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Abstract 

Forest fires are a global natural calamity causing 
significant economic damage and loss of lives. 
Professionals forecast that forest fires would raise in the 
future because of climate change. Early prediction and 
identification of fire spread would enhance firefighting 
and reduce affected zones. Several systems have been 
advanced to detect fire. In recent times, Unmanned Aerial 
Vehicles (UAVs) are used for tackling this issue because of 
their ability, high flexibility, and their cheap price to cover 
vast areas during the nighttime or daytime. But still they 
are limited by difficulties like image degradation, small fire 
size, and background complexity. This study develops an 
automated Forest Fire Detection using Metaheuristics 
with Deep Learning (FFDMDL-DI) model. The presented 
FFDMDL-DI technique exploits the DL concepts on drone 
images to identify the occurrence of fire. To accomplish 
this, the FFDMDL-DI technique makes use of the Capsule 
Network (CapNet) model for feature extraction purposes 

with a biogeography-based optimization (BBO) algorithm-
based hyperparameter optimizer. For accurate forest fire 
detection, the FFDMDL-DI technique uses a unified deep 
neural network (DNN) model. Finally, the tree growth 
optimization (TGO) technique is utilized for the parameter 
adjustment of the DNN method. To depict the enhanced 
detection efficiency of the FFDMDL-DI approach, a series 
of simulations were performed. The outcomes reported 
improvements in the FFDMDL-DI method over other DL 
models. 

Keywords: Forest fire; deep learning; drone images; 
transfer learning; metaheuristics; computer vision 

1. Introduction 

As everyone knows forests are a significant part of natural 
resources (Alkhatib et al., 2021). It can maintain 
biodiversity, purify the air, and provide habitat for animals 
popularly called the “Lung of the Earth”, the forest has 
social economic, and rich natural values (Sinha et al., 
2019). But the current ecological condition has made the 
chance of forest fires more frequent, causing large areas 
of forest loss annually. The California fire, which 
happened in November 2018, has exhibited the severe 
damage of forest fires once again (Sinha et al., 2019; Abid, 
2021). So, early prevention of forest fires is highly 
significant for protecting natural resources and people, 
and eventually, the rapid spread of wildfires and the long 
burning period is avoided. With technological 
development, UAVs probably turn out to be the most 
effective tool for detecting forest fires in the early stage 
(Dampage et al., 2022). It has empowered a huge variety 
of applications namely land surveying, surveillance, 
mapping, and tracking. UAV-related systems aid with 
accurate fire management and render realtime data to 
reduce the damage from fires and their ability and cheap 
price would cover large zones either during the night or 
day for a long period (Vikram et al., 2020). The 
incorporation of UAV with infrared or visual sensors aids 
in identifying potential fires at both nighttime and 
daytime (Moussa et al., 2022; Benzekri et al., 2020). 
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Moreover, segmentation and fire detection has shown 
remarkable growth with the usage of deep learning (DL) 
approaches. DL-related fire identification approaches 
were utilized for identifying the colour of wildfire and its 
geometrical attributes namely height, angle, width, and 
shape (Pokhrel and Soliman, 2018). Their outcomes were 
utilized as inputs to a fire propagation methods. 

With the implementation of deep learning (DL) technology 
in domains of intelligent agriculture, logistics, and indoor 
target positioning, authors have also presented DL 
technology in identifying forest fires for enhancing the 
precision of wildfire detection by mining deep semantic 
features from images (Chopde et al., 2022; Saeed et al., 
2020). To extract deep abstract features from imageries, it 
is essential to build a deep-level network method, and 
training deep neural networks (DNNs) was a complex and 
time-taking procedure (Li et al., 2022). Moreover, the 
deep model training demanded a lot of labelled instances. 
This turns out to be the bottleneck in forest fire detection 
depending on UAV imageries, and the occurrence of 
transfer learning (TL) technology offers an opportunity to 
overcome this issue (Kizilkaya et al., 2022; Jeong et al., 
2020). TL is just transmitting trained model to innovative 
task and understanding the modelling of the novel job by 
optimally tuning model parameters. If there were 
inadequate labelled instances (Sadeq et al., 2022), TL can 
solve issue of overfitting training caused by some labelled 
instances. 

This study develops an automated Forest Fire Detection 
using Metaheuristics with Deep Learning (FFDMDL-DI) 
model. The presented FFDMDL-DI technique exploits 
Capsule Network (CapNet) model for feature extraction 
purposes with a biogeography-based optimization (BBO) 
algorithm-based hyperparameter optimizer. For accurate 
forest fire detection, the FFDMDL-DI technique uses a 
unified deep neural network (DNN) model. Finally, the 
tree growth optimization (TGO) technique was utilized for 
the parameter adjustment of the DNN algorithm. To 
depict the enhanced detection efficiency of the FFDMDL-
DI approach, a wide range of simulations were performed.   

2. Literature review 

Chen et al. (2019), introduced a UAV image-related forest 
fire identification method. Initially, the SVM classifier and 
LBP feature extraction were utilized for smoke 
identification and for discriminating wildfire. To precisely 
detect wildfire in the initial stage, as per the CNN, it has 
features that reduce parameters and enhances the 
training efficiency using weight sharing, pooling, and local 
receptive domain. This study modelled another technique 
for identifying wildfires using CNNs. To insert the image 
into the CNN network, image preprocessing operations 
namely smooth low-pass filtering, and histogram 
equalization were executed earlier. Zhang et al. (2022) 
present an FT-ResNet50 method related to TL. The 
technique migrates ResNet network trained on an 
ImageNet database and their initialized variables into 
targeted data of wildfire detection relies upon UAV 
images. Integrated with features of the targeted dataset, 
Adam and Mish's functions were utilized for optimal 

tuning of 3 convolutional blocks of ResNet, and network 
structure parameters and focal loss function were 
included for optimizing the ResNet network, for deriving 
deep semantic information effectively from fire imageries.  

Rahman et al. (2023) presented a forest fire identification 
technique relevant to a CNN structure employing a new 
fire detection database. Particularly, this technique even 
used separable convolutional layers (demanding fewer 
computing resources) for instant fire identification and 
convolutional layers. Almeida et al. (2022) introduce a 
new lightweight CNN technique for forest fire 
identification utilizing RGB images. This technique grants 
more benefits compared to the other approaches used for 
similar tasks. This CNN was employed with aerial images 
from video surveillance mechanisms and UAVs, integrated 
with edge computing gadgets for image processing 
including CNNs. The presented technique can send forest 
fire alerts. The images need not be transferred to a cloud 
computer since it is processed in an edge device.  

Zhan et al. (2021), the authors presented PDAM–STPNNet 
(parallel spatial domain attention mechanism with a 
small-scale transformer featured pyramid method forest 
smoke identification network) related to Net by using 
YOLOX-L as a baseline. Initially, to improve the percentage 
of small wildfire smoke target in the database, the authors 
leverage component stitching data enhancement for 
generating small wildfire smoke targeted imageries in 
scaled collage. Afterwards, to completely derive the 
smoke texture features, the authors devised a PDAM for 
considering the global and local texture of smoke with 
symmetry. A DL fire identification method was presented 
in Jiao et al. (2020) pointing at enhancing the detection 
efficiency and accuracy through UAVs. A large-scale 
YOLOv3 network was advanced which safeguard accuracy 
of detection.  

 

Figure 1. The Working process of FFDMDL-DI system 

3. The proposed model 

In this study, a new FFDMDL-DI approach was formulated 
for intelligent forest fire classification on drone images. 
The presented FFDMDL-DI method follows different 
stages of operations such as CapNet feature extraction, 
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BBO-based hyperparameter tuning, unified DNN-based 
classification, and TGO-based parameter optimization. 
Figure 1 defines the working procedure of the FFDMDL-DI 
system. 

3.1.  Feature extraction module 

To produce feature vectors, the CapNet model is utilized 
in this work. CNN acts on image datasets and discovers 
features of an images to detect objects having 
information. In this work, the layer only detects the edge 
of the object, and deeper layers might discover 
complicated feature of the object (Basheer et al., 2021). 
The CNN-based DL algorithm mainly uses every learned 
feature for making concluding predictions. The main 
drawback of CNN is the lack of pooling function and 
spatial information. In the max pooling function, only 
essential data found from active neuron is to be collected 
to the next layer. Consequently, some significant spatial 
information will be lost between the layers. Thus, to 
overcome these challenges of CNN, the study used a 
superior form of CovNet named Capsule Network or 
CapNet. CapNet is a kind of CNN. CapNet was introduced 
to address the hierarchical modelling problem and is 
better suited for these abovementioned problems. 
CapNet doesn't resemble the Pooling layer used in CovNet. 
Due to pooling in CovNet, it increases the speed of 
algorithmic runtime and reduces the details. But in 
CapNet, the pooling layer is considered minor detail which 
depends on CapNets (inverse rendering concept). The two 
essential functions of CapNet were Squashing and Routing 
algorithms. In the process of training, the activation 
vector of correct number was masked out and these 
activity vectors are applied to recreate input images with 
the aid of the FC decoder. 

For optimal hyperparameter adjustment, the BBO 
algorithm is used here (Moayedi and Le Van, 2022). With 
that regard, each creature has its particular ecological 
value that was represented by the ecological suitability 
indicator, and also it illustrates degree of its quality or 
pleasure. The major aspect of biogeography‐oriented 
optimizer, called BBO, was the acquisition of new features 
moving in opposite direction, from lower to higher, and 
the migration of characteristics from higher to lower. It is 
likely to arrive at the optimum answer by reiterating the 
process defined before. Migration and mutation are the 
two primary operators: 

Migration: data might be transferred from one solution to 
another next via operator; but it depends on two 
parameters demonstrating the migration and movement 
rates as follows: 
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Where μk and λk represent rates of emigration and 
immigration and k describes solution rank. Based on the 
abovementioned process, the rate of immigration and 

emigration were equivalent which has the highest amount 
of species (Smax). 

Mutation: illnesses or tragedies induce alteration in the 
coefficient of solution, the transformation concept might 
be viewed as unpredicted variation in species. The 
mutation value of species is expressed in the following: 
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In which the mk and mmax signify the mutation rates, Pk 
and Pmax represent every one of the species' probability, 
and k represents solution rank. The Pk is formulated by 
the following expression: 
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3.2. Fire detection module 

In this study, the DNN method is used for the forest fire 
detection process. DNN was a large-scale non-linear 
system contains several neural cells similar to the human 
brain and has multiple hidden layers (HLs) among output 
and input layers. In DNN architecture, forward 
propagation was utilized for acquiring the output values, 
whereas backward propagation was utilized to improve 
the parameters of the model (Yang and Jiang, 2021). In 
this study, rich information is extracted in every HL and 
merged in the final HL through the new framework (a 
unified DNN with multilevel features). In this work, we 
have 6 layers (11‐6‐5‐5‐10‐5) involving 4 HLs, one input, 
and output layers. Unlike HL has abstract features in 
various levels and merges them in final HL for 
classification to optimize the performance of the classifier. 
The 11 feature which is extracted was devised in Section 2 
were regularized. The feature was contributed towards 
input layer and later transferred to HL 1 by the forward 
propagation method. Every neuron in next layer is based 
on its preceding layer and is computed by using Eqs. (5) 
and (6). Specifically, the purple neuron of HL 4 is 
evaluated by using Eqs. (5) and (7), and red neurons of HL 
4 are evaluated by using Eqs. (5) and (8). Although the 
neuron in HL 1 propagates to HL 2, at the same time, the 
neuron from HL 1 propagates directly toward HL 4. 
Likewise, neurons in HL 2 transmit to HL 3 and 4. In the 
final HL, 10 neurons with 3 levels are fused to 
comprehensively forecast type of weld defect. The neuron 
of output layer ranges from zero to one, the highest of 
which signifies hypothesis of weld defect type: slag 
inclusion (SL), porosity (PO), lack of fusion (LF), crack (CR), 
and lack of penetration (LP). The deep neural architecture 
uses multilevel features derived from the HL combined to 
categorize weld defects precisely. 
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Where aj(l) refers to j−th neuron of I−th layers, g(x) shows 
the activation function, wij(I,I+1) indicates the weight and 
bj(I+1) represents bias between I−th and (I+1)the layers. 

To compute the purple neuron of HL 4, Eq. (6) must be 
substituted with Eq. (7). Likewise, to compute the red 
neuron of HL 4, Eq. (6) must be substituted with Eq. (8). 

( 2) ( 2, 1)l l l
ij i ijz a w    (7) 

( 1) ( 1, 1)l l l
ij i ijz a w    8) 

DNN is frequently trained with the BP model which 
creates a better sample of an effective gradient‐related 
learning mechanism. In this study, a special DL 
architecture with a forward propagation model has been 
proposed and trained with the BP model. Initially, we 
defame cost function for the unified DNN with 
normalization term, and it was provided as Eq. (9). Next, 
initialize the model parameter and execute a few 
pretrained, next, the backpropagation algorithm has been 
implemented for computing the gradient for cost function 
of DNN. Then, the gradient descent algorithm is used for 
minimizing cost function. Then, upgrade model 
parameters by using Eqs. (10) and (11), next calculate 
gradient again for minimizing the cost function until 
convergence. 
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In Eq. (9), J(W,b) indicate the loss, m represents the 
number of training sets, k shows number of kinds of weld 
defects, xi implies inputted feature of i-th training 

instance, (h(xi))k shows the k-th neurons of output layer 
that can be a hypothesis for input xi, yk(i) represent the i-
thelements of label yk, λ denotes the regularization factor, 

W represents weighted matrix,  indicates weighted 
vector for all the layers, b denotes the bias vector, l 
signifies a layer of the method. 
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Where α refers to learning rate. 

Finally, the TGO technique is used for the parameter 
adjustment of the DNN model. The TGO is a meta-
heuristic technique simulated in the development design 
and survival drive of trees from the jungles (Khan et al., 
2022). To optimize the viewpoint, the trees can be 
analogous to solution, and its development signifies 
fitness function (FF). The TGO mechanism by separating 
the tree (solution) into 4 groups. During the primary group, 
it is higher trees with favourable situations to develop and 
ample accessibility to sunlight. The rate of growth of the 
group one trees has slower and it can be older than other 
trees. The competition among group one tree has merely 
for food. The trees under the secondary group compete 
for food and sunlight. For obtaining maximal sunlight, 
such trees move nearby the 2 neighbouring sunlight-
getting trees. During the tertiary group, the trees can be 

both eliminated and replaced based on their 
underachievement. The group 4 trees were novel plants 
which are nearby the group one trees, therefore it can be 
a superior rate of growth because of the appropriate 
environment. The next steps can be monitored to choose 
features utilizing the TGO: 

a) Primarily, a population was created arbitrarily with an 
entire of N trees (solutions). To whole created populations, 
the fitness value was estimated. The trees can be 
arranged based on their fitness value from the ascending 
order. In the arranged trees, a primary group was 
generated with anN1 count of trees. The tree in primary 
group can be upgraded with a swapping function. An 
optimum tree (global optimum solution) can be preserved 
for the next generation. 

b) Afterward, the N2 count of trees can be preserved to 
develop of secondary group. As noted previously, the 
trees under the secondary group search for sunlight by 
searching nearby 2 trees, 
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The current position and anith tree was defined by PN2 and 
Pi correspondingly. The PN2 strides with the procedure of 
cross‐over and mutation. 

c) Based on fitness values, the underachieving trees from 
tertiary groups were both eliminated and replaced by 
novel ones. Therefore, an entire count of trees from the 3 
equivalents group 

 3 1 2N N N N    (13) 

d) During the fourth phase, a novel N4 count of trees can 
be created nearby optimum trees (group one) utilizing a 
masking procedure. These group 4 trees (entire N4) are 
later than the whole population. The stages a) to d) can be 
repeated still more enhancements from the optimum 
solution halt. The optimum tree (solution) in group one 
was then chosen as the global optimum that defines the 
optimum feature subset. 

The fitness selection becomes a vital component of the 
TGO method. It can be used to evaluate the aptitude 
(goodness) of candidate solutions (Shyla and Sujatha, 
2020). Nowadays, accuracy value will be the main 
condition used to devise a fitness function.  

    max   Fitness P  (14) 

TP
P

TP FP


  
(15) 

From the expression, TP signifies true positive, and FP designates 
false positive value. 

4. Results and discussion 

The experimental study of the FFDMDL-DI method is 
performed on the FLAME dataset (Shamsoshoara et al., 
2021), which contains 6000 samples as depicted in Table 1. 
Figure 2 shows the sample fire and no-fire images. 

The fire detection performance of the FFDMDL-DI model 
under varying sizes of datasets is reported in Figure 3. On 
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80% of the TRS database, the FFDMDL-DI model has 
identified 2407 fire samples and 2368 no-fire samples. At 
last, on 20% of the TS database, the FFDMDL-DI method 
identified 580 fire samples and 617 no-fire samples. 
Meanwhile, on 70% of the TRS, the FFDMDL-DI technique 
has identified 2061 fire samples and 2036 no-fire samples. 

 

Figure 2. a) Fire b) No-Fire Images 

An average fire detection results of the FFDMDL-DI model 
under fire and no-fire cases with 80:20 of TRS/TSS is given 
in Table 2 and Figure 4. On 80% of the TR database, the 
FFDMDL-DI technique has reached the average accubal of 
99.48%, sensy of 99.48%, specy of 99.48%, Fscore of 99.48%, 
and AUGscore of 99.48%. Meanwhile, on 20% of the TS 
database, the FFDMDL-DI method has reached an average 
accubal of 99.76%, sensy of 99.76%, specy of 99.76%, Fscore 
of 99.75%, and AUGscore of 99.76%. 

 

Figure 3. Confusion matrices of FFDMDL-DI technique (a-b) 

TRS/TSS of 80:20 and (c-d) TRS /TSS of 70:30 

 

Table 1. Details of the dataset 

Class No. of Samples 

Fire 3000 

No-Fire 3000 

Total Number of Samples 6000 

 

Table 2. Fire detection outcome of FFDMDL-DI system on 80:20 of TRS/TSS 

Class Accuracybal Sensitivity Specificity F-Score AUC Score 

Training Phase (80%) 

Fire 99.46 99.46 99.50 99.48 99.48 

No-Fire 99.50 99.50 99.46 99.47 99.48 

Average 99.48 99.48 99.48 99.48 99.48 

Testing Phase (20%) 

Fire 100.00 100.00 99.52 99.74 99.76 

No-Fire 99.52 99.52 100.00 99.76 99.76 

Average 99.76 99.76 99.76 99.75 99.76 

 

Table 3. Fire detection outcome of FFDMDL-DI approach on 70:30 of TRS/TSS 

Class Accuracybal Sensitivity Specificity F-Score AUC Score 

Training Phase (70%) 

Fire 97.59 97.59 97.51 97.56 97.55 

No-Fire 97.51 97.51 97.59 97.53 97.55 

Average 97.55 97.55 97.55 97.55 97.55 

Testing Phase (30%) 

Fire 98.20 98.20 98.57 98.36 98.39 

No-Fire 98.57 98.57 98.20 98.41 98.39 

Average 98.39 98.39 98.39 98.39 98.39 
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An average fire detection results of the FFDMDL-DI model 
under fire and no-fire cases with 80:20 of TRS/TSS is given 
in Table 3 and Figure 5. On 70% of TR database, the 
FFDMDL-DI approach has achieved an average accubal of 
97.55%, sensy of 97.55%, specy of 97.55%, Fscore of 
97.55%, and AUGscore of 97.55%. Eventually, on 30% of 
the TS database, the FFDMDL-DI method has achieved an 
average accubal of 98.39%, sensy of 98.39%, specy of 
98.39%, Fscore of 98.39%, and AUGscore of 98.39%. 

 

Figure 4. Average outcome of FFDMDL-DI system on 80:20 of 

TRS/TSS 

 

Figure 5. Average outcome of FFDMDL-DI system on 70:30 of 

TRS/TSS 

The TACY and VACY of the FFDMDL-DI method are 
scrutinized on fire detection performance in Figure 6. The 
outcomes show that the FFDMDL-DI approach has 
improvized performance with higher values of TACY and 
VACY. Seemingly, the FFDMDL-DI method has higher TACY 
outcomes. 

The TLS and VLS of the FFDMDL-DI technique are tested 
on fire detection performance in Figure 7. The figure 
exhibited that the FFDMDL-DI approach has revealed 
better performance with the minimal values of TLOS and 
VLOS. Notably, the FFDMDL-DI technique has minimal 
VLOS outcomes. 

 

Figure 6. TACY and VACY analysis of FFDMDL-DI system 

 

Figure 7. TLOS and VLOS analysis of FFDMDL-DI system 

 

Figure 8. Precision-recall analysis of FFDMDL-DI system 

A clear precision-recall review of the FFDMDL-DI system 
under the test database is given in Figure 8. The outcomes 
show the FFDMDL-DI technique has improvized enhanced 
values precision-recall values under every class. 

In Table 4, detailed fire detection outcomes of the 
FFDMDL-DI method with recent methods are provided 
[17]. 

 

Table 4. Comparative analysis of FFDMDL-DI approach with other systems 

Methods Accuracy Sensitivity Specificity F-Score 

FFDMDL-DI 99.76 99.76 99.76 99.75 

ResNet50 89.98 90.28 92.35 90.28 

VGG16 91.14 91.45 94.21 91.14 

Inception 92.51 93.73 96.52 92.60 

KELM 94.55 95.18 98.56 95.07 

LSTM 95.54 96.89 97.62 96.57 
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A comparative study of the FFDMDL-DI method in terms 
of accuy and F−score is represented in Figure 9. The 
outcomes displayed that the FFDMDL-DI algorithm has 
shown improved results. Based on accuy, the FFDMDL-DI 
model has achieved an increased accuy of 99.76% while 
the ResNet50, VGG16, Inception, KELM, and LSTM models 
have obtained reduced accuy of 89.98%, 91.14%, 92.51%, 
94.55%, and 95.54% respectively. Moreover, based on 
F−score, the FFDMDL-DI method has attained an 
increased Fscore of 99.75% while the ResNet50, VGG16, 
Inception, KELM, and LSTM approaches have gained a 
reduced Fscore of 90.28%, 91.14%, 92.60%, 95.07%, and 
96.57% correspondingly. 

 

Figure 9. accuy and Fscore analysis of FFDMDL-DI approach with 

other systems 

 

Figure 10. Sensy and Specy analysis of FFDMDL-DI methodology 

with other techniques 

The brief study of the FFDMDL-DI algorithm interms of 
Sensy and Specy is given in Figure 10. The figure shown 
the FFDMDL-DI appproach has shown enhanced results. 
Based on Sensy, the FFDMDL-DI technique has achieved 
an increasedSensy of 99.76% while the ResNet50, VGG16, 
Inception, KELM, and LSTM approaches have gained 
reduced Sensy of 90.28%, 91.45%, 93.73%, 95.18%, and 
96.89% correspondingly. Additionally, based on Specy, the 
FFDMDL-DI method has attained an increased Specy of 
99.76% while the ResNet50, VGG16, Inception, KELM, and 
LSTM techniques have attained reduced Specy of 92.35%, 
94.21%, 96.52%, 98.56%, and 97.62% correspondingly. 
These outcomes showcased the enhanced results of the 
FFDMDL-DI model. 

5. Conclusion 

In this study, a new FFDMDL-DI algorithm was formulated 
for intelligent forest fire classification on drone images. 

The presented FFDMDL-DI technique follows different 
stages of operations such as CapNet feature extraction, 
BBO-based hyperparameter tuning, unified DNN-based 
classification, and TGO-based parameter optimization. 
The presented FFDMDL-DI technique exploits the DL 
concepts on drone images to identify the occurrence of 
fire. For accurate forest fire detection, the FFDMDL-DI 
technique uses a unified DNN method. Finally, the TGO 
approach is used for the parameter adjustment of the 
DNN method. To depict the enhanced detection efficiency 
of the FFDMDL-DI algorithm, a sequence of simulations 
were effectuated. The outcomes stated the improvements 
of the FFDMDL-DI approach over other DL models. The 
detection performance of the FFDMDL-DI algorithm can 
be improved by hybrid metaheuristic algorithms in future.  
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