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ABSTRACT 

Climate change has been discussed frequently in recent decades, and it has increased the probability of 

extreme flood occurrence. This study aims to provide an analysis of future rainfall patterns and flood 

occurrences specifically for the Kelantan River Basin which is identified as one of flood prone areas in 

Malaysia.  The study area was divided into five regions of the Kelantan River Basin, - Kota Bharu 

(Northern), Kuala Krai (Center), Pos Lebir (Southeastern), Pos Hua (Southwestern) and Pos Gob 

(Northwestern). The historical rainfall data (1986-2019) was then retrieved from the Malaysian 

Meteorological Department (MMD) based on the five regions. The statistical approach was applied to 

downscaled climate model data from the CanESM2 GCM forced by the Representative Concentration 

Pathway (RCP) 4.5 and 8.5.  The reliability assessment using a Cronbach’s Alpha, Linear Regression 

and Pearson Correlation results show that local climates (2006-2019) forced by RCP4.5 have a similar 

trend to historical rainfall within the same period.  The spatial analysis outcomes showed that the 

northeastern region of the Kelantan River Basin received its highest average annual rainfall (5,000 mm) 

in 1990 and caused severe flooding in the area. However, there is a significant change of rainfall 

pattern in all regions, with a steady increase in annual rainfall in the southwestern region (2021-2100). 

Keywords: Kelantan River Basin, statistical downscaling, local climate model, Representative 

Concentration Pathways (RCPs) 

 

 

1. Introduction   

1.1 Climate Change 

Climate change is generally considered to result in rising global temperatures and increasing 

extreme weather occurrence. According to the Intergovernmental Panel on Climate Change’s Sixth 

Assessment Report (IPCC AR6), the Earth’s global surface temperature could increase by 1.5°C since 



 

 

pre-industrial era over 20 years due to increasing Greenhouse Gas (GHG) concentration in the 

atmosphere (IPCC, 2021). The climate system's response to greenhouse gases is estimated with 

different climate change’s impacts. According to Abram et al. (2016), anthropogenic effects on climate 

change are considered to have begun in the early 1830s, when the human society started to change the 

chemistry of the Earth’s atmosphere by adding carbon dioxide (CO2) to the air.  

 

As a result of increasing global average temperatures, the likelihood of extreme weather 

occurrence such as abnormal rainfall intensity and increased frequency of heat waves is expected to 

increase in the future (Haq, 2019). It is much related to climate change in a specific region, and time-

period is known as the long-term weather patterns in a particular area (Molloy et al., 2017).  The 

warming trend is happening around the world, including Malaysia, as evidenced by temperature 

observation records of the past 50 years (Tang, 2019; Rahman, 2018). Abnormal rainfall intensity has 

also been observed, which has caused flood and landslide events across Malaysia. Significant flood 

events have occurred in Johor, Malacca and Pahang flood (18 December 2006), Kedah and Perlis State 

(11 November 2010), Kelantan (12 December 2014), Penang Island (6 November 2017), Yan District 

in Kedah State (18 August 2021) and Klang Valley (16 December 2021). According to the Malaysian 

Department of Irrigation and Drainage (2000), a total of 46% rivers in Malaysia are at the risk of 

recurrent flooding. The department also stated that approximately 29,800 km2 (or around 9%) of 

Malaysia’s total land area is vulnerable to flood disasters, including Kelantan River Basin. A total of 

4.82 million (22% of Malaysia’s population) citizens can be affected by flood disasters, especially 

during the monsoon interchange season that lasts from September to November. 

 

 In flood risk management studies, flood risk engineers apply climate model data to assess the 

likelihood of flood and drought occurrence (Tan and Loh, 2017). Reliable climate models are an 



 

 

important aspect of producing an accurate risk assessment output. Nevertheless, developing a highly 

reliable climate model is a major concern for hydrologists and governmental authorities to reduce the 

flood risk. The General Circulation Model (GCM) has been adopted by the IPCC to assess the future 

climate trend based on specific radiative forcing. However, the drawback of GCMs are their low spatial 

resolution (200-300 km), which makes resolving local weather and hydrologic profiles difficult. To 

address this problem, downscaling must be conducted in order to apply GCMs onto a finer resolution 

(50-100 km), enabling a better representation of local landscapes (Trzaska and Schnarr, 2014).  

 

 Ang (2016) applied the statistical downscaling method on General Circulation Model (GCM) 

data with Canadian Earth System Model (CanESM2). Statistical downscaling is a method used to 

downscale the spatial of GCMs that are coarse into finer one, which is most extensively used approach 

for assessments of climate and hydrology (Chen et al., 2018). It is a useful concept since it defines 

regional climate variables that are influenced by large-scale predictors and local-scale variables with 

observed data (Doury et al., 2023). The results indicated that significant increases of average 

temperature, and consequently increases of Potential Evapotranspiration (PET), cause water to be lost 

through evaporation over a vegetated surface or green crop. Other discussion was made by Fung et al. 

(2019); their study demonstrated an approach to statistically downscale the CanESM2 based on the 

Representative Concentration Pathway (RCP) 8.5. The regionalized rainfall pattern and temperature 

produced by the model showed an increase temperature over the Langat River Basin for the 2021-2050 

period. The study also synthesized the model outputs with other climatic indices i.e PET and 

Standardized Precipitation Evapotranspiration Index (SPEI). Moreover, Tahir et al. (2017) assessed 

severity of rainfall by downscaling the CanESM2 based on Representative Concentration Pathways 

(RCPs) 2.6, 4.5 and 8.5 in Limbang River basin. The result obtained that the future rainfall data (2006 

– 2100) was then compared with the baseline period (1976-2005), indicating that rainfall intensity 



 

 

could continue to increase in future and directly affects the likelihood of flood occurrence in Limbang 

River basin. Furthermore, Vu et al. (2016) applied high spatial and temporal resolutions Regional 

Climate Model (RCM) to develop the Intensity-Duration-Frequency (IDF) curves. The 6 hourly rainfall 

annual maximum rainfall intensity output shows that there is high likelihood of flood events in Hanoi 

city in future for 10-200 years return periods. Other impacts studies such as Hassan and Harun (2011), 

Reder et al. (2020), Senamhi (2014) and Jacobeit et al. (2014) support the feasibility of analyzing the 

climatic hazard of drought and flood events using downscaled climate models. 

 

 Flooding is recognized a major natural disaster in Kelantan River Basin (Arham et al., 2020; 

Tam et al., 2021). The region experiences two monsoon seasons which are the southwest monsoon 

(April to August) and the northeast monsoon (October to January). The rainfall intensity of the 

northeast monsoon (1,530 mm/year) is higher than that of the southwest monsoon (993 mm/year). The 

region has an annual rainfall of about 2,940 mm (Wong et al., 2016). According to a National Water 

Resources Study, the low-lying downstream portion of the basin (760 km2 land area) is prone to annual 

floods, the worst of which happened in 2014, which displaced around 202,000 people and caused 13 

deaths (Baharuddin et al., 2015). Flooding not only interferes with economy and destroys infrastructure, 

but also causes the disruption to healthcare and to public operations. Total financial losses caused by 

flooding are estimated to be about RM915 million every year and affects the state gross domestic 

product (Ghani et al., 2009). Moreover, there is absence of a local climate model to predict the future 

rainfall variation for Kelantan River Basin. Hence, the aim of this study is to enhance the flood 

forecasting capabilities in Malaysia by developing a suitable and appropriate climate scenario for future 

projection (2020- 2100). This study aims to develop a local climate model based on CanESM2 using 

Statistical Downscaling Methods and to analyze the potential future trend based on a selected RCP for 

the Kelantan River Basin. 



 

 

  

1.2 Background of Kelantan River Basin 

 

The Kelantan River Basin is located between latitudes 4° 40' and 6° 12' North, and longitudes 

101° 20' and 102° 20' East, at the northeastern region of Peninsular Malaysia. It has a total catchment 

area of about 13,135 km2 and covers approximately 85% of the Kelantan State land area. The 

catchment rises from the southern portion of Kelantan State, and mainly consists of steep forested land. 

As shown in Figure 1, it is drained by the Kelantan River, which is about 248 km long and flows 

northward into the South China Sea (Ghorbani et al., 2015).  Two tributaries have been identified as the 

Galas River and the Lebir River. The dividing point of the Kelantan River into the Galas and Lebir 

Rivers is located about 100 km from the river mouth at Kuala Krai District. The Galas River is 

composed of the Pergau and Nenggiri Rivers. According to the Department of Statistics Malaysia 

(2020), the population living around there is about 1.90 million people. The Socioeconomic activity in 

this region relies mainly on the agriculture sector such as paddy, vegetable, rubber, and oil palm 

plantation. The Kelantan River basin is also important to fishing and livestock farming.  



 

 

 

Fig. 1. Location of Selected Stations Representing the Kelantan River Basin (Edited from Hashim, 

2015) 

2. Methodology  

 

 In this study, the five weather stations in Kelantan River Basin were chosen to represent 

different regions in the basin. The observed daily rainfall and daily minimum temperature (Tmin.) and 

maximum temperature (Tmax.) data were collected from the Malaysian Meteorological Department 

(MMD). These stations are located at the areas which represent the northern, center, southeastern, 

southwestern and western of the basin as shown in Table 1.  In order to generate the local climate 

model based on RCP 4.5 and 8.5, the GCM CanESM2 was applied in the downscaling work. Data for a 

total of 26 atmospheric predictors (in Table 2) were downloaded from National Centres for 

Environmental Prediction (NCEP) and National Centre for Atmospheric Research (NCAR) online 

portal (https://climate-scenarios.canada.ca/?page=pred-canesm2), based on grid Box_37X_34Y and 

Box_37X_35Y.   



 

 

Table 1. Selected MMD Stations located in Kelantan River Basin 

 

NO Station 

No 

Station 

Name 

Record period 

(19** - 20**) 

Duration 

(years) 

Latitude Longitude Region 

1 48615 Kota 

Bharu 

1986 – 2019 34 06° 10' N 102° 18' E Northern 

2 48616 Kuala Krai 1986 –2019 34 05° 32' N 102° 12' E Central 

3 40470 Pos Lebir 1986 – 2013 28 04° 56' N 102° 23' E Southeastern 

4 40516 Pos Gob 1986 – 2019 34 05° 17' N 101° 38' E Western 

5 40433 Pos Hau 1986 – 2019 34 04° 42' N 101° 32' E Southwestern 

 

 

2.1 Experimental setup 

The Statistical DownScaling Model (SDSM) software ver. 4.6 was used to implement Statistical 

Downscaling Methods on the collected climate data, thus producing high-resolution climate 

information for the Kelantan River basin. The station data collected from MMD underwent quality 

control function using SDSM software, where missing and errors data were identified, as well as data 

treatment were performed if any missing found in the dataset.  

The 26 predictors were screened by applying partial regression analysis, in order to identify the 

predictors which have statistically significant relationship with the local climatic condition. The 

obtained partial regression coefficients (r) and p-values allowed the predictors with significant 

relationships with the local climate condition to be selected for the downscaled model. High magnitude 

values of r accompanied by statistically significant p-values (p < 0.05) suggest non-random 

relationships between pairs of predictors. In this study, the partial correlation was carried out using 



 

 

SPSS ver.23 software to select the predictors that meet the above-defined screening criteria. As shown 

in Table 2, a total of 5 predictors for the rainfall model and 7 predictors for temperature model were 

identified as having statistically significant relationship with the station data. The selected predictors 

were loaded into model calibration and then the weather generator to produce 20 ensemble models of 

synthetic daily weather sequences based on RCP 4.5 and 8.5 scenarios for 2006-2100 period. The RCP 

2.6 scenario was not chosen as it represents strict mitigation scenario, which aims to likely limit global 

warming to 2°C above pre-industrial baseline temperatures. A vast majority of models state that by 

2100, scenarios with similar forcing levels to RCP 2.6 are expected to produce considerable net 

negative emissions, which is not reasonable, whereas RCP 4.5 and 6.0 both indicates intermediate 

scenarios, thus only RCP 4.5 was chosen. The model outputs were then validated by comparing the 

variation of monthly trend between simulated historical model and observation data for 1986-2005 

period.  

 

To assess the local climate model’s performance i.e reliability and consistency, three 

assessment methods, Cronbach’s Alpha statistical analysis (α), linear regression (R2) and Pearson 

correlation (r) were applied in this study based on Mutayoba & Kashaigili (2017), Donges et al. (2009) 

and Zhao (2014). Based on the assessment outcomes, the RCP scenario with stronger reliability, which 

resembles more of the observed data, was recommended to represent the local climate model for 

Kelantan River Basin. The linear regression test is feasible to analyze historical observation with and 

weather forecasting (Mahamad 2015; Zhou et al. 2017). In the linear regression, Y represents the 

dependent variable while X represents the independent variable, so under the relationship of both X and 

Y, the simple regression model of X and Y is showed as below:  

Y = α + β X 

Where: 



 

 

Y = dependent variable (Model output) 

X = independent variable (Historical observation) 

α = Regression coefficients 

β = Regression coefficients 

Coefficient values represent the strength and direction of the relationship between the dependent 

variable and the independent variable(s). The representativeness of the regression line’s fit of the data 

is determined by calculating a coefficient of determination, R2.  

 To quantify the strength of the relationship between two variables, Pearson correlation was 

applied in this study. Pearson coefficient value (-1.0 or 1.0) indicates strongest correlation, and the 

negative value indicates the inverse relationship between two variables. Besides, reliability Cronbach’s 

Alpha was conducted to determine the strength of consistency between the model and observation data 

in this study. Theoretically, it can be interpreted based on the Cronbach’s Alpha value as low 

consistency (0.0 – 0.2), rather consistency (>0.2 – 0.4), moderate consistency (>0.4 – 0.6), consistency 

(>0.6 – 0.8) and high consistency (>0.8 – 1.0) (Ahdika, 2017). 

For an effective flood risk management, it is crucial to understand the variation of rainfall 

intensity based on future climate. Spatial analysis was conducted using the Quantum Geographical 

Information System (QGIS). QGIS is able to synthesize given vector datasets (the datasets that inform 

the local climate model) using an Inverse Distance Weighted (IDW) interpolation method, thereby 

generating and exporting graphical maps, i.e., 20- year-interval rainfall pattern maps for the Kelantan 

River Basin. The observation data were weighted during interpolation process that the influence of 

other location (x). The estimation of the value z at location x is a weighted mean of observations.  

 



 

 

 

 where β≥0 and |⋅| corresponds to the Euclidean distance. The inverse distance power, β, determines the 

degree to which the nearer location(s) are preferred over more distant points (Hartmann et al., 2018). 

 

Table 2. The 26 NCEP (National Centres for Environmental Prediction) Predictors 

No Predictors Code No Predictors Code 

1 #Mean sea level pressure mslpgl 14 500hPa Divergence of 

true wind 

p5zhgl 

2 1000hPa Wind speed p1_fgl 15 850hPa Geopotential p800gl 

3 10000hPa Zonal wind 

component 

p1_ugl 16 850hPa Wind speed p8_fgl 

4 *#10000hPa Meridional 

wind component 

p1_vgl 17 #850hPa Zonal wind 

component 

p8_ugl 

5 10000hPa Relative vorticity 

of wind 

p1_zgl 18 #850hPa Meridional 

wind component 

p8_vgl 

6 10000hPa Wind direction p1thgl 19 *850hPa Relative 

vorticity of wind 

p8_zgl 

7 *10000hPa Divergence of 

true wind 

p1zhgl 20 850hPa Wind direction p8thgl 

8 #500hPa Geopotential p500gl 21 850hPa Divergence of 

true wind 

p8zhgl 

9 500hPa Wind speed p5_fgl 22 *Total precipitation prcpgl 

10 500hPa Zonal wind 

component 

p5_ugl 23 500hPa Specific 

humidity 

s500gl 

11 500hPa Meridional wind 

component 

p5_vgl 24 * 850hPa Specific 

humidity 

s850gl 

12 500hPa Relative vorticity of 

wind 

p5_zgl 25 #1000hPa Specific 

humidity 

shumgl 

13 500hPa Wind direction p5thgl 26 #Air temperature at 2m tempgl 

*Statistically significant predictors - Rainfall; # Statistically significant predictors - Temperature  

 



 

 

3. Results and discussion 

 

 The statistical validation is employed to study level of consistency for developed historical 

model as shown in Figure 2. The average maximum monthly rainfall model shows the major outlier for 

Pos Hua station and certain periods such as Pos Lebir station (May-July period), Kota Bahru, Kuala 

Krai and Pos Lebir (October -December period).  It gives a major difference between the observation 

data and the historical model can up to 1,000 mm during November-December.  The reliability study of 

trends in the CMIP5 model ensemble of IPCC Assessment Report (AR5) discovers that the temperature 

trends are locally reliable under the CMIP3 ensemble, but when being normalized by the mean global 

temperature, the ensemble tends to be overestimated in local models (Van Oldenborgh, et al., 2013). 

Besides, due to the confined spatial variability of warming patterns, the precipitation trends may be 

also overestimated too (Sakaguchi et al.,2012). The overconfidence can be explained by following 

approaches such as the underestimation of low-frequency natural variability by model (Knutson, et al., 

2013); sensitivity of model to those aerosols forcing and lastly, the patterns change due to the 

inappropriate represented greenhouse warming local effects.  In this study, major outlier is detected for 

average monthly maximum rainfall (1984-2005) in all stations.  The average monthly rainfall data 

generated from Pos Hua and Pos Lebir historical model are recorded as different values compares to 

Malaysia Metrological Department’s observation data. Based on historical model, the average 

maximum monthly rainfall of Pos Lebir shows an underestimation result approximately 250 mm for 

June, November, and December. These phenomena can be explained by the effect of the La Nina, El 

Nino and anomalous Northeast monsoon season that occurred during 1988 – 1989 and 1999 – 2001 

(Karim et al., 2016; Mohamad et al., 2012). The CanESM2 may not be able to systemize the extreme 

weather phenomena occurred in Malaysia.  However, the validation outcomes show that average 



 

 

monthly rainfall models are determined as high consistency for all regions. Thus, the developed RCMs 

are valid for rainfall pattern analysis. 

 

 

(a)  

 (b) 

 



 

 

 

(c) 

 

(d) 

 

(e) 

 



 

 

Fig. 2. Comparison of average monthly rainfall and maximum monthly Rainfall (1986-2005) for (a) 

Kota Bahru, (b) Kuala Krai, (c) Pos Gob, (d) Pos Hua, (e) Pos Lebir 

 

For determination of future rainfall pattern, the reliability assessment consists of three analysis 

method i.e. Cronbach’s alpha statistical analysis (α), linear regression (R2) and Pearson correlation (r) 

are applied on the downscaled regional climate model based on Representative Concentration Pathway 

(RCP) 4.5 and 8.5 scenario. The Cronbach alpha and Pearson correlation assessment output shows 

there are strong and moderate relationship between observation (2006-2019) and RCPs for Kota Bharu, 

Kuala Krai, and Pos Lebir, with the α value > 0.6 and r value > 0.5 respectively (Table 2). However, all 

five stations do not achieve R2 (>0.4) in linear regression analysis. According to Ritter and Muñoz-

Carpena (2013), the R2 value quantify the goodness-of-fit between dependent and independent 

variables which is not the quality of the model. Although the result shows that low R2 value (0.39), it 

may be suitable to examine the reliability level of RCMs as this study is to examine the future rainfall 

variation. At the same time, these models can be considered as consistent with observation data if the 

alpha (α) value > 0.6. In this study, the outputs of the linear regression show all the models are 

significant and reject the sensitivity prediction depressive symptoms (Baguley, 2009). However, the 

linear regression gives a lot of information of the reliability assessment such as the significant model 

and adjusted R-squared (R2).  

By comparing the reliability assessment outputs, the downscaled regional climate model for Pos 

Gob and Pos Hua shows the low reliable level for both RCP scenario. The cronbach alpha (α) and 

Pearson correlation coefficients (r) do not fulfill the pre-defined criteria (α≥ 0.6; r ≥ 0.5). However, the 

outputs of these reliability test cannot conclude the analysis outcomes, and thus the further step is 

carried out to retrieve the summary of monthly rainfall trend and to determine the basic cause of this 

problem (Ng et al. 2023). As shown in Kota Bharu, Kuala Krai and Pos Lebir station, the Linear 



 

 

regression (R2) and Pearson correlation (r) result shows statistically significant that local rainfall 

pattern may follow the RCP4.5 scenario.  

Besides, the study also analyses the temperature variation based on similar statistical reliability 

assessment methods. Based on result as shown in Table 3, there are the significant reliability level of 

maximum temperature (Tmax.) and minimum temperature (Tmin.) for all stations. The result indicates 

that the total 90% of RCMs based on RCP4.5 scenario are relatively reliable compares to the RCP8.5 

scenario except for minimum temperature (Tmin.). The RCP4.5 scenario would still be valid to 

represent minimum temperature in the river basin. 

 

Table 3. Reliability Assessment of Local Climate Model (Rainfall) for Kelantan River Basin  

 

Model RCP 

Scenarios 

Statistical Analysis – 

Cronbach’s Alpha 

(α≥ 0.6) 

Linear 

Regression 

(R2 ≥ 0.4, Sig.) 

Pearson 

Correlation 

Coefficients 

(r ≥ 0.5) 

Kota Bharu 4.5 0.68* 0.26, 0.001 0.51* 

8.5 0.58 0.17, 0.001 0.41 

Kuala Krai 4.5 0.73* 0.39, 0.001 0.62* 

8.5 0.66* 0.28, 0.001 0.53* 

Pos Gob 4.5 0.53  0.17, 0.001 0.41 

8.5 0.52 0.15, 0.001 0.38 

Pos Hua 4.5 0.46 0.10, 0.001 0.30 

8.5 0.30 0.06, 0.002 0.25 



 

 

Pos Lebir 4.5 0.66* 0.26, 0.001 0.51* 

8.5 0.60* 0.25, 0.001 0.50* 

Note: * indicates values that strong reliability  

Table 4. Reliability Assessment of Local Climate Model (Temperature) for Kelantan River Basin 

 

Model RCP 

Scenarios 

Statistical Analysis – 

Cronbach’s Alpha 

(α≥ 0.6) 

Linear 

Regression 

(R2 ≥ 0.4, Sig) 

Pearson 

Correlation 

Coefficients  

(r ≥ 0.5) 

Kota Bharu 

(Tmax) 

4.5 0.94* 0.79*, 0.001 0.89* 

8.5 0.92* 0.74*, 0.001 0.86* 

Kota Bharu 

(Tmin) 

4.5 0.75* 0.40*, 0.001 0.62* 

8.5 0.82* 0.51*, 0.001 0.72* 

Kuala Krai 

(Tmax) 

4.5 0.90* 0.67*, 0.001 0.82* 

8.5 0.87* 0.62*, 0.001 0.79* 

Kuala Krai 

(Tmin) 

4.5 0.78* 0.40*, 0.001 0.63* 

8.5 0.85* 0.54*, 0.001 0.74* 

Note: * indicates values that statistically significant for reliability level.  

 

The Local Climate Model (Tmax. and Tmin.) based on RCP4.5 (2014 – 2100) was interpreted 

using line graphs which are shown in Figure 3 and 4, respectively. There are positive linear trendline 

for Northern region (Kota Bharu) YTmax.= 0.0125X + 6.5681; YTmin. = 0.0113X + 1.3692 and Center 

region (Kuala Krai) YTmin  = 0.0062X + 10.238; YTmax = 0.0087X+ 15.124. These results indicate that 

atmospheric temperature may increase by 0.6-1.20C at the end of 21st century.  The projection tallied 



 

 

with the increase of atmospheric temperature with minimum 1.5oC reported by the IPCC (2021) and 

Tan et al. (2021). The Kelantan River Basin may experience more frequent and intense rainfall during 

the Northeast monsoon season and prolonged during the El Nino period. Precipitation intensity and 

frequency can be affected by climate change, where warmer oceans cause larger amount of water to be 

evaporated into the air, resulting in heavier rain. The change of weather condition and climate 

variability will also contribute number of extreme flood events as well as impacted to the agriculture 

and water resources in the study area.  

 

(a) 

 

(b) 



 

 

Fig. 3. Local Climate Model for Kota Bharu based on RCP4.5 (2014-2100) (a) Tmax. (b) Tmin. 

 

 

(a) 

  

(b) 

Fig. 4. Local Climate Model of Kuala Krai based on RCP4.5 (2014-2100) (a) Tmax. (b) Tmin. 

 

The Local Climate Models of the annual rainfall pattern in different regions based on RCP4.5 

(2020 – 2100) was descriptively analyzed in this study. The anomalous rainfall pattern 

(>4,000mm/year) was projected for Northern region (Kota Bharu station) i.e 6,206 mm (2034), 



 

 

4,320mm (2054). However, the future rainfall pattern remains stable throughout 21st century. The 

application of spatial analysis using the IDW approach was conducted to visualize the past and future 

rainfall pattern within 20-year interval. Figure 5 illustrates the results from the spatial analysis of 

average of annual rainfall of Kelantan River Basin (1986-2100). Based on the spatial analysis outputs, 

there could be large changes in rainfall patterns over the Kelantan River Basin. The Southeastern 

region (Pos Lebir station) recorded highest average annual rainfall (5,000 mm) in 1990 and caused 

severe flooding in the location. The observation dataset and projected local climate models show a 

steady trend of increasing rainfall in all regions after the anomalous rainfall events in 1990 and 2014. 

Concerning future rainfall trends (2021-2100), an anomaly of rainfall intensity is detected in the 

Southwestern region (Pos Hua and Pos Gob station) in Kelantan River Basin particularly in the period 

of 2021-2040, 2041-2060, 2061-2080 and 2081-2100. The outcome corresponds to the findings of Tan 

et al (2017) and Armain et al (2021), where the annual rainfall is projected to increase in coming years. 

It may increase the flood risk in the Kelantan State Capital (Kota Bahru) which located at the 

downstream of the Kelantan River Basin.  

 

 

                            

(a)                                                                                 (b) 



 

 

                    

(c)                                                                                   (d) 

       

(e)                                                             (f) 

Fig. 5. Spatial Analysis Average of Annual Rainfall of the Kelantan River Basin (a) 1986 - 2000 (b) 

2001-2020 (c) 2021-2040 (d) 2041-2060 (e) 2061-2080 (f) 2081-2100 Period 

 

4. Conclusions 

 



 

 

The local climate models were developed from CanESM2 RCP4.5 and 8.5 by statistical 

downscaling methods for the Kelantan River Basin. The Local Climate Model based on RCP4.5 and 

8.5 scenarios were tested for reliability. The performance of model was analysed by the reliability 

statistic – Cronbach’s Alpha, linear regression and Pearson correlation coefficients method. The 

assessment outputs indicate the local climate condition has moderately significant relationship with the 

local climate model based on RCP 4.5 scenario. The atmospheric temperature (Tmax. and Tmin.) may 

be increased by 0.6-1.20C at the end of 21st century. The model projects a significant change in future 

rainfall patterns in the Southwestern Region of the Kelantan River Basin. This increase in rainfall 

intensity is projected to potentially occur in the upstream of Kelantan River Basin. It may induce the 

flood risk in the Kelantan State Capital (Kota Bahru), Tanah Merah, Pasir Mas, and Kadok which are 

located at the downstream of Kelantan River Basin.   

 

The developed local climate models based on the CanESM2 RCP4.5 and 8.5 is identified as the 

major limitation in this study. It is important to carry out a comparison study with the latest release of 

Canadian Earth System Model-CanESM5. Since it has higher equilibrium climate sensitivity (5.6 K) 

compares the predecessor- CanESM2 (3.7k), further studies are suggested to statistically downscale the 

CanESM5 and replicate the historical rainfall, Tmax. and Tmin. over the Kelantan River Basin based 

on Shared Socio-economic Pathways (SSP 2–4.5 and 5–8.5). So that, the intercomparison works can be 

carried out to determine the performance and sensitivity between RCPs and SSPs scenario. 
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