1 ECO-FRIENDLY SOIL STABILIZATION: A COMBINED APPROACH USING LIME

AND WASTE EGGSHELL POWDER

- 3 Harikaran M.¹, Kulanthaivel P.^{2*}, Gokulakannan S.³, Vinodhkumar S.⁴
- 4 ^{1,3} Assistant Professor, Department of Civil Engineering, Muthayammal Engineering College,
- 5 Namakkal.
- 6 ^{2,4}Assistant Professor, Department of Civil Engineering, Kongu Engineering College,
- 7 Perundurai.
- 8 Corresponding Author Mail id: pkulanthaicivil@gmail.com
- 9

2

10 GRAPHICAL ABSTRACT

ECO-FRIENDLY SOIL STABILIZATION: A COMBINED APPROACH USING LIME AND EGGSHELL POWDER

expansive soil

eggshell powder

12 ABSTRACT

In recent years, geotechnical engineers preferred environmentally friendly and sustainable 13 techniques to improve the engineering characteristics of expansive soil. This paper focuses on the 14 comparative study of the enhancement in engineering properties of expansive soil using lime and 15 waste eggshell powder. A series of laboratory tests such as unconfined compressive strength test, 16 pH test, free swell index test, swelling pressure test, California – Bearing Ratio test and Atterberg's 17 limit test were performed for evaluating the engineering behaviour of expansive soil with lime and 18 waste eggshell both individually and together. The experimental test results showed that the 19 combined admixtures significantly improve the engineering characteristics of the soil. The 20 maximum value of compressive strength at the inclusion of 9% lime and 12% waste eggshell 21 powder was observed to be 306 kPa. The swell pressure of the treated soil showed up to a reduction 22 to 2.32 at the inclusion of 3% lime and 12% waste eggshell powder. In all the tests, the combined 23 admixtures exhibited greater efficiency when compared to the individual inclusion of lime and 24 waste eggshell. Thus, the investigation results confirmed the efficient use of lime and waste 25 eggshell powder at optimum percentages as soil-stabilizing material and made them suitable for 26 field applications. 27

28 **KEYWORDS:** Lime, Waste Eggshell Powder, Expansive soil, Stabilization

29 INTRODUCTION

The expansive soil is considered to be the most problematic soil in the geotechnical field (Kulanthaivel et al. 2021). Expansive soils were mostly found in the states of Maharashtra, Andhra Pradesh, Gujarat, Madhya Pradesh, Odisha, Narmada, Tapi, Godavari, and Krishna River valleys (Indiramma et al. 2019). It offers high swelling and shrinkage, lower strength and higher settlement behaviour (Kulanthaivel et al. 2022). The expansion and swelling nature of the clay soil depend on the aqueous solutions being in contact with the clay particles (Ikeagwani et al. 2019). The volume change could be observed for about 30% with the extensive damages with respect to the expansion

behaviour (Nyankson et al. 2013). These significant volumetric fluctuations posed a greater danger 37 for the construction industry and other applications. These adverse effects may affect the 38 construction works either during or after the completion of projects (Kulanthaivel et al. 2022, 39 40 Kulanthaivel et al. 2020). In addition to that the dual and intrinsic swell-shrink behaviour may lead to damage to highway infrastructure projects and railway projects (Kulanthaivel et al. 2022). The 41 differential settlement might be responsible for the heaving and cracking being developed in 42 pavements on expansive soil (Selvakumar et al. 2022). These problems also caused severe cost 43 issues and environmental concerns in the case of renovation and rehabilitation (Kulanthaivel et al. 44 2021). There are multiple strategies and methods available for the stabilisation of expansive soils. It 45 is essential to choose materials that are cost-effective and with greater sustainability criteria (James, 46 2020). To stabilise, the soil characteristics must be analysed since the characteristics related to 47 strength parameters are likely to be varied even if present in the same field (Tiwari and Satyam, 48 2020). Several methods like replacing the expansive with non-expansive soil, sustaining the same 49 water content and especially soil stabilisation were analysed (Dang et al. 2016). Soil stabilisation 50 could be highly beneficial to reduce the change in volume behaviour when provided with varying 51 moisture contents (Cheng et al. 2018). 52

Lime is included in the expansive soil as one of the additives. Lime was chosen as it 53 significantly improved the engineering properties of expansive soil. In addition to that the waste 54 materials can also be used for the stabilisation of expansive soil. The properties of waste materials 55 like sturdiness, strength and high deterrent nature are required to improve the strength parameters in 56 clay soil (Hasan et al. 2021). The waste eggshell is utilised because it was observed to be energy-57 efficient, most economical and environmentally sustainable. This could be highly beneficial since it 58 can reduce the cement level in concrete production (Zaini et al. 2021). The waste eggshell powder 59 was utilised as a replacement for cement, concrete, and especially as a soil stabiliser in the 60 construction field (Sathiparan, 2021). 61

The present study involves the utilisation of lime and waste eggshell powder for stabilising the expansive soil. The lime was included in percentages of 1%, 3%, 6% and 9% in the soil samples whereas in the case of waste eggshell powder, the percentages were taken as 0%, 4%, 8%, 12%, and 16% respectively. A series of experiments such as unconfined compressive strength test, California Bearing Ratio test, Expansion Ratio test, swelling pressure test, free swell index test, pH test and Atterberg's limit tests were carried out to check the suitability of lime and eggshell powder as expansive soil stabilized admixture.

69 MATERIALS AND METHODS

70 EXPANSIVE SOIL

 $\left|\right\rangle$

The expansive soil used in the current research was collected from Chemmancheri, Chennai. The soil was found to contain a high amount of clay minerals. The index properties of the expansive soil were examined and provided in Table 1. As per the Indian Standard Soil Classification system, the soil was classified as high-plasticity clay. Table.2 elucidates the chemical composition of the expansive soil. A pictographic view of expansive soil is shown in Figure 1.

INDEX PROPERTIES	EXPANSIVE SOIL
Sand, %	2.61
Silt, %	42.7
Clay, %	54.69
Free Swell Index, %	125
Liquid Limit, %	200
Plastic Limit, %	79
Plasticity Index, %	121
California Bearing Ratio (CBR), %	1.8

76 Table 1 – Index Properties of Expansive Soil

77	Expansion Ratio, %	5.7
78	Unconfined Compressive Strength	147
	(UCS), kPa	
79		
	pH	7.96
80	Soil Classification (as Per IS)	СН
81	Optimum Moisture Content, %	18
82	Maximum Dry Density, g/cc	1.73

83 Table 2 - Chemical Composition of the Expansive Soil

	Chemical Composition	Expansive soil (%)
85	0:0	(5.0)
	S1O ₂	65.2
86	Fe ₂ O ₃	6.47
	AlaOa	14.32
87	M203	14.52
	CaO	1.15
88	ΜαΟ	0.85
89		
	Na ₂ O	2.41
90	K ₂ O	0.80
	TO	1 45
91	1102	1.43
	SO ₃	0.04
92	P ₂ O ₅	0.36
	1203	0.50
93	LoI	5.48
94		

106 Fig.1. Pictographic view of expansive soil

107 **LIME**

Lime was considered to be taken as quicklime, and CaO was used for the treatment of the expansive soil. It was obtained from Global Enterprises, Kerala. The specific gravity and pH of lime are 2.49 and 2.8 respectively. The water absorption capacity of lime is 18%. The melting temperature of lime is 2600 ^oC. The chemical composition of lime is represented in Table 3.

112 Table 3 – Chemical Composition of Lime

Chemical Composition	Lime (%)
SiO ₂	0.43
Al ₂ O ₃	0.25
CaO	77.9
MgO	21.2
Na ₂ O	0.2

SO ₃	0.1

113

114 WASTE EGGSHELL POWDER

115 The crude chicken waste eggshells were gathered from the SKM Egg products, Erode. The crude chicken waste eggshells were then cleaned, allowed to air dry for seven days, crushed, and then 116 heated for one hour at 800°C in a chamber heater to create the final product in powder form. The 117 acquired eggshell refuse was free from proteins and organic material. In order to create a thin 118 powder with a particle size smaller than 75 microns, it was further ground and sieved. To produce 119 Egg Shell Admixture (ESA), this material was calcined at a temperature of 500°C for 15 minutes in 120 a muffle oven. The chemical composition of the waste eggshell powder is represented in Table 4. A 121 pictographic view of the waste eggshell powder is represented in Figure 2. 122

123 Table 4 – Chemical Composition of Waste eggshell Powder

Chemical Composition	Waste eggshell Powder (%)
SiO ₂	0.06
CaO	68.21
Al ₂ O ₃	0.03
K ₂ O	0.07
MgO	0.81
Fe ₂ O ₃	0.06

124

125

126

127

128

136 Fig.2. Pictographic view of waste eggshell powder

129

130

131

132

133

134

135

137 UNCONFINED COMPRESSIVE STRENGTH TEST

The unconfined compressive strength experiment was calculated according to IS 2720 (Part 10) (1973). Static compaction was used to generate a cylindrical specimen provided with a height of 76 mm and a diameter of 38 mm. The samples were made as per the Optimum Moisture Content (OMC) and Maximum Dry Density (MDD) obtained. The sample was subjected to 1.2 mm/min of stable strain rate. The inclusion of lime and waste eggshell powder was considered in terms of 0%, 1%,3%, 6%, 9% and 0%, 4%, 8%, 12%, and 16% respectively to the dry soil weight. The soil samples were left for curing and tested at 3, 7 and 28 days under standard conditions.

145 CALIFORNIA BEARING RATIO TEST

The CBR experiment was carried out according to IS: 2720 (Part 16): 1987. The samples were made with respect to the maximum dry density and optimum moisture content attained from the modified proctor test. The inclusion of lime and waste eggshell powder was considered in terms of 0%, 1%,3%, 6%, 9% and 0%, 4%, 8%, 12%, and 16% respectively to the dry soil weight. The specimens after draining were kept on the loading machine such that the penetration resistance can be measured by the load application at a rate of 1.25 mm per minute. The CBR value was computed 152 corresponding to 2.5 mm penetration for the soil samples included with lime and waste eggshell153 powder. The load penetration curve was obtained.

154 SWELL PRESSURE TEST

The swell pressure was determined according to IS 2720(Part 41):1977. The swelling 155 pressure test setup consists of a loading unit of 5 tonnes and a proving ring with a 200 kg capacity. 156 The samples after the inclusion of lime and waste eggshell powder were prepared. In addition to 157 that, the untreated samples were also tested. The specimens were prepared such that 3% of lime and 158 12% of waste eggshell powder were included in the expansive soil individually and in the combined 159 form. The accurate measurement of change in vertical load was recorded from the proving ring. The 160 strain gauge readings recorded the volumetric variation with the swelling. The soil sample was then 161 extracted to get the moisture content variation across the sample. 162

163 FREE SWELL INDEX TEST

The soil sample passed through trough a 425-micron IS sieve was used for this test. The two 164 graduated cylinders of 100 ml volume were taken. The distilled water and kerosene were filled in 165 each of them respectively. The inclusion of lime and waste eggshell powder was considered in 166 terms of 0%, 1%, 3%, 6%, 9% and 0%, 4%, 8%, 12%, and 16% respectively to the dry soil weight. 167 10 g of soil sample for each percentage of xanthan gum and guar gum was utilized for the 168 investigation. The samples transferred in cylinders were stirred to make a saturated medium without 169 any entrapped air. The initial volume of each sample was noted, and the setup was left undisturbed 170 for 24 hours. Then the final volumes of each sample with the inclusion of lime and waste eggshell 171 powder were also noted. This free swell index experiment was performed as per IS 2720 (Part 40) -172 1985. 173

174 **pH TEST**

The pH tests were performed according to IS 2720 - 26 (1987). The soil samples were taken that includes untreated and soil treated with lime and waste eggshell powder. The specimens were prepared such that 3% of lime and 12% of waste eggshell powder were included in the expansive soil individually and in the combined form. The pH meter was calibrated to 4.0, 7.0 and 9.2 as standard reference values for each specimen. The pH values for slurries were noted after a period of 1.5 hours.

181 ATTERBERG'S LIMITS TEST

The soil specimens were tested to reveal the liquid limit, plastic limit and plasticity index of both the samples with the inclusion of 1%,3%, 6% and 9% lime and 0%, 4%, 8%, 12%, 16% waste eggshell powder along with the untreated sample. The liquid limit was obtained using the Casagrande apparatus whereas to attain the plastic limit of the soil, the specimens were rolled to 3mm diameter and oven-dried. The experiments for liquid limit and the plastic limit difference between liquid limit and plastic limit.

188 RESULTS AND DISCUSSION

189 EFFECT OF LIME ON THE UNCONFINED COMPRESSION STRENGTH OF THE190 EXPANSIVE SOIL

191

192 Fig.3. Effect of lime on the unconfined compression strength of the expansive soil

The variation of unconfined compressive strength of the expansive soil after the treatment 193 with lime is shown in Figure 3. According to the rise in lime concentration in the expansive 194 clay soil, the UCS was determined to have increased. The soil samples were kept under curing and 195 tested at 3, 7 and 28 days. The UCS values obtained at 7 day curing period for untreated, 1%, 3%, 196 6% and 9% of lime were 147 kPa, 184 kPa, 222 kPa, 256 kPa and 273 kPa respectively. The cation 197 198 exchange between the metal ions on the clay surface and the calcium ions in the lime caused this 199 rise in strength to be seen. The clay particles thereafter become rough with high brittle nature and 200 less plastic behaviour (Dang et al. 2016). The pozzolanic reactions that take place due to the presence of lime result in the dissolution of silica and alumina on the clay surface. Eventually, 201 202 calcium silicate hydrate (CSH) and calcium aluminate hydrate (CAH) which are the new cementitious compounds formed after the treatment with lime were formed. These compounds after 203 crystallisation tend to increase the compressive strength of the expansive soil. The unconfined 204

compressive strength of the black cotton soil treated with lime provided consistent results with the present study (Sahoo and Pradhan, 2010). The UCS obtained for soft expansive clay treated with quick lime and waste is comparatively similar to the results attained from the treatment with lime in expansive clay (Khazaei and Moayedi, 2017). Therefore, lime could effectively increase the strength parameters of the expansive soil after treatment.

210 EFFECT OF WASTE EGGSHELL POWDER ON THE UNCONFINED COMPRESSION

211 STRENGTH OF THE EXPANSIVE SOIL

212

Fig.4. Effect of waste eggshell powder on the unconfined compression strength of the
expansive soil

The variation in the UCS with respect to the inclusion of waste eggshell powder is shown in Figure 4. The UCS was found to be increased with an increase in waste eggshell shell powder composition in the expansive soil. The soil samples were kept under curing for 3, 7 and 28 days.

The UCS values obtained at 7-day curing period for untreated, 4%. 8%, 12% and 16% inclusion of 218 waste eggshell powder were found to be 147 kPa, 159 kPa, 169 kPa, 188 kPa and 174 kPa 219 respectively. The strength increment was observed because of flocculation and agglomeration 220 221 taking place between the particles of waste eggshell powder and the clay particles. In addition to that, pozzolanic reactions take place which enhance the strength of the expansive soil by producing 222 CSH and CAH compounds. An optimum strength improvement was observed at 12% inclusion of 223 waste eggshell powder and further inclusion of the additive was found to decrease the strength 224 which was comparatively greater than the expansive soil. Hence, strength improvement was 225 observed with respect to the increase in the percentages of waste eggshell powder in expansive soil. 226 The results of the UCS obtained were observed to be quite similar to the results obtained for 227 expansive soil treated with waste eggshell ash (James et al. 2020). The UCS of this study was found 228 to be higher than the results obtained for the clay soil treated with waste eggshell powder and 229 wastes (Alzaidy, 2019). Hence, utilising waste eggshell powder could enhance the strength similar 230 to other additive inclusions. 231

232 EFFECT OF COMBINATION OF LIME AND WASTE EGGSHELL POWDER ON THE233 UNCONFINED COMPRESSION STRENGTH OF THE EXPANSIVE SOIL

Fig.5. Effect of the combination of lime and waste eggshell powder on the unconfinedcompression strength of the expansive soil

The variation in the UCS after the inclusion of combined lime and waste eggshell powder is 237 shown in Figure 5. With respect to an increase in the addition of mixed additives, it was found that 238 the UCS of the expansive soil had risen. The samples were cured and tested at 3, 7 and 28 days such 239 that the variation in the strength can be compared for the individual additive inclusion and their 240 combination. The 12% inclusion of waste eggshell powder was considered as further addition of 241 waste eggshell eventually decreased the strength. The UCS attained for the untreated sample was 242 243 147 kPa. The UCS values obtained for the addition of 12% of waste eggshell powder in each percent inclusion of 1%, 3%, 6% and 9% lime were observed to be194 kPa, 281 kPa, 289 kPa and 244 245 306 kPa respectively. In comparison with the results obtained from the individual addition of lime and waste eggshell powder, the inclusion of combination of additives exhibited higher strength in 246 expansive soil. The UCS attained in the case of expansive clay after the inclusion of lime and waste 247

eggshell powder was found to be significantly greater when compared to the results obtained from the treatment with lime and plastic waste strips (Amena and Chakeri, 2022). The result attained from the expansive soil treated with polypropylene, saw dust ash and waste eggshell powder was found to be consistent with the UCS attained from the current study (Wani et al. 2019).

252 EFFECT OF LIME ON THE CALIFORNIA BEARING RATIO AND EXPANSION RATIO 253 OF THE EXPANSIVE SOIL

254

The variation in the California Bearing Ratio (CBR) and expansion ratio with respect to the inclusion of lime into the expansive soil is shown in Figure 6. The CBR values were found to increase with the increase in lime content in the expansive soil. The expansion ratio of the expansive decrease eventually with the addition of lime at specific percentages. The observations made for 0%, 1%, 3%, 6% and 9% inclusion of lime were found to be 1.8%, 4.3%, 9.1%, 14.6% 261 and 25.4% respectively. The expansion ratios for the expansive soil treated with 0%, 1%, 3%, 6% and 9% of lime were found to be 5.7, 4.8, 3.5, 0.8 and 0.6 respectively. The change in CBR was 262 observed due to the pozzolanic reactions occurring in the clay particles of expansive soil after the 263 264 lime addition (Tiwari and Satyam, 2020). This ultimately enhances the strength of the expansive soil which in turn increases the CBR of the treated soil samples. The CBR results attained from the 265 present study were found to be higher than the results obtained from the expansive soil treated with 266 lime and fly ash (Dahale et al. 2017). The results attained from expansive soil treated with lime and 267 quarry dust were found to be consistent with the CBR from the present study (Sabat, 2013). 268

269 EFFECT OF WASTE EGGSHELL POWDER ON THE CALIFORNIA BEARING RATIO 270 AND EXPANSION RATIO OF THE EXPANSIVE SOIL

271

Fig.7. Effect of waste eggshell powder on the California Bearing Ratio and expansion ratio of

the expansive soil

273

274 The variation in the CBR and expansion ratio with respect to the increase in the composition of the waste eggshell powder is shown in Figure 7. The CBR increased with the further inclusion of 275 waste eggshell powder into the expansive soil. The expansion ratio decreased with an increase in 276 277 the lime content as observed in the figure. The CBR obtained for 0%, 4%, 8%, 12% and 16% inclusion of waste eggshell powder in expansive soil were found to be 1.8%, 3.1%, 5.8%, 8.1% and 278 279 10.5% respectively. The expansion ratios of the expansive soil after the addition of 0%, 4%, 8%, 12% and 16% of waste eggshell powder were found to be 5.7, 5.1, 4.6, 2.2 and 0.9 respectively. The 280 increase in CBR was observed in accordance with the chemical reactions occurring between the 281 CSH compound formed and the clay particles of expansive soil. This tendency of increase in the 282 CBR ultimately indicated the strength gain in the expansive soil after treatment. The CBR attained 283 for the expansive soil treated with waste eggshell powder was found to be significantly higher than 284 the results obtained from the expansive soil treated with waste eggshell powder and plastic wastes 285 (Alzaidy, 2019). The results obtained from the treatment with waste eggshell powder were observed 286 to be greater when compared with the results attained from the black cotton soil treated with waste 287 eggshell powder – gum Arabic (Haruna et al. 2017). 288

289 EFFECT OF COMBINATION OF LIME AND WASTE EGGSHELL POWDER ON THE

290 CALIFORNIA BEARING RATIO AND EXPANSION RATIO OF THE EXPANSIVE SOIL

KC,

291

Fig.8. Effect of the combination of lime and waste eggshell powder on the California BearingRatio and expansion ratio of the expansive soil

The variation in the CBR with respect to the increase in the lime and waste eggshell 294 combined at a specific percentage is shown in Figure 8. The CBR was found to be increased with an 295 increase in the addition of additives after combination. The expansion ratio of the expansive soil 296 was observed to be decreased after the further inclusion of combined lime and waste eggshell 297 powder. The optimum dosage of waste eggshell powder in the expansive soil was observed to be 298 299 12% which was attained from unconfined compression test. The CBR values for 1%, 3%, 6% and 300 9% lime each included with 12% of waste eggshell powder were found to be 8.9%, 15.7%, 23.8% and 29.1% respectively. The values of expansion ratio of the expansive soil treated with 1%, 3%, 301 302 6% and 9% lime where each sample was added with 12% of waste eggshell powder were found to be 5.7, 2.5, 1.4, 0.5 and 0.2 respectively. The results obtained for the combination of lime and waste 303 eggshell powder were observed to be higher in comparison with the results obtained for the 304

inclusion of additives individually for both cases of CBR and expansion ratio test. The expansion
ratio values attained from the present study were found to be quite higher than the previous studies
(Bapiraju, 2019). The CBR values were found to be consistent with the results attained from
expansive soil treated with coir fibre, waste eggshell powder and steel fibre (Srinivasan et al. 2021).

309 EFFECT OF LIME, WASTE EGGSHELL POWDER & COMBINED LIME AND WASTE 310 EGGSHELL ON THE SWELLING PRESSURE OF THE EXPANSIVE SOIL

311

Fig.9. Effect of lime, waste eggshell powder & combined lime and waste eggshell on the
swelling pressure of the expansive soil

The variation in the swell pressure with respect to the increase in the lime composition in the expansive soil is shown in Figure 9. The swell pressure for the soil samples were tested at 0, 1, 2, 3, 4, 5, 6, 7, 10, 13, 16, 19, 22, 25, 28 and 30 days and the results were compared. The swell pressure for the untreated expansive soil was 4.4% whereas the expansive soil treated with 3% of lime

decreased to 2.53% at the end of 30 days. A reduction in swell pressure was observed due to a 318 reduction in the permeability of the treated expansive soil that eventually decrease the water affinity 319 into the soil mass (Tiwari and Satyam, 2020). Hence, the tendency to swell decreases with the 320 321 addition of 3% lime into the expansive soil. The reduction of swell pressure in the expansive soil treated with lime was found to be greater than the results obtained from the lime-treated expansive 322 soil from Oman (Al-Rawas et al. 2005). The variation in the swell pressure with respect to the 323 addition of waste eggshell powder at different ages is shown in Figure 9. The swell pressure for the 324 soil samples were tested at 0, 1, 2, 3, 4, 5, 6, 7, 10, 13, 16, 19, 22, 25, 28 and 30 days and the results 325 were compared. The waste eggshell powder was included in a dosage of 12%. The swell pressure 326 decreased to 7.93% at the end of 30 days after the inclusion of waste eggshell powder. The 327 reduction in swell pressure was observed after the inclusion of waste eggshell powder due to 328 agglomeration and flocculation mechanism occurring between clay and waste eggshell particles. 329 The variation in swell pressure after the inclusion of both lime and waste eggshell powder at 330 specific percentages is shown in Figure 9. The swell pressure for the soil samples were tested at 0, 331 1, 2, 3, 4, 5, 6, 7, 10, 13, 16, 19, 22, 25, 28 and 30 days and the results were compared. The CBR 332 values were found to increase as there was an increase in the composition of the combined lime and 333 waste eggshell powder. The dosages chosen to be added in the case of lime and waste eggshell 334 powder were 3% and 12% respectively. The swell pressure of the untreated expansive soil specimen 335 was found to be 16.03% at the end of 30 days whereas for the soil specimen treated with 3% lime 336 and 12% waste eggshell powder was found to be 2.32%. The results obtained from the expansive 337 soil after the treatment with combined additives were found to be significantly less compared to the 338 individual addition of lime and waste eggshell powder. This indicated the improvement in the 339 340 stabilisation of the expansive soil effectively and efficiently.

341 EFFECT OF LIME ON THE FREE SWELL INDEX OF THE EXPANSIVE SOIL

342

343 Fig.10. Effect of lime on the free swell index of the expansive soil

The variation in the free swell index (FSI)of the expansive soil after the treatment with 344 different dosages of lime is depicted in the figure 10. The FSI for the expansive soil tends to reduce 345 with the inclusion of lime. The swell index for 0%, 1%, 3%, 6% and 9% inclusion of lime content 346 were observed to be 125%, 107%, 83%, 59% and 41% respectively. The reduction in the free swell 347 index was observed due to the presence of divalent and trivalent cations that tend to enhance 348 flocculation in the particles of expansive soil thereby lessening the surface area and affinity to water 349 350 for the soil specimens (Indiramma et al. 2019). The reduction in the free swell index of the 351 expansive soil treated with lime was found to be consistent with the results obtained from the previous studies (James and Pandian, 2016). 352

353 EFFECT OF WASTE EGGSHELL POWDER ON THE FREE SWELL INDEX OF THE 354 EXPANSIVE SOIL

356 Fig.11. Effect of waste eggshell powder on the free swell index of the expansive soil

The variation in the FSI of the expansive with respect to different dosages of waste eggshell 357 powder inclusion is shown in Figure 11. The swell index values of expansive soil were observed to 358 be reduced with an increase in the composition of the waste eggshell powder. The FSI for expansive 359 soil treated with 0%, 4%, 8%, 12% and 16% of waste eggshell powder were found to be 125%, 360 110%, 89%, 68% and 49% respectively. The addition of waste eggshell powder into expansive soil 361 eventually reduced the clay fraction gradually thereby increasing the sand fraction in the soil sample 362 (Nyankson et al. 2013). The swell index percentage of the expansive soil treated with lime was 363 364 quite lower than the results attained from the soil treated with waste eggshell powder and bacillus subtilis (Sugata et al. 2020). 365

366 EFFECT OF COMBINATION OF LIME AND WASTE EGGSHELL POWDER ON THE 367 FREE SWELL INDEX OF THE EXPANSIVE SOIL

Fig.12. Effect of the combination of lime and waste eggshell powder on the free swell index of the expansive soil

The variation of the free swell index of expansive soil with respect to the addition of 371 combined lime and waste eggshell powder is shown in Figure 12. The swell index values of 372 expansive soil decreased significantly after the inclusion of different dosages of lime with 12% 373 waste eggshell powder as it was observed to exhibit higher strength. The FSI for expansive soil 374 treated with 0%, 1%, 3%, 6% and 9% along with 12% of waste eggshell powder were found to be 375 125%, 101%, 76%, 55% and 36% respectively. The results of FSI obtained from this experiment 376 were found to be quite lower than those obtained from the inclusion of lime and waste eggshell 377 individually at different percentages into expansive soil. The results obtained for the inclusion of 378 379 combined lime and waste eggshell were observed to be considerably the same as the study related to the inclusion of lime and marble dust (Makebo, 2019). 380

381 EFFECT OF LIME, WASTE EGGSHELL POWDER & COMBINED LIME AND WASTE

383

Fig.13. Effect of lime, waste eggshell powder & combined lime and waste eggshell powder on
the pH of the expansive soil

The variation of pH with respect to the increase in the lime content in expansive soil is 386 shown in Figure 13. The specimens for pH test were considered to be cured and tested at 1, 3, 24, 387 72, 168 and 672 hours. The pH of the expansive soil after the inclusion of 3% lime at 1, 3, 24, 72, 388 168 and 672 hours were 11.9, 11.4, 10.9, 10.5, 9.66 and 8.39 respectively from 7.96, 7.96, 7.95, 389 7.93, 7.9 and 7.86. Therefore, the addition of 3% lime considerably reduced the pH values thereby 390 improving the stabilisation of expansive soil. The increase in pH was found to be occurring because 391 of the cation exchange reaction taking place after the inclusion of lime into the soil sample. This 392 gradually decreased the gap between the soil particles and hence reduced the swell potential of the 393

expansive clay soil (Cheng et al. 2018). The pH of the expansive soil treated with lime was found to 394 be similar to the results obtained from earlier studies (Cheng et al. 2018 and Al-Mukthar et al. 395 2010). The variation in pH after the inclusion of waste eggshell powder in clay soil is elucidated in 396 397 Figure 13. The expansive soil was treated with 12% of the waste eggshell powder. The soil specimens were cured for specific periods such as 1, 3, 24, 72, 168 and 672 hours. The pH obtained 398 for those curing periods were 9.6, 9.54, 9.32, 8.89, 8.53 and 8.02 respectively whereas in the case of 399 untreated expansive soil, the values were found to be 7.96, 7.96, 7.95, 7.93, 7.9 and 7.86 400 respectively. The variation in pH with respect to the addition of a specific dosage combination of 401 lime and waste eggshell powder is shown in Figure 13. The expansive soil was treated with 3% lime 402 and 12% waste eggshell powder for the curing periods such as 1, 3, 24, 72, 168 and 672 hours. The 403 pH values attained for 3% lime and 12% waste eggshell powder inclusion in the expansive soil 404 specimens were found to be 12.5, 12.1, 11.8, 10.9, 10.36 and 9.88 respectively. The results obtained 405 from the combination of lime and waste eggshell powder were found to be effective in comparison 406 with the results attained from the lime and waste eggshell included separately. The results obtained 407 for expansive clay soil after the treatment with combined lime and waste eggshell powder were 408 found to be consistent with the results obtained for expansive clay soil after treatment with 409 combined lime, jaggery and gallnut powder (James et al. 2018). 410

411 EFFECT OF LIME ON THE ATTERBERG'S LIMIT OF THE EXPANSIVE SOIL

R'

412

413 Fig.14. Effect of lime on the Atterberg's limit of the expansive soil

The variation in Atterberg's limit after the inclusion of lime is shown in Figure 14. The 414 Atterberg's limits which include liquid limit, plastic limit and plasticity index was represented in 415 graphs with respect to the addition of lime. The liquid limit for 0%, 1%, 3%, 6% and 9% inclusion 416 of lime were found to be 200%, 187%, 163%, 148% and 113% respectively. The liquid limit 417 decreased with the respective increase in lime content. The variation of plastic limit in case of 418 addition of 0%, 1%, 3%, 6% and 9% of lime was found to be 79%, 68%, 49%, 39% and 27% 419 420 respectively. From the figure, it can be observed that the plastic limit decreases with an increase in 421 lime content in the expansive soil. Eventually, the plasticity index of the treated expansive soil varies as 121%, 119%, 114%, 109% and 86% respectively. The reduction in Atterberg's limit was 422 423 observed to occur simultaneously when tested after the addition of additive. The decrease in clay percentage in the expansive soil and the formation of diffused double layer after treatment with lime 424 were found to be responsible for the reduction in liquid limit, plastic limit and hence the plasticity 425

426 index (Indiramma et al. 2019). The Atterberg's limits of the present study were found to be higher
427 than the results obtained from the expansive soil after the treatment with lime and natural pozzolans
428 (Cheng et al. 2018).

429 EFFECT OF WASTE EGGSHELL POWDER ON THE ATTERBERG'S LIMIT OF THE
430 EXPANSIVE SOIL

431

The variation of Atterberg's limit with respect to the addition of waste eggshell powder at specific percentages was shown in Figure 15. The values of Atterberg's limit were found to be reduced with the respective inclusion of waste eggshell powder as observed from the figure. The liquid limit of the treated expansive after the treatment with 0%, 4%, 8%, 12% and 16% of waste eggshell powder were found to be 200%, 180%, 160%, 133% and 115% respectively. The plastic limit for the treated expansive soil with 0%, 4%, 8%, 12% and 16% inclusion of waste eggshell

powder varies as 79%, 63%, 52%, 35% and 28% respectively. This eventually affects the plasticity 439 index as it varies with respective percentage inclusion as 121%, 117%, 108%, 93% and 87%. 440 Therefore, there is a reduction in liquid limit and plastic limit and ultimately resulting in the 441 442 variation in plasticity index with the respective inclusion of waste eggshell powder into the clay. In the process, the cations at the surface of the soil were found to be substituted by calcium. This 443 eventually enhanced flocculation and aggregation making the treated expansive soil less plastic 444 (Sathiparan, 2021). The present study exhibited effective results when compared to the results 445 obtained from the lime-stabilised expansive soil treated with waste eggshell powder (Soundara and 446 Vilasini, 2015). 447

448 EFFECT OF COMBINATION OF LIME AND WASTE EGGSHELL POWDER ON449 ATTERBERG'S LIMIT OF THE EXPANSIVE SOIL

450

451 Fig.16. Effect of the combination of lime and waste eggshell powder on Atterberg's limit of the 452 expansive soil

The variation in the liquid limit, plastic limit and plasticity index with respect to the 453 inclusion of lime and waste eggshell powder at specific percentages were shown in Figure 16. The 454 expansive soil is treated with 1%, 3%, 6% and 9% of lime in addition to 12% of waste eggshell 455 powder at specific percentages of lime inclusion. The liquid limit varied as 200%, 169%, 141%, 456 97% and 73% respectively after adding lime and waste eggshell powder. The plastic limit of the 457 treated expansive soil varied from 79%, 55%, 42%, 30% and 22% respectively. Hence, the 458 respective plasticity index values were found to be 121%, 114%, 99%, 67% and 51%. The 459 Atterberg's limits such as liquid limit, plastic limit and plasticity index were observed to be 460 decreased after the addition of lime and waste eggshell powder at specific combinations. The 461 combined lime and waste eggshell powder exhibited better results in comparison with the results 462 obtained from the individual addition of additives. The effective reduction was observed as it 463 involved two additives and they exhibited different functions to enable efficient stabilisation of 464 expansive soil. The results attained were consistent with the results obtained from the earlier studies 465 (Anoop et al. 2017). 466

467 **CONCLUSION**

The soil stabilisation characteristics which were improved after the inclusion of lime, waste eggshell powder and combined lime and waste eggshell powder were analysed and elucidated by conducting a series of experiments. The following findings were offered as a result of the current investigation.

The unconfined compressive strength of the expansive soil increased after the inclusion of
additives. The UCS of the expansive soil with respect to the addition of 9% lime, 12% waste
eggshell powder and combined admixtures were found to be 273 kPa, 188 kPa and 306 kPa

475 respectively. A higher strength was attained for the combined inclusion of lime and waste476 eggshell powder.

- The California Bearing Ratio of the expansive soil increased after the inclusion combination
 of lime and waste eggshell powder. The expansion ratio of the expansive soil reduced
 efficiently after the inclusion of lime and waste eggshell powder in a combined form than
 the individual inclusion.
- A significant decrease in swell pressure was observed to 2.32% after the combined
 inclusion of lime and waste eggshell powder.
- The free swell index of the expansive soil with respect to the 9% lime, 12% waste eggshell
 powder and combined inclusion of lime and waste eggshell powder were observed to be
 41%, 49% and 36% respectively. A higher improvement was identified in the case of the
 combined inclusion of additives.

487

488 ACKNOWLEDGEMENT

489 Not Applicable

490 **REFERENCES**

James J. (2020), Sugarcane press mud modification of expansive soil stabilized at optimum lime
content: Strength, mineralogy and micro-structural investigation, *Journal of Rock Mechanics and Geotechnical Engineering*, 12(2), 395-402.

- Tiwari N. and Satyam N. (2020), An experimental study on the behavior of lime and silica fume
- treated coir geotextile reinforced expansive soil subgrade, *Engineering Science and Technology, an*
- 496 *International Journal*, *23*(5), 1214-1222.
- 497 Ikeagwuani C.C., Obeta I.N. and Agunwamba J.C. (2019), Stabilization of black cotton soil
 498 subgrade using sawdust ash and lime, *Soils and Foundations*, *59*(1), 162-175.

- Cheng Y., Wang S., Li J., Huang X., Li C. and Wu J. (2018), Engineering and mineralogical
 properties of stabilized expansive soil compositing lime and natural pozzolans, *Construction and*
- 501 Building Materials, 187, 1031-1038.
- 502 Dang L.C., Fatahi B. and Khabbaz H. (2016), Behaviour of expansive soils stabilized with hydrated
- 503 lime and bagasse fibres, *Procedia engineering*, *143*, 658-665.
- Hasan M., Zaini M.S.I., Yie L.S., Masri K.A., Jaya R.P., Hyodo M. and Winter M.J. (2021), Effect
 of optimum utilization of silica fume and waste eggshell ash to the engineering properties of
 expansive soil, *journal of materials research and technology*, *14*, 1401-1418.
- Sathiparan N. (2021), Utilization prospects of waste eggshell powder in sustainable construction
 material–a review, *Construction and Building Materials*, 293, 123465.
- Indiramma P., Sudharani C. and Needhidasan S. (2020), Utilization of fly ash and lime to stabilize
 the expansive soil and to sustain pollution free environment–An experimental study, *Materials Today: Proceedings*, 22, 694-700.
- Nyankson E., Agyei-Tuffour B., Annan E., DodooArhin D., Yaya A., Brefo L.D., Okpoti E.S. and
 Odai E. (2013), Characteristics of stabilized shrink-swell deposits using waste eggshell
 powder, *Glob J Eng, Des Technol*, 2(3), 1-7.
- Zaini M.S.I., Hasan M., Yie L.S., Masri K.A., Jaya R.P., Hyodo M. and Winter M.J. (2022), the
 effect of utilizing silica fume and waste eggshell ash on the geotechnical properties of soft kaolin
 clay, *JurnalTeknologi*, 84(1), 159-170.
- Sahoo J.P. and Pradhan P.K. (2010), Effect of lime stabilized soil cushion on strength behaviour of
 expansive soil, *Geotechnical and Geological Engineering*, 28, 889-897.
- 520 Khazaei J. and Moayedi H. (2019), Soft expansive soil improvement by eco-friendly waste and
 521 quick lime, *Arabian Journal for Science and Engineering*, 44(10), 8337-8346.

- James J., Jothi P.K., Karthika P., Kokila S. and Vidyasagar V. (2020), Valorisation of egg shell ash
 as a potential replacement for lime in stabilization of expansive
 soils, *Građevinskimaterijaliikonstrukcije*, 63(3), 13-20.
- Alzaidy M.N. (2019), Experimental study for stabilizing clayey soil with waste eggshell powder
- and plastic wastes, In *IOP Conference Series: Materials Science and Engineering*, 518, 2, 022008.
- Amena S. and Chakeri D. (2022), A study on the effects of plastic waste strips and lime on strength
 characteristics of expansive soil, *Advances in Civil Engineering*, 2022.
- Wani I.Y., Khurshid M.T. and Sharma E.N., Analysis of Geotechnical Properties of an ExpansiveSoil mixed with Polypropylene, Saw Dust ash and Egg Shell Powder.
- Phanikumar B.R. and Nagaraju T.V. (2018), Effect of fly ash and rice husk ash on index and
 engineering properties of expansive clays, *Geotechnical and Geological engineering*, *36*(6), 34253436.
- Sabat A.K. (2013), Prediction of California bearing ratio of a soil stabilized with lime and quarry
 dust using artificial neural network, *Electronic Journal of Geotechnical Engineering*, *18*, 32613272.
- Alzaidy M.N. (2019), Experimental study for stabilizing clayey soil with waste eggshell powder
 and plastic wastes, In *IOP Conference Series: Materials Science and Engineering*, 518, 2, 022008
- Haruna M., Kundiri A.M. and Yero S.A. (2017), Effect of compactive effort on strength
 characteristics of black cotton soil admixed with waste eggshell powder-gum Arabic, *International Research Journal of Engineering and Technology*, 4(7), 316-322.
- 542 Prasad K. N. (2019), An experimental investigation on expansive soil in conjunction with egg shell543 powder and rock dust.
- 544 Srinivasan k., sagayam s.a.v., jananandhini p. And shaarumathy m. (2021), An experimental study
 545 on the stabilization of expansive soils using coir fibre, waste eggshell powder and steel fibre.

- Al-Rawas A.A., Hago A.W. and Al-Sarmi H. (2005), Effect of lime, cement and Sarooj (artificial
 pozzolan) on the swelling potential of an expansive soil from Oman, *Building and environment*, 40(5), 681-687.
- James J. and Pandian P.K. (2016), Plasticity, swell-shrink, and microstructure of phosphogypsum
- admixed lime stabilized expansive soil, *Advances in Civil Engineering*, 2016.
- 551 Sugata M., Widjajakusuma J., Augestasia A., Zacharia A. and Tan T.J. (2020), The use of waste
- eggshell powder as calcium source in stabilizing expansive soil using Bacillus subtilis, In Journal of

553 *Physics: Conference Series* 1567, 3, 032058.

- 554 Makebo G.M. (2019), Improving the Geotechnical Property of Expansive Soil through Marble Dust
- and Lime for Road Construction Projects.
- Soundara B. and Vilasini P. (2015), Effect of egg shell powder on the properties of clay,
 In *Proceedings of 50th Indian Geotechnical Conference, 17th-19th December.*
- Al-Mukhtar M., Lasledj A. and Alcover J.F. (2014), Lime consumption of different clayey
 soils. *Applied Clay Science*, 95, 133-145.
- James J., Karthickeyan S., Chidambaram S., Dayanandan B. and Karthick K. (2018), Effect of curing conditions and freeze-thaw cycles on the strength of an expansive soil stabilized with a combination of lime, jaggery, and gallnut powder, *Advances in Civil Engineering*, 2018, 1-9.
- Sathiparan N. (2021), Utilization prospects of waste eggshell powder in sustainable construction
 material–a review, *Construction and Building Materials*, 293, 123465.
- Anoop S.P., Beegom H., Johnson J.P., Midhula J., TN T.M. and Prasanth S. (2017), Potential of egg shell powder as replacement of lime in soil stabilization, *International Journal of Advanced*
- 567 *Engineering Research and Science*, 4(8), 237244.

- Selvakumar S., Soundara B. and Kulanthaivel P. (2022), Model tests on swelling behavior of an
 expansive soil with recycled geofoam granules column inclusion. *Arabian Journal of Geosciences*, 15(2), 187.
- Kulanthaivel P., Soundara B., Selvakumar S. and Das A. (2022), Effect of bio-cementation on the
 strength behaviour of clay soils using egg shell as calcium source, *Environmental Earth Sciences*, 81(13), 348.
- Kulanthaivel P., Soundara B., Selvakumar S. and Das A. (2022), Application of waste eggshell as a
 source of calcium in bacterial bio-cementation to enhance the engineering characteristics of
 sand, *Environmental Science and Pollution Research*, 29(44), 66450-66461.
- Kulanthaivel P., Selvakumar S., Soundara B. and Krishnaraja A.R. (2022), Strength Enhancement
 of Clay Soil Stabilized with Ordinary Portland Cement, Sodium Silicate and Sodium
 Hydroxide, *International Journal of Pavement Research and Technology*, 1-14.
- Kulanthaivel P., Soundara B. and Das A. (2020), Performance study on stabilization of finegrained
 clay soils using calcium source producing microbes, *KSCE Journal of Civil Engineering*, 24(9),
 2631-2642.
- Selvakumar S., Kulanthaivel P. and Soundara B. (2021), Influence of nano-silica and sodium
 silicate on the strength characteristics of clay soil, *Nanotechnology for Environmental Engineering*, 6(3), 46.
- Kulanthaivel P., Selvakumar S., Soundara B., Kayalvizhi V.S. and Bhuvaneshwari S. (2022),
 Combined effect of nano-silica and randomly distributed fibers on the strength behavior of clay
 soil, *Nanotechnology for Environmental Engineering*, 7, 1-12.