For 
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each classification, the softmax function in neural 
networks generates a set of probability values, and it 
should be kept in mind that the sum of all probability 
values is 1. The attribution category for the sample has 
the highest likelihood value. The proposed MNN 
framework only generates two probability values because 
it is a binary classification model. As a result, the linked 
subcategory is the categorization category if the 
probability is larger than 0.5. The sample distribution that 
corresponds to the flooded area may be chosen as the 
model's prediction outcome as the MNN model generates 
just two probability values, and their sum is 1, making this 
choice possible. therefore, samples with probability. 
Therefore, samples with probability values greater than 
0.5 are regarded as hidden samples. 

 

Figure 4. Flooding phase of the MNN; (b) MNNs layered view 

2.4. Training MNNs for prediction 

The database in this work is acquired through Spatio-
temporal matching of SMAP statistics from May to 
September 2020 with CYGNSS data. A CYGNSS data will 
give, and a DDM 7 characteristics, as depicted SMAP 
values are shown in Table 3 provides vegetative 
characteristics and the source of the proposed label the 
different classifiers flooded vs non-flooded regions 
defined by SMAP moisture content (Wang et al., 2018). In 
this work, 50,000 samples were selected picked from the 
database as the MNN model's training, verification, and 
evaluation subgroups. 

These subgroups are intended to provide enough 
information training networks, assess effectiveness, 
similarly alter the hyperactive parameters. The MNNs 
network for flood detection inverted predicts the 
remaining database items. MNN learning algorithm 
utilizes software forward propagating and error back-
propagation. At forward propagate, the neural cable 
network settings stay unchanged, but in backward 
propagates, they are dynamically changed using the Adam 
optimizers to reduce the gradient descent. The model's 
error function is (5):  

( )( )
M K

k
m θ m

m 1 k 1

1
L y log h x ,k

M = =

= 
 

(5) 

In this experiment, K is the number of classes, adjusted to 
2. M is the number of training samples in each round; ym

k 
is the objective label, in accordance with the SVM 
classifier of inundation vs non-inundated regions defined 
by SMAP moisture content [43]; X is the learning sample 
input, and m;hθ is the weighted neural network model. 
The variables of the MNN algorithm are modified in 
accordance with the following formula throughout each 
training round:  

( )

( )

θ

1 1

2
2 2

ˆ

T
1

T
2

ˆ

g L

m β m 1 β g

s β s 1 β g

m
m

1 β

s
s

1 β

θ θ ηm/ s

=


= + −

 = + −

 =
 −



= −



= − + ς
 

(6) 

where ∇θ stands for the inclination operation, and "g" Lbe 
the inclination loss using the parameter θ;η is the learning 
stage, default of limit 0.001;m and S denoted as 1st , 2nd 
momentary factors β1 and β2 denotes the exponential 
decay coefficients of m and S;∊ is a constant, set to 10−6;t 
is the number of iterations. 

Here's how the suggested MNN model is trained: 

1. Set the neural platform's initialization settings 
and feed it with training data. 

2. Carry out forward propagating and use Equations 
to determine the gradient descent (6). 

3. Update the neural network settings using the 
backpropagation algorithm and Adam 
optimization. 

4. When the loss density function's fluctuation is 
smaller than 0.001 throughout 10 epochs, or 
after the specified number of times, learning 
should be stopped. 

2.5. Forecasting with MNNs techniques 

The trained MNN model can be utilised as a classifier for 
flood monitoring. The procedure of monitoring floods is 
shown in Figures 5 and 6a. (1) CYGNSS data are entered 
into the MNN model to ascertain the odds that the 
CYGNSS data correspond to the submerged area. 
Particularly, areas with probabilities greater than 0.5 are 
considered to be submerged, whilst those with 
probabilities lower than 0.5 are considered to be non-
submerged. (2) After combining the prediction outcomes 
with the location of DDMs, the scatter maps of the 
expected results are then produced. The longitude and 
latitude of each DDM's specular point are then used to 
determine its geolocation. (3) Images measuring 9 km are 
then created using the forecast findings' scatter maps that 
have been griddled. 
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2.6. Process for creating surface flowing feature 

Images are made of colored pixels. The present study led 
to the creation of Surface Flowing Feature. In Table 2, 
landform analysis with soil characteristics are illustrates in 
geographical study results. These two sets of data are 
rasters, which implies that grids of numbers make up each 
one of them Figure 4 depicts the concept of expanding 
Surface Flowing Feature. Using moisture, land cover, and 
soil mapping factors, every grid's Surface Flowing Features 
is calculated. The grids may confound matrix calculation; 
matrix were computed one by one 

2.7. Predicting flood feature based on rainfall 

Thiessen polygons are used to determine hydrological 
flood. They create discontinuous rainfall differences since 
each polygon has a distinct estimate. Thiessen polygons 
have recurrent feature modification shapes, making them 
unsuitable for developing the Network model. The 
Thiessen polygons may be approximated spatially. 
Previous research has used the inverse distance weighted 
approach the kriging method and the spline method as 
instances of discretization. There are many possibilities for 
each approach, including regularized, co-kriging, universal, 
and basic geostatistical for the spatial interpolation 
technique. 

Figure 5. Diagrammatic view of (a) Land cover; (b) Surface 

feature; (c) Soil cover and (d) Rainy cover 

There are many types of curvatures, including thin-plate 
curvatures, multi-quadratic, inverted multi-quadratic, and 
curves with tensors. IDW, on the other hand, lacks the 
extra possibilities offered by the aforementioned spatial 
interpolation approach while still having the benefits of a 
straightforward methodology and effective spatial 
interpolation implementation. Since the major focus of 
this research is the data-generating approach and its 
application, numerous spatial interpolation methods were 
deemed inappropriate. IDW was deemed most acceptable 
for reducing the impact of using the spatial interpolation 
method. IDW was used for spatial interpolation in this 
investigation. IDW is a geostatistical approach that 
allocates a weight based on Tobler's law of geographic. 
Since IDW assumes that the length between an observed 
point and a neighboring documented point is inverse 

linked to the measurement values, it generates a greater 
range of forms than Thiessen polygons. To avoid the 
repetition of Thiessen polygon, grid-type precipitation 
systems are designed using IDW. 
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where Z is the estimated value of the unseen point, wi is 
the weight, Z s is the utilization of the adjacent point, and 
Li is the distance between the undetected and observable 
points.  

2.8. Calculation of grid values in a specific feature 

Every grid calculation from Figure 5 is computed that use 
the curve number CNs. It established by the Soil 
Conservation Service (SCS), this is the precursor of the 
U.S. National Resource Conservation Services, noted out 
the drawbacks of the scs curve CNs, such that "sensitivity 
to the choice of CNs," "lack of clear good description 
about a Pre-Moisture Condition - PMC" "change in CN for 
diverse biota," "lack of clear explanation regarding 
transformation in spatial level," that "ini Various research 
have shown the CN's use for hydrological study. The CN is 
calculated based on variables including rainfall, soil 
properties, and land cover. It is helpful for modeling 
streamflow and assessing hydrologic consequences. This 
research showed that the CNs can be employed in 
SURFACE FLOWING FEATURE production, given its 
application in hydrologic evaluation. 

Rainfall (P) and remaining sufficient water (S, Eq. 8) are 
used to compute CN to determine watershed runoff (Q). 
When creating SURFACE FLOWING FEATURE, the same 
numerical process used to produce CNs is used, but Q is 
determined for every grid instead of just one CN for the 
whole watersheds. Additionally, every grid's determined 
Q is set as a dimensionless number without regard to the 
unit. 
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The grid ratio in Eq. (8) is significantly influenced by the 
CN. It is given due to the physical traits and situations of 
the 4 distinct kinds of coils that make up Hydrologic Soil 
Groups (HSG) A, B, C, as well as D. The SCS gives CN values 
as a list, however they are incorrect for South Korea due 
to geographical differences. The Ministries of Land, 
Construction, and Transportation of South Korea advises 
utilizing these CN. So, using the soil maps & forest cover 
map that the DFET of a Department of Land, Building, and 
Transportation gave, the current study's CNs of the 
research region were calculated. 

The SCS suggests modifying CN 1 (CN 1, Eq. (9)) and CN II 
(CNIII, Eq. (10)) to take preceding rainfalls into account. 
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The preceding rainfall is used to determine the soil 
moisture of the surface in order to the downpour and 
increase in direct runoff after the saturate. The straight-
line approach, the N-day method, and the stream flow 
regression curve are the examples of standard approaches 
that might be suggested for direct runoff and base flow 
based on the rainfall that came before it. However, these 
technologies only provide 1D data that is relevant to the 
whole watershed, making it challenging to extend the 
data into the 2D kind of data needed for SURFACE 
FLOWING FEATURE. Antecedent rainfall suggested in the 
SCS-CN may be employed in place of the aforementioned 
approaches in this research, and it can be effectively used 
to create SURFACE FLOWING FEATURE. The SCS-CN 
approach takes into account the PMC impact in 
accordance with the antecedent rainfall. In this context, 
antecedent rainstorms refer to the runoff's 5-day total 
precipitation (P5). Dry and wet seasons and three stages, 
PMCI, II, and III, may be used to categorize the PMC. As 
advised by the SCS, the grid value was determined using 
the PMC in daily units. The dry and wet seasons are stated 
to run from Oct to May & Jun to Sept.according to the 
weather of Korea. The daily PMC was found by computing 
the daily P5, and the daily modified CN were derived. 
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2.9. Surface flowing features prediction 

The Surface Flowing Feature utilizing Eqs. (11) & (12) 
would not reflect any spatial patterns in dry situations 
since Q of each grid turns zero if rainfall is 0 or less than 

efficient rainfall (Ia). For this investigation, both dry and 
wet circumstances must be simulated. The Surface 
Flowing Feature is only suitable for wet circumstances, 
therefore everyday runoff modeling is not feasible with it. 
As a result, characteristics other than the Surface Flowing 
Feature, which represents the weather, are necessary. An 
approach is to take into account a river's drainage during 
a dry spell. In natural rivers, drainage often continues 
even in dry weather. This suggests that the base stream 
determines stream flows and that runoff during dry 
periods is reliant on groundwater. In many earlier studies, 
the base flow is believed to be groundwater, and research 
have explored underground water budget or recharge. In 
this research, the runoff increases during dry situations. 
To describe the spatial changes in groundwater table by 
attributes, spatial analysis is conducted using the 
information at the site where the water depth is collected, 
together with IDW. Base flows are grid features with the 
same precision as land coverage and soil maps. 

 

Figure 6. Catchment areas' geographic distributions for trained 

data (green outline), validating statistics, and testing datasets 

(brown fills) 

 

Table 3. Categorization of the PMC 

PMC Season in Dry Season in Wet 

Condition in Dry Ps lesser than 12.7 Ps lesser than 35.6 

Condition in Wet Ps greater than 27.9 Ps greater than 53.3 

Condition in Normal 127 less than equal to Ps less than 27.9 35.6 lesser than Ps lesser than 53.3 

 

2.10. Numerical results in catchment region 

The elevation data for this investigation were obtained 
from the ETH Zurich GeoVITegeodata service 
(https://geovite.ethz.ch/). Uploaded information was 
transformed into catchment regions using GIS software. 
Elevation information comes from two areas. The first 
region is around Zurich, Switzerland, and has 750 
catchment areas. Switzerland's Lausanne and Geneva 
have seven catchment regions. The first region's 
catchments were divided into two groups at arbitrary, 
each of which has 500 and 200 catchments. The bigger set 
served as a training sample, whereas the smaller set 
served as a validation set. The testing set included all 

second-region catchments. Catchment regions with red 
limits indicate they are part of the verification and test 
databases in Figure 6, which depicts the geographical 
distribution of the information. The terrain features of the 
records are shown in Figure 7. These features reveal the 
average circumstances of the catchments, not precise 
geographic distribution. conv(n) indicates one convolution 
operation with the kernel size set to 3, convp(n) uses two 
CNNs with the wireless router's specified kernel size and 
one maximum pooling layer; n is the quantity of image 
data, and Upconv(n) is a convolution layer with a gaussian 
kernel of 3 and one up-sampling layer. When doing the 
training, catchment variables also weren't utilized as 
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inputs. All catchment areas' ground truth was produced to 
use the CADDIES system. The CADDIES flood model uses 
template matching and can simulate pluvial floods quite 
quickly. All five-hour scenarios were focused on a 100-
year event developed utilizing alternating blocks. Note 
that this 100-year rainfall occurrence was applied over the 
whole area without understanding the local rainfall 
patterns. 

An accuracy of 97.2 percent in flood susceptibility 
modeling is an impressive result that indicates the 
proposed methodology is performing very well in 
predicting flood-prone areas. Achieving such a high 
accuracy suggests that the model is effectively capturing 
the relationships between the input features (elevation 
data, socio-economic variables, and infrastructure data) 
and flood occurrences, allowing it to make accurate 
predictions. 

The high accuracy of 97.2 percent implies that the model 
can correctly identify 97.2 percent of the flood-prone 
areas and non-flood-prone areas in the dataset. This 
indicates that the model is successfully distinguishing 
between the characteristics of flood-affected catchment 

regions and those that are less susceptible to flooding. 
Such accuracy can be beneficial in supporting decision-
making processes related to flood risk assessment, 
disaster preparedness, and urban planning, as it helps 
identify areas that require special attention and 
investment in flood mitigation measures. 

 

Figure 7. The training, validating, and test databases' 

geographical features 

 

Table 4. Analyses utilised a 100-year rainfall data event 

Intervals of 
Rainfall 

(minimum) 

0 to 5 5 to 10 10 to 

15 

15 to 

20 

20 to 

25 

25 to 

30 

30 to 

35 

35to 

40 

40 to 

45 

45 to 

50 

50 to 

55 

55 to 

60 

Intensity of 
Rainfall 

(minimum/hr) 

24.2 26.9 30.8 37.1 50.2 161.5 65.7 42.2 33.5 28.7 25.5 23.1 

Table 5. The Evaluation metrics 
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Table 6. Different models tested in the validation experiments 

Name Size of Input 
Field of 

Receptive 
Size of 
Kernel 

Sequence of layer Result 

1027 k7 to 

1027 k3 
1027*1027 1588 572 73 

convp(8); convp (16); convp(32); convp(64); convp (128); 

convp (256); 2 × conv (512); upconv (256); upconv (128); 

upconv (64); upconv(32); upconv(16); upconv(8); conv (2) 

Both options 

512 k7 to 

512 k3 
512*512 788 284 73 

convp(16); convp (32); convp(64); convp(128); convp(256); 

2 × conv(512); upconv(256); upconv(128); upconv(64); 

upconv(32); upconv(16); conv (2) 

The patch 

based Options 

256 k7- 256 

k3 
256*256 388 140 7 3 

convp(32); convp (64); convp(128); convp(256); 2 × 

conv(512); upconv(256); upconv(128); upconv(64); 

upconv(32); conv (2) 

- 

 

Utilizing the same event serves the dual function of the 
primary component (terrace altitudes) while keeping 
additional statistical system in line Tables 4–6 shows the 
event's rainfall. Different preparation methods have been 
used to create the classification model for the patch- and 
resizing-based choices. The patch-based option uses 
input-output pairings randomly picked from of the 
learning dataset's coverage regions. The topography 

altitudes, the greatest depth of water, and the highest 
velocity distribution are all represented by vector maps in 
each patch. In order to make the patch pixels 3 times as 
many as the pool pixels, we sampled at a rate the patches. 
For the resizing-based approach, classification model were 
raster maps of resized catchment regions. In order to 
accommodate CNN input size, the feature was placed in 
the centre of the larger of the two actual intake regions, 
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while the smaller of the two output regions was filled with 
0s. Additionally, inputs were rotated and flipped to 
optimise training data. The training dataset was used to 
train the CNN models, while the validation and testing 
datasets were used to evaluate them. Training data was 
handled in both scenarios before being fed to 
convolutional networks. Three phases comprise the pre-
processing stage:1) Slope, perspective, and curve 
computation using raw elevation data 2) scaling the raw 
elevation xraw to a constant c(max xraw), where max 
offers the greatest advantage; and 3) combining 

topographic information and the elevation that has been 
downscaled to produce raster maps with several picture 
channels. Every pixel that was empty during the data 
preparation was changed to have a value of 0. In spite of 
the fact that the CNNs may have learned and converged 
using raw topographic maps, our research shows that 
learning was significantly faster using preprocessed 
training data. The test findings also showed that choosing 
the appropriate option surpassed learning effectiveness 
and lower values of c, such as 0.01 in range. 

 

Table 7. Comparison of proposed model against existing works 

Model Type Advantages Disadvantages 

MNN (Proposed 

Model) 

Spatio-Temporal Accuracy: Utilizes forthcoming GNSS 

technology for precise dynamic flood monitoring. 

Data Dependency: Relies on availability and 

quality of GNSS and SMAP data. 

Reduced Processing Time: CNN-based approach speeds up 

processing compared to traditional models. 

Training Complexity: Building and training 

the MNN model may require more 

computational resources. 

Automatic Feature Extraction: CNN extracts abstracted features 

from images and incorporates GNSS characteristics. 
 

Statistical Models 

Simplicity: Easy to implement and understand. 

Difficulty in Capturing Complexity: Struggles 

with capturing complex spatial patterns and 

nonlinear relationships. 

Reliance on Historical Data: Uses historical flood occurrence 

data and spatial attributes for prediction. 
 

Machine Learning 

Models 

Flexibility: Better handling of nonlinear relationships compared 

to statistical models. 

Feature Engineering: Performance depends 

on manual feature engineering and 

parameter selection. 

Improved Prediction Accuracy: Can capture complex patterns.  

 

The Table 7 summarizes the advantages and 
disadvantages of each model type. The MNN model shows 
strengths in spatio-temporal accuracy, reduced processing 
time, and automatic feature extraction. As, its 
effectiveness depends on data availability and training 
complexity. Statistical models are simple and rely on 
historical data but struggle with complexity. Machine 
learning models offer flexibility and improved prediction 
accuracy but require feature engineering and parameter 
tuning. Understanding these trade-offs is essential for 
selecting the proposed model for flood susceptibility 
mapping in different scenarios. 

3. Discussion 

The presented study focuses on flood susceptibility 
modeling using a Multi-layer Neural Network (MNN) as 
the core architecture. The MNN incorporates 
convolutional and up-sampling layers to capture complex 
spatial and temporal patterns related to flood 
occurrences. The results demonstrate an impressive 
accuracy of 97.2 percent, indicating the effectiveness of 
the proposed methodology in predicting flood-prone 
areas. The high accuracy suggests that the model 
effectively leverages the input features, including 
elevation data, socio-economic variables, and 
infrastructure data, to distinguish between flood-affected 
catchment regions and those less susceptible to flooding. 
Such accurate predictions are valuable for supporting 
flood risk assessment, disaster preparedness, and urban 

planning, enabling identification of areas requiring 
targeted flood mitigation measures. The use of 
forthcoming GNSS technology for precise dynamic flood 
monitoring enhances the MNN's spatio-temporal accuracy 
and reduces processing time through CNN-based feature 
extraction. However, the dependence on GNSS and SMAP 
data poses a challenge, as data availability and quality 
may vary across different regions and times. Additionally, 
the training complexity of the MNN requires significant 
computational resources, necessitating careful 
consideration of resource constraints for practical 
implementation. 

To address model interpretability concerns often 
associated with deep learning models, the study 
introduces novel methods based on statistical analysis of 
the derivatives of the model's outputs with respect to 
each hidden neuron. These methods quantify the 
contribution of individual neurons, shedding light on the 
learned features' significance and aiding in understanding 
the MNN's decision-making process. This interpretability 
aspect enhances the model's transparency and facilitates 
better-informed decision-making, especially in critical 
scenarios. The comparison of the proposed MNN model 
with existing statistical and machine learning models 
highlights its advantages in spatio-temporal accuracy, 
reduced processing time, and automatic feature 
extraction. However, the trade-offs include data 
dependency on GNSS and SMAP, training complexity, and 
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the need for sufficient training data. Statistical models, 
while simple and interpretable, may struggle with 
capturing complex spatial patterns and nonlinear 
relationships. Machine learning models offer improved 
prediction accuracy and flexibility but require careful 
feature engineering and parameter tuning. 

Thereby, the proposed flood susceptibility modeling 
methodology demonstrates promising results and offers 
valuable insights. The study's contributions lie in achieving 
high accuracy, leveraging GNSS technology, introducing 
interpretability methods, and comparing against various 
model types. Researchers and practitioners can leverage 
these findings to inform flood risk management strategies 
and enhance decision-making in flood-prone regions. 
However, future work should focus on addressing the 
data dependency aspect and investigating techniques for 
reducing training complexity without compromising 
accuracy to foster wider applicability of the proposed 
methodology. 

4. Conclusion 

In order to break the pattern of developing a CNN-based 
runoff model mostly based on meteorological data, an 
approach for producing surface feature and base flows 
data that reflect spatial attributes was developed. This 
research has looked into using these models to create 
new, quick applications for predicting fluvial but also 
pluvial floods, determining their extent, and determining 
their susceptibility to flooding. This study suggests a CNN 
component and a BP module-based MNN model for GNSS 
flood monitoring. The former is used to extract the DDMs' 
underlying abstract features, whilst the latter accepts 
input from GNSS-usual physical properties and vegetation 
data. This type of dual-branch neural network architecture 
allows the DBNN model to more effectively use GNSS 
information during flood inverting and dynamic tracking 
of floods. It can combine GNSS physical attributes with the 
abstract elements extracted by MNN. The studies' findings 
additionally demonstrated that neural network models 
with a broader receptive field typically display greater 
accuracy than systems with a smaller input vector. This 
implies that water retention is responsive to the 
catchment area's worldwide patterns and that the 
accuracy of predictions depends on the amount of global 
data available. The systematic encoding of catchment 
regions of arbitrary sizes and shapes will continue to be 
difficult. In our e future experiments, this problem was 
addressed resizing-based alternatives with self learning 
neural network models. 
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