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Abstract 

Azo dye is a synthetic aromatic dye which are direct dye 
frequently used in textile industry to colour fibres. It also 
contributes to the damage of the environment. This study 
examines the adsorption biochar made from Annona 
reticulata to remove azo dye from textile wastewater. To 
improve the adsorption capacity, biochar valorized by 
chitosan molecules, Investigations were conducted on the 
use of chitosan-based materials that are acid-resistant for 
azo dye adsorption. In the batch experiment, basic 
operating parameters such as initial Azo dye 
concentrations, pH, contact time and bed height were 
assessed. The percentage removal efficiency for Azo dye 
was recorded as 67.18%, 75.88% and 94.37% for three 
dissimilar sized columns that were 6cm, 8cm, and 10cm. 
The UV–visible absorption spectroscopy was used to 
quantify the decolorization of dyes. The changed surface 
properties of the adsorbent produced from Annona 
reticulata were characterized by using SEM, XRD, and FTIR. 
The effectiveness of the column's adsorption was 
calculated mathematically by Yoon-Nelson, Thomas, and 

Adams-Bohart models. The model that best represents 
equilibrium isotherm data by adsorption had R2 values of 
94.63, 86.67 and 96.35 respectively. 

Keywords: Azo dye removal, textile wastewater, annona 
reticulata, chitosan, adsorption 

1. Introduction 

The textile industry is one of the major contributors to 
serious pollution issues around the world because it is a 
significant industrial consumer of water and a significant 
producer of wastewater (Kamboh et al., 2014). The 
increased demand for textile products has also led to an 
increase in the generation of textile wastewater 
(Krishnakumar et al., 2014). The classification of textile 
industries is based on the kinds of fabrics they create, such 
as cellulosic materials derived from plants, protein fabrics 
derived from animals, and synthetic fabrics created 
artificially (Gokulan et al., 2022). In textile factories, both 
dry and wet techniques are used to produce fiber. The wet 
procedure releases highly contaminated wastewater while 
using a sizable amount of potable water (Sujatha et al., 
2022). This procedure includes techniques for sourcing, 
sizing, de-sizing, bleaching, mercerizing, dyeing, printing, 
and finishing. The discharged colored effluents are a 
significant non-aesthetic pollution source, and the 
oxidation, hydrolysis, or other chemical reactions that 
occur during the wastewater phase result in hazardous by-
products that are released into the environment (Gokulan 
et al., 2022). The textile industry’s primary environmental 
harm comes from the discharge of untreated effluents into 
water bodies, which typically account for 80% of all 
emissions produced by this sector (Praveen et al., 2021). 
Biochemical oxygen demand (BOD) and Chemical oxygen 
demand (COD) are relatively high levels in most residual 
fluids from the textile industry (Ravindiran et al., 2019). The 
abundance of non-biodegradable chemical substances, 
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particularly textile colors, should receive more attention 
(Rao et al., 2021). Azo dye molecules are harmful to higher 
living organisms, including aquatic environments and 
plants, since they are toxic, carcinogenic, teratogenic, and 
mutagenic. Approximately 15-20% of azo dyes are 
discharged as wastewater into aquatic habitats because 
they are not anchored to the substrate (Gokulan et al., 
2021). A serious threat to aquatic life and indirectly to 
human health is posed by the presence of minute amounts 
of azo dyes, which are quite apparent and have a negative 
impact on the clarity and quality of water bodies like lakes, 
ponds, and rivers (Sujathaet al., 2021). Bladder cancer in 
humans has been connected to azo dye ingredients like 
benzidine. Moreover, azo dye exposure increases the risk 
of bladder cancer in dye workers (Gokulan et al., 2019). 
Therefore, azo dyes are genotoxic, mutagenic, 
carcinogenic, and have deadly consequences on both 
people and animals. The reckless release of azo dyes into 
the environment, especially from the textile industry, is of 
great concern to both human health and the environment 
(Kalyani et al., 2021). One of the unit activities in the 
chemical engineering procedures used to treat the 
wastewater from the textile industry is adsorption 
(Ravindiran et al., 2019). Due to the ease of the procedure 
and reduced cost compared to other processes, adsorption 
is a well-established technology for azo dye removal from 
wastewater (Madhu et al., 2021). The technique becomes 
even more economically efficient when adsorbents made 
from different biomass wastes, such as biochar and 
activated carbon, are developed (Gokulan et al., 2019). For 
the treatment of dye wastewater, biochar has been found 
as a possible contender. Due to the presence of surface 
functional groups and the biochar’s substantial surface 
area, it is advantageous to employ biochar for wastewater 
treatment (Priya et al., 2020). Several studies have 
investigated the environmentally beneficial usage of 
biochar for the removal of colour from textile effluent in 
the past (Gokulan et al., 2019). The purpose of this study 
was to investigate how effectively azo dye might be 
removed from treated textile effluent (Mahendran et al., 
2021). Batch adsorption process was proceeded for the 
removal of azo dye and UV–visible absorption spectroscopy 
was used to quantify the decolorization of dyes (Gokulan et 
al., 2020). SEM, XRD, and FTIR characterisation techniques 
provided strong support for the experiment. The 
mathematical modelling Yoon-Nelson, Thomas, and 
Adams-Bohart models were reinforced the adsorption 
process (Murugadoss et al., 2021). Intraparticle diffusion 
model and repeated studies of the adsorbent’s 
regeneration capacity was conducted.  

2. Martials and methods 

2.1. Preparation of column material 

The Annona reticulata seed was collected, dried 
completely for 10 hours at 100°C in a hot air oven, and then 
manually broken into numerous pieces (Gokulan et al., 
2021). The microbiological particles were fully crushed out 
after that, and the column material was collected and 
cleaned with a NaCl solution (Kumar et al., 2021). Again, it 

was allowed to dry for 10 hours in a hot air oven set to 
100°C and for 5 hours in the open air. 

2.2. The adsorbent surface activation by chitosan particles 

100 mL of a 0.1M acetic acid solution were used to dissolve 
0.5 g of chitosan to create the basic chitosan solution 
(Gokulan et al., 2021). The dissolution process took place 
at room temperature for 3 hours with constant stirring, 
after which the solution was left to stand for 10 hours 
(Sundar et al., 2021). Sulfate anions were used as 
crosslinking bridges to create chitosan nanoparticles. By 
combining a solution of chitosan with a solution of 
K2SO47H2O at a constant concentration in a volume ratio 
of 1:1 while stirring (Gokulan et al., 2022), chitosan sulfate 
aqueous dispersions were created. Chitosan was present in 
the combinations at a constant concentration of 2 gL-1 
(Jegan et al., 2020). SEM surface examination of a 
superficially modified adsorbent. 

2.3. Column study 

The particle sizes ranging from 0.8 mm to 3 mm of 
adsorbent was prepared and it was filled in column and the 
bottom was covered with class glass wool (Praveen et al., 
2021). The three different sized 6cm, 8cm and 10cm filled 
adsorbent column with the flow rate of 3 ml/min was used 
for the adsorption study (Sujatha et al., 2021). The column 
study conducted in the room temperature, In the fixed bed 
column studies, a glass column with an inner diameter of 3 
cm and a length of 80 cm was used (Pushpa et al., 2019).  

2.4. Spectrophotometric analysis 

HCl or NaOH solutions were used to modify the pH of the 
solution. In each experiment, which was carried out twice 
(Senthil Kumar et al., 2021) The UV-visible 
spectrophotometer method was used to determine the 
amount of dye in the solutions. With the following 
expression, the amount of dye adsorbed per unit mass of 
resin was determined: 

( ) ( )0   /e eq C C x V m= −   

Where Co and Ce (mg/L) were the preliminary and 
symmetry dye concentrations in the aqueous solution, and 
the adsorbent capacity, qe (mg/g) (Hariharan et al., 2022); 
The experimental solution's volume, V (ml), and 
adsorbent's weight, m (g), were both given. 

2.5. Kinetic study 

2.5.1. Thomas model 

The Thomas model was used to calculate the relationship 
between solute concentration and time (Jegan et al., 2021). 
In continuous column technology, both internal and 
external mass transfer restrictions were considered. 

1
o

 Ln (Kt* * / ) * *
Ct

C
q m Q kt Co t

 
− = − 

 
  

where m is the mass of the adsorbent, Co and Ct are the 
influent and effluent concentrations (mg/L), Kt is the 
Thomas rate constant (mL/(min.mg), and t is the duration 
(min), Assuming a constant flow rate, the volume of 
adsorbent in the column was restrained as Q (g), and the 
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adsorption kinetics (kt) were determined from the plot of 
ln [(co/ct)] over time (Praveen et al., 2022). 

2.5.2. Adams-Bohart model 

Construction of fixed bed columns most usually employs 
the Adams Bohart. This model was developed with the 
presumption that the adsorbate is quickly adsorbed onto 
the adsorbent surface, and that intra-particle diffusion and 
external mass transfer resistance are unimportant factors 
(Kumar et al., 2022). The first 10 to 50% of the saturation 
points, or the breakpoint, of the breakthrough curve, are 
identified using this model. 

eR   ln ab  o  ab  ab   
Co u

Ct z
K C t K N

   
= = −   

   
  

The kinetic constant in this equation is represented by kab 
(L/mg min), the linear flow velocity is denoted by u 
(cm/min), and the saturation concentration is designated 
by Nab (mg/L) (Jegan et al., 2020). The parameter values 
for kab and Nab were obtained by plotting the function ln 
(Ct/C0) versus t and calculating its slope and intercept. The 
kinetic constant kab changed as the inlet flow rate and 
initial dye concentration increased and decreased, 
respectively (Ragunath et al., 2022). Nab's value increased 
with increasing starting concentrations. In the start of the 
adsorption process, external diffusion can be the reason for 
this. The statistic that some data did not appropriate the 
model precisely confirmed its errors. 

2.6. Characterization of adsorbent 

2.6.1. SEM analysis 

Adsorption images were captured using the SEM analytical 
technique. Using geometrical information from two-
dimensional photos, the estimation of flocculation and 
aperture properties of surface area was carried out utilizing 
image dispensation software (Saravanan et al., 2022). 
Examining was done using scanning electron microscopes 
(SEM), specifically an APE-60 syrmaks R-560 SEM equipped 
with 800 EDS spectrometer and an HDP-EDS detector, in 
order to confirm the deposited sludge during the 
flocculation process (Ilavarasan et al., 2022). The execution 
of all extent on elegant segments was made possible by 
acerbating the samples and rasping the saturated 
segments (Gokulan et al., 2020). To assess any 
compositional adjustment based on the intricate array of 
different capabilities present within the cohort of the 
analytical signals (Praveen et al., 2021). For the 
experiments to generate data that was at least passably 
illustrative, 800x magnification was used. This resembles 
squares about 1 mm2 in size (Ravindiran et al., 2014). In 
both configurations, the analyses were carried out by 
searching four areas for each taster. 

2.6.2. XRD analysis 

Azo dye removal in aqueous solution as determined by 
adsorption research. Highest expected dense resolution for 
the main Azo dye constituents, as shown by XRD (Kumar et 
al., 2017). Using a tube driven by X-ray diffraction, 
measurements of the overall concentration of the major 
and minor components in the adsorption were made (XRD) 
(Gokulan et al., 2018). The operational parameters of the 

Topins X-ray apparatus model SNLH0 were 0 kV and with 
6000 seconds were spent irradiating (Krishna et al., 2015). 
A Si (Li) detector was used to create the X-ray spectra, 
which were then analysed using the reiterative smallest 
quadrangular accurate computer code. IFEA standard 
orientation material analyses were finished as part of the 
measurement quality control process (Gokulan et al., 
2013). The stream cell contains an adsorbent sample with 
electrochemical responses and diffraction patterns that 
have been recorded (Rajeshkumar et al., 2023). The in situ 
electrochemical dimension that the arrangement supports 
is its key strength. The deflection patterns are made 
possible by the moving brine (Gokulan et al., 2014). Since it 
took that long to complete the security checks and depart 
the experimental hutch, the XRD measurements began 6–
10 minutes after the flow began through the cell. 

2.6.3. FTIR analysis 

Using a Spectrum Two-Perkin Elmer Model, Fourier 
transform infrared spectroscopy (FTIR) was used to see the 
actual clusters in molecular structures at ambient 
temperature. The IR spectra were used to monitor the 
actual assembly (DadbanShahamat et al., 2022). The 
vibration of the band at 640 cm-1 is associated with (AlCl). 
Due to different surroundings, (Al-O’s) vibration appeared 
in two distinct frequencies (Al-O) (Ravindiran et al., 2014). 
As a result, the peak at 1536 cm-1 is like the NaCl bond 
expanding. Stretching and bending of the bands seen at 
1742 cm-1 and 2610 cm-1 are attributed to (OH). The 
vibration of the band at 4254cm-1 is (Al-OH) (Moradi et al., 
2022). These allotted objects make up the adsorbent stages 
(Ravindiran et al., 2014). As they provide a variety of 
important information, the characteristic peaks of the 
amide groups band in FTIR are helpful for analyzing the 
structure of the deposited sludge (Gao et al., 2013). The 
FTIR spectra of various temperature-treated adsorbents 
were displayed. 60 minutes were spent treating the 
samples at various temperatures (Xi et al., 2013). From 
discs containing adsorbent-deposited sludge samples, FTIR 
spectra were obtained (Hashemi et al., 2022). Using an 
infrared spectrophotometer, the spectra were measured 
from 6000 to 600 cm-1 at a data acquisition rate of 6 cm-1 
per point.  

2.6.4. Study on intraparticle diffusion 

It was done using the Weber-Morris intraparticle diffusion 
model (Zubair et al., 2022). The subsequent equation 
assisted as the primer to this study: 

0.5  t idq K t C= +   

Kid is the rate constant of the intraparticle diffusion model, 
and C is a constant (mgr/gr). The linear relationship 
between the values of qt and t is 0.5 can be used to derive 
the values of Kid and C. 

2.7. Regeneration of adsorbent 

By electrically heating the adsorbent to 400°C in both an 
inert and an environment with air, thermal regeneration 
was accomplished (Amani-Ghadim et al., 2013). The 
adsorbent was heated to 400°C to 600°C in a muffle furnace 
during the hot water extraction process, twice washed with 
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DI water and HCL solution, and then dried for an additional 
three hours in a hot air oven (Ozdemir et al., 2013). The 
effectiveness of the regenerated adsorbent’s regeneration 
was determined by evaluating the azo dye removal 
capacity. 

3. Result and discussion 

3.1. Adsorption study 

Azo dye was primarily existing in effluent at a meditation of 
270 mg/L. Batch process research performed to examine 
Azo dye adsorption in order to evaluate how well Annona 
reticulata - chitosan assisted as an adsorbent for the 
elimination of Azo dye (Patel et al., 2013). In order to gauge 
how well the treatment was functioning, samples were 
obtained every 10 minutes and analyzed using a UV-visible 
spectrophotometer technique. Studies on the initial 
investigation using Annona reticulata-chitosan columns 
were done (Hua et al., 2013). Although the input trial level 
was 3 mL/min in a 6 cm stake, the output ranges were 1.6 
mL/min. According to Table.1 & Figure 1, In 80 minutes, the 
column was totally drained at 88.6 mg/l for 6 cm. 

Table 1 Azo dye removal for 6cm column 

Time (min) 6cm column (mg/L) 

0 270.0 

10 213.4 

20 198.7 

30 175.6 

40 167.5 

50 133.9 

60 116.3 

70 108.7 

80 88.6 

90 88.6 

 

Figure 1. Azo dye removal for 6cm column 

The elimination percentage in the initial adsorption study 
reached about 67.40%. On the second round of the study, 
investigations were done using Annona reticulata-chitosan 
columns (Morshedi et al., 2013). The output ranges were 
1.2 mL/min, while the input sample flow rate of 3 mL/min 
in an 8 cm column was kept constant (Wang et al., 2013). 
According to Table 2 and Figure 2, Within 110 minutes, the 
column was entirely drained at 65.1 mg/l for 8 cm. 

 

 

 

Table 2 Azo dye removal for 8cm column 

Time (min) 8cm column (mg/L) 

0 270.0 

10 258.3 

20 192.6 

30 185.3 

40 177.9 

50 153.5 

60 133.7 

70 118.9 

80 90.5 

90 85.6 

100 78.3 

110 65.1 

120 65.1 

 

Figure 2. Azo dye removal for 8cm column 

The elimination percentage reached about 75.88% in the 
second round of the adsorption investigation (Al-Amrani et 
al., 2014). Studies were done employing Annona reticulata-
chitosan columns during the third round of the 
investigation. The output ranges were 1 mL/min, while the 
input sample flow rate was maintained at 3 mL/min in a 10 
cm column (Zhang et al., 2014). According to Table 3 and 
Figure 3, the column was completely depleted at a rate of 
15.2 mg/l for 10 cm in 120 minutes, with a removal 
percentage of 94.37%. 

Table 3 Azo dye removal for 10cm column 

Time (min) 10cm column (mg/L) 

0 270.0 

10 218.5 

20 164.8 

30 127.6 

40 103.5 

50 92.4 

60 76.5 

70 54.2 

80 38.7 

90 27.9 

100 16.5 

110 15.8 

120 15.2 

130 15.2 
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Figure 3. Azo dye removal for 10cm column 

In the extensive column experiment, the initial azo dye 
concentration in the effluent was 270 mg/L. Using batch 
process study, it was feasible to assess how successfully 
Annona reticulata - chitosan removed Azo dye when used 
as an adsorbent (Tuttolomondo et al., 2014). The output 
ranges for the three different sized columns 6, 8, and 10 cm 
differ according to the height of the bed. For the 6cm 
column, the output ranges were 1.6 mL/min, for the 8cm 
column, 1.2 mL/min, and for the 10cm column, 1 mL/min, 
due the height of bed the infiltration ranges vary (Shirzad-
Siboni et al., 2014). To gauge how much of the azo dye had 
been removed from the sample, a UV-visible 
spectrophotometer was employed.In this study, the 
removal range for a 6 cm column was 88.6 mg/L, and after 
80 minutes, the adsorption column reached saturation 
with a removal percentage of roughly 67.40%. The azo dye 
removal range in the following investigation for an 8 cm 
column was 65.1 mg/L in 110 min, and the adsorption 
column was saturated with a removal percentage of 
roughly 75.88%. The end experiment had a height of 10 cm, 
a removal range of 15.2mg/L in 120 minutes, and a removal 
percentage of 94.37% (Li et al., 2022). This study 
demonstrated how the elimination of azo dye is influenced 

by the contact time, flow velocity, and column depth. The 
size of the column was determined at 6 cm, 8 cm, and 10 
cm based on the thorough study. The column separates the 
azo dye from the wastewater because of its infiltration 
capability (Gnanasekaran et al., 2022). This experiment 
used a surface-modified adsorbent to regulate the ideal 
azo dye concentration in the textile effluent. 

3.2. Kinetic study 

3.2.1. Adsorption experiment analysed by Thomson model 

The ionic speciation of the adsorbate laid in the required 
region controlled the adsorption process. It was assessed 
using the Thomas model (Kalyani et al., 2020). The 
measured and predicted break-through curve for the 
adsorption process agreed, as evidenced by the maximum 
regression coefficient value (R2) for a 10 cm column, which 
was 0.972. The greatest concentration of adsorbate had 
favorable adsorption kinetics, as evidenced by the mass (m) 
and time of concentration effect kt's value (t) (Jegan et al., 
2020). Kt values initially minor, and in subsequent stage it 
increased as 0.027, 0.024, and 0.029 for the column. 
Temperature increase caused a decrease in the rate 
constant (kt). The equilibrium uptake capacity slightly 
increased (qo). The decrease in qo showed that, as the 
chart plainly states, the adsorption capacity is negatively 
associated with bed height and contact time. 

3.2.2. Adams-Bohart model 

The 60% of the saturation points of the breakthrough curve 
are described by this model. The kinetic constant Kab 
varied as the initial adsorbent concentration, bed height, 
and inflow flow rate did, in that order (Jankowska et al., 
2022). Nab's value is developed at higher original solvent 
concentrations. This may have occurred at the beginning of 
the electro adsorption process due to diffusion from the 
outside. Tables 4 and 5 exhibits the standard for R2, Kab, 
and Nab. As not all values fit into the model, it had limits. 

 

Table 4 Adsorption experiment analysed by Thomson model 

Material Column size (cm) kt x 10-3 (mL/(min.mg) qo (mg/g) R2 

Annona reticulata 

Chitosan 

6 0.027 6.52 0.901 

8 0.024 3.40 0.936 

10 0.029 6.86 0.972 

Table 5 Adams-Bohart model for Three different study 

Material Column size (cm) Nab (mg/L) Kab (ml/mg min) R2 

Annona reticulata 

Chitosan 

6 146.10 0.0017 0.913 

8 137.41 0.0028 0.948 

10 187.22 0.0032 0.975 

 

3.3. Characterisation study 

3.3.1. SEM analysis 

SEM pictures were used to describe the microstructures 
and morphologies of Annona reticulata - Chitosan. Figure 4 
illustrates how the dark-colored structural modifications 
and abundant asymmetrical shacks in azo dye result in 
more lively adsorption sites (Lach et al., 2022). A closer look 
at the structure revealed that it had retained its black color 
long after magnetization. With a diameter of about 350 

nm, the crystal domains are consistently ornamented and 
decisively attached to the adsorbent surface in accordance 
with the magnetic microspheres created adsorbent surface 
changes (Gungor et al., 2008). As shown in Figure 4 with 
varying sizes presenting a block-like structure and smooth 
surface, for compelling separation, a homogeneous 
distribution of magnetite on the adsorbent's external is 
beneficial. 
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Figure 4. SEM analysis of Annona reticulata – Chitosan adsorbent 

3.3.2. XRD analysis 

Figure 6 displays the XRD patterns of the Annona reticulata-
Chitosan adsorbent. The diffusion pattern of the adsorbent 
lacks a glassy peak, indicating an amorphous structure for 
the azo dye adsorption (Murali et al., 2013). Figure 5 
illustrates how XRD reveals the distinctive peaks of an 
adsorbent at 40.5 ° (250), 36.3 ° (352), 42.5 ° (280), 58.7 ° 
(613), and 69.5 ° (540). The outcomes imply that the 
introduction of the magnetic adsorbent into the adsorption 
study was successful. Also, unlike the XRD patterns of azo 
dye removal, no carbon peak was seen for the adsorbent, 
showing that it still has an amorphous structure following 
hydrothermal magnetization (Pushpa et al., 2021). They 
exhibit a type I isotherm now, which suggests that they are 
mesoporous. This is added reinforced by its minute 
hysteresis rings in the relative pressure P/P0 region 
between 0.2 and 0.6. According to their pore structure 
properties, azo dye has a lower surface area and pore 
volume (2653 m2 and 1.53 cm3, respectively) while 
adsorbing than adsorbent (3261 m2 and 1.84 cm3, 
respectively). Because mutually high and low external area 
carbonaceous elements are used to create the magnetic 
composite, the exact adsorbent's superficial area was 
decreased (Figure 5). 

 

Figure 5 XRD analysis of Annona reticulata – Chitosan adsorbent 

3.3.3. FTIR analysis 

Figure 6 shows the FTIR spectrum of the Annona reticulata-
Chitosan adsorbent. There are some adsorbed azo dyes 
and coordinated water present at the same time, as shown 
by the faint absorption peaks at 3421 and 453.27 /cm, 
which pertain to the circuitous trembling and stretching 
vibration of the OH- bond (Vucurovic et al., 2014). In the 
case of an adsorbent, A peak at 2883.58 cm was found by 
XRD examination, and it may be associated to the flexural 
vibration of C-H, as well as bands at 2831.50 cm and 
2385.95 cm that were ascribed to the O-H distortion 
trembling and the C=C extending quivering (Haris et al., 
2022). The large absorption maxima at 1633.71 cm and 
727.16 cm of Annona reticulata-Chitosan adsorbent are 
attributed to the carboxyl groups' (-C=O-) and C-H bending 
vibrations. C-O stretching and O-H bending (in-plane) 
vibrations are responsible for the broad band that may be 
seen between 1043.49 and 775.38 cm. 

 

Figure 6 FTIR analysis of Annona reticulata – Chitosan adsorbent 
3.4. Intra particle diffusion model 

High regression coefficient (94%–96%) from experimental 
model constructed and reported in Table 6, it is believed 
that this kinetic model provides the most accurate 
description of the adsorption of Annona reticulata–
chitosan isomers. Azo dye demonstrated a higher removal 
rate and adsorption loading compared to other isomers (Xu 
et al., 2014). In some situations, the presence of methyl 
groups may speed up clearance. The intraparticle diffusion 
study shown in Table 6 are not adequate for interpreting 
experimental results because they have low R2 values. 

 

 

 

Table 6 Study of intraparticle diffusion 

Column size (cm) qe / C  K1/ K2/Kdif. R2 

6 2.513  -0.0063 0.9401 

8 5.752 -0.0426  0.9532  

10 6.935 -0.0137  0.9657 

 

3.5. Regeneration study of adsorbent 

Adsorption capabilities are impacted by the frequency of 
adsorbent recycling After three cycles, their respective 
adsorption capacities are shown to be 21.56 mg/L, which is 

an 82.36%, 84.17%, and 88.62% reduction from their initial 
adsorption capacities (Teutli-Sequeira et al., 2013). The 
discoveries established that the adsorbent has strong cyclic 
adsorption presentation with a straightforward departure 
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characteristic following adsorption as a result of its 
superior magnetic characteristics, which may more 
competently happen the action necessities. 

4. Conclusion 

Azo dye from textile effluent was analysed together with its 
adsorption onto biochar produced from Annona reticulata. 
as well as the volatilization of chitosan molecules for 
efficient adsorption in packed bed columns and dye 
adsorption breakthrough data. The effects of bed height, 
flow velocity, and initial dye attentiveness with packed bed 
adsorption were examined along with the possibility of 
column regeneration and reuse. The parameters such as 
cradle volume, amount transmission region, bed 
consumption, and adsorbent convention were assessed 
using the break through curves. For all operating 
circumstances, the length of the unoccupied bed was 
shorter than the adsorption column, which grows as the 
mass transfer zone expands. Three different sized columns 
were utilized to explore Annona reticulata's ideal bed 
height. Hence, the adsorption capacity for a 6 cm column 
was 67.18%, an 8 cm column was 75.88%, and a 10 cm 
column was 94.37%. The adsorption models like the Bed 
Depth Service Thomas model and the Adam-Boharts 
models have been used to analyze the columns distinctive 
design characteristics. Using the origin software, the 
model's parameters have been determined. With R2 0.975, 
Thomas and Adam-Boharts models were determined to be 
the best adsorption models out of four to examine column 
performance. Adam-boharts and Thomas models' average 
errors were calculated to be 0.0154 and 0.0263, 
respectively. According to the findings, the adsorption 
capacity in a 10 cm column is higher under optimal 
conditions, with a range of 94.37%. The column efficiency 
as measured by bed capacity up to the breaking point, the 
mass transfer zone, and bed utilization also demonstrates 
a significant improvement in the adsorptions process. SEM, 
XRD, and FTIR were used to analyze the surface properties 
of biochar made from Annona reticulata and volatilized by 
chitosan. In the mean of azo dye removal, the intra particle 
diffusion indicated the linear connection with adsorbent. 
The regeneration capacity was established, and it 
demonstrated that the adsorbent functions effectively 
over three study cycles. 
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