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Abstract 

Flood management is the act of determining the 
frequency, magnitude, and duration of flood episodes 
based on the elements of a river basin that may be 
monitored. Floods endanger human lives and inflict 
significant property damage. It is essential for creating 
suitable flood risk management plans, lowering flood 
dangers, and evacuating people from flood-prone 
locations. Hydrodynamic methods for managing floods 
may be replaced with deep learning. Existing methods, 
however, concentrate on employing CNNs or RNNs to 
capture either the spatial or temporal flood patterns. 
Despite several advancements in flood control 
technology, less focus has been placed on minimising the 
damage that these systems do to the environment in 
order to boost their dependability and effectiveness. 
When the data is skewed, CNNs might overfit. We 
demonstrate how automated regularisation and 
uncertainty quantification allows Bayesian-CNN to get 
beyond these drawbacks. We have created a unique 
method to make use of the uncertainties that the 
Bayesian-CNN provides, which greatly improves 
performance on a big portion of the test data (around a 
6% increase in accuracy on 77% of test data). By 
projecting the data into a low-dimensional space using a 
nonlinear dimensionality reduction approach, we also 
provide an entirely novel rationale for the uncertainty. 

This dimensionality reduction makes it possible to 
visualize the test data for interpretation and displays the 
data's structure in a low-dimensional feature space. This 
paper discusses and makes use of uncertainties for flood 
control while demonstrating the benefits of Bayesian-CNN 
over state-of-the-art technology. As a consequence, the 
Bayesian-CNN obtains 95.7% F1-score, 99.3% F1-score, 
98.5% precision, and 98.3% recall. 

Keywords: Flood management, convolution neural 
network, environment damage, forecasting, deep learning 

1. Introduction 

Globally, the frequency of natural catastrophes has grown 
as a result of climate change. These natural occurrences, 
such as floods, droughts, fires, cyclones, hurricanes, and 
others, have significant effects on both developed and 
developing nations (Tsai et al., 2021). Recently, a lot of 
research has been done to create effective early warning 
systems and enhance disaster management techniques. 
Natural occurrences cannot be prevented, but efficient 
disaster management strategies may lessen the damage 
and the number of victims (Anbarasan et al., 2020). At 
each of the three phases of the event, many disaster 
management techniques are relevant (Gupta, 2020). The 
first phase, known as the pre-disaster stage, focuses on 
monitoring or an early warning system to inform the 
authorities of an impending natural catastrophe. The 
second phase, known as damage control during the event, 
and the third phase, known as post-disaster recovery, aim 
to restore normalcy (Shinta et al., 2020). The International 
Emergency Management System (IEMS) was formed in 
1993 to build up processes and principles for nations to 
adjust during a crisis scenario to face the problems of 
natural occurrences. The most recent communication and 
information technology techniques may be utilized to 
improve the relief effort following a natural catastrophe, 
according to the Millenium Development Goals (MDG) 
2015 (Kankanamge et al., 2020). With the use of new 
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technology, relief operations may be hastened to assist as 
many people as possible in a short amount of time. 
Therefore, constructing infrastructure that is robust to 
disasters and achieving good disaster management may 
benefit greatly from emerging technologies (Wu et al., 
2020). The area of catastrophe management procedure 
has a knowledge deficit. With the use of modern 
techniques, a special emphasis should be placed on 
climate change and the accompanying hazards. It is 
necessary to create advanced early warning systems 
based on the framework, algorithms, and ideas. The UN 
has set achieving catastrophe resilience as one of its main 
objectives to be accomplished by 2030 (Matgen et al., 
2007; Chen et al., 2020). This goal has been highlighted by 
several nations across the globe. It may be reached 
through using human resources, creating cutting-edge 
technology, and boosting flexibility via government. 
Infrastructure and capacities for resilience should 
concentrate on minimizing disasters and financial losses 
(Elhag and Abdurahman, 2020). The only way ahead is to 
quickly identify the risk and use the right technologies to 
reduce it. The decision-making process is critical in all 
phases of crisis management because it affects the 
success of rescue missions and events (Shafizadeh-
Moghadam et al., 2018). Big data analysis is required for 
this decision-making, which is more difficult than regular 
data analysis. This emphasizes the need for computational 
intelligence, real-time algorithms, and data extraction and 
visualization techniques (Cao et al., 2021). These 
algorithms must be able to make prompt judgments, 
examine various data formats, and extract the data. 
Computational intelligence is widely used in most flood 
management systems to make timely choices. The use of 
the computationally intelligent approach for flood control 
systems is gaining a lot of attention. The most recent 
computational techniques must be examined to pinpoint 
any gaps in flood control that still exist (Mohanty et al., 
2020). Applying artificial intelligence and machine learning 
algorithms for weather forecasts, flood-affected areas, 
damage identification, and other uses is a new trend in 
computational technology (Mishra and Arya, 2020). 
Researchers are also examining several methods for large-
scale data analysis that would resolve real-time problems 
with the least amount of processing time. 

• We suggest a new model to build on the 
Bayesian- CNN and call it the Modified Bayesian-
CNN to further enhance its performance. 

• The learnable parameter in the suggested 
adaptivity is random as opposed to the 
deterministic parameters described in the 
literature, which makes it innovative. As a result, 
the activation function is now selected from a set 
of similar functions using the probability 
distribution of parameters discovered via data 
analysis. 

This paper is structured as follows: In section 2, related 
works for flood management and the detection of 
environmental degradation using neural networks are 
presented. In Section 3, the proposed feature extractor 
and classifier are described in detail. In section 4, the 

performance of the proposed model is presented 
alongside a comparison. In Section 5, the overarching 
inference for the proposed model is presented. 

2. Related works 

The findings of studies using deep neural networks for 
time-series data are excellent, and they provide a clear 
vision for expanding the use of neural network designs in 
time-series data. Researchers have shown the application 
of neural networks for forecasting financial time series, 
taxi demand, and traffic speed. Since both tasks depend 
on changes in linked nodes in the network, traffic speed 
prediction and flood management are highly comparable 
tasks. 

Castangia et al. (2023) investigate the Transformer neural 
network (TNN)'s relevance to the task of flood forecasting. 
In comparison to recurrent networks, the Transformer has 
reduced computing expenses. The acquired forecasting 
errors are deemed acceptable by domain norms, 
confirming the Transformer's suitability for the job of 
flood forecasting. Chen et al. (2023) proposes a novel 
approach for the quick prediction of the danger of urban 
flooding by combining a numerical model with great 
computational efficiency with an LSTM artificial neural 
network model (LSTM+ANN) with high computational 
accuracy. The technique builds an LSTM neural network 
prediction model for each waterlogging location using 
simulation results from a numerical model of urban floods 
as the data driver. The focused time delay network 
(FTDN), layered recurrent Network (LRN), and nonlinear 
autoregressive network with exogenous inputs (NARX) 
networks are examples of dynamic networks. In (Wan et 
al., 2023), a comprehensive framework was presented to 
consistently characterize these networks. Using a 
convolutional neural network (CNN), (Wang et al., 2022) 
suggests a technique for forecasting the long-term 
temporal two-dimensional range and depth of flooding in 
all grid locations. The associated raster flood statistics 
were generated using a physical model, and the deep 
learning model was trained using a large rainfall dataset 
gathered from real flooding occurrences. A Deep Learning 
(DL) based flood management model is investigated and 
used for interpretation and prediction utilizing 
meteorological data in the (Chitra and Rajasekaran, 2022) 
proposed study to minimize computational and time 
complexity with high accuracy. The deep learning 
architecture used is called Gated Recurrent Networks 
(GRU), a variation of the recurrent neural network model 
that can efficiently employ historical data knowledge for 
prediction and is quicker in terms of training speed. In 
(Linh et al., 2021), which examined the potential of a 
wavelet neural network (WNN) hybrid model to predict 
the maximum monthly discharge of a specific area, it was 
discovered that the WNN hybrid machine learning model 
consistently outperformed both the standalone artificial 
neural network (ANN) model and the multiple linear 
regression model in terms of performance in predicting 
flood discharges. 

There are fewer papers accessible for the flood 
management process when older techniques of flood 
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management are examined. High complexity and 
comparatively poor prediction accuracy continue to 
plague statistical formula-based and numerical 
approaches. The asymmetry of the wind profile and the 
inability of the previous temporal-spatial wind speed 
model to accommodate many wind speed measurements 
were also issues that went unaddressed. As a result, a 
new deep neural network is built, as described below. 

3. Proposed methodology 

In this research, we developed a unique Bay_CNN method 
for detecting road damage in Flooding Management. The 
Bay_CNN method was developed to accurately categorize 
defective regions into their respective classes. The 
Bay_CNN method does this by using a preprocessor, a 3D-
CNN-based feature extractor, and a Bayesian-CNN-based 
classification, as seen in Figure 1. 

 

Figure 1. Block diagram for cyclone prediction 

3.1. Dataset description 

The Fluvial, Plumvial, and Groundwater Flood Damage 
Database HOWAS 21 includes object-specific flood 
damage data. The databases include different flood risk, 
exposure, susceptibility, and direct palpable damage 
characteristics for properties across several economic 
sectors. Six sectors are used by the database to classify 
object-specific damage: 

• Private residences; 

• The commercial and industrial sectors; 

• Public municipal infrastructure (administration, 
social services, education, etc.);  

• Agricultural structures;  

• Wooded and agricultural land; 

• Public thoroughfares, such as highways and other 
forms of transportation; 

• Waterways and hydraulic features (especially 
those used for flood defense);  

• Urban green areas. 

HOWAS 21 includes a wide range of variables such as 
hazard characteristics (e.g., flow velocity, flood duration, 
and contamination), vulnerability parameters such as 
building characteristics (e.g., building shape, year of 
construction), precautionary measures, warning lead time, 
and flood consequences (e.g., absolute and relative 
damage to flood-affected objects, economic damage due 
to business interruption in the commercial sector). 

3.2. Preprocessing of data 

Preprocessing involves picture enhancement and 
denoising. The first method is carried out by computing 
the grey coefficient in the space domain and then 
correcting the coefficient of the image transformation 
before an inverse transformation is used to draw 
attention to the image flaws. The latter tries to suppress 
impulsive sounds, and salt-and-pepper noises, and to 
reduce picture blurring; while doing so, significant image 
structures should be retained. The fundamental unit of 
image accuracy and heterogeneity detection sensitivity is 
the grey level. The categorization is more favorable the 
higher the grey level resolution of the image and the 
richer the image information. 

A single frame's Signal Noise Ratio (SNR) 
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Since then, the SNR has increased by m times. The key to 
image blurring is that the image is averaged or integrally 
processed such that it may be recovered by an inverse 
process. The second-order differential's edge placement 
capability is greater, and the sharpening impact is better 
than the first-order differential. The differential operation 
may emphasize picture features to make the image 
sharper. Define a discrete form of the second-order 
differential, then create a filter template based on this 
form to convolve with the image. This is the fundamental 
way to use the second-order differential operator. The 
rotation invariance of an isotropic filter means that its 
response is unaffected by the direction of an abrupt shift 
in the image. The features (mutations) that can be 
recognized at a specific place in the initial image may thus 
still be detected after the original image has been rotated 
by 90 degrees. 

3.3. Feature extraction 

Following preprocessing, the following characteristics of 
filtered damaged pictures are extracted. Some complex 
characteristics, including hot bags, gas tungsten 
components, and ray effects, have an impact on the 
extraction of damaged parts. Additionally, a data-driven 
model's output is significantly influenced by the dataset it 
is driven. As a result, the multi-dimensional feature 
extraction layer is recommended as the model's topmost 
layer. This layer may choose the variables that are best 
connected with the defect detection track from the 
attribute dimension. This layer may examine the most 
closely linked time window to the target timestamp from 
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the temporal dimension. This layer's goal is to minimize 
the size of the input variables and get rid of extraneous 
noise data, which may boost the efficiency and accuracy 
of predictions in the layers below. In this case, the ideal 
period is chosen using the Auto Correlation Function (ACF) 
and Partial Auto Correlation Function (PACF). In statistics, 
the Pearson Correlation (PC) between values of the 
process at various periods is the autocorrelation of a 
random process. Equation (5) is used to get the PCC for 
the first N -k values L1 ={lt1; lt2,….., lt(N-k), and the final N 
- k values L2={ltk, lt(kC1),…., ltN}, respectively. 
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where L1 and L2 are the averages of the most recent N-k 
values, respectively. The equation (60 for the 
autocorrelation coefficient at time lag k may be given by 
omitting the difference between L1 and L2 
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The partial autocorrelation coefficient of time lag k, given 
the steel defects, tracks L= {lt1, lt2…..ltm}, relates to the 
effect of lt-k on lt after eliminating k - 1 random variables.  

Equation (7) provides the PACF, 

( )( ) [ ]
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The initial features F=f1, f2, fc will change to F’= {f1, 
f2….fd} where (d ≤c), once the multi-dimensional feature 
selection layer is applied, and the most correlated time 
range k is also chosen. 

3.4. Classification using Bayesian-CNN 

Short-term flood damage identification is still a difficult 
job to complete despite several advancements in artificial 
intelligence, machine learning, and statistical weather 
prediction models. As a result, Figure 2 illustrates the 
implementation of stochastic adaptive activation on 
Bayesian-CNN. 

 

Figure 2. Architecture of Bayesian_CNN for the classification 

process 

The parameters of CNNs are filters or kernels that must be 
learned during training. These kernels are represented by 

probability distributions in the case of a Bayesian CNN. 

These filters or kernels, which are of form hwd, are 
subjected to the reparameterization procedure while the 
Bayesian-CNN is being trained. They are generated using 
the following equation from the variational posterior 

q(w|): 

( )( ), , , , , , , ,1 .h w d h w d h w d h w dw log exp = + + ς  (8) 

where the filter's height, breadth, and depth are h, w, and 
d, respectively, and stands for point-wise multiplication. 
Due to the probability distribution across the weights, 
Bayesian deep learning allows us to quantify the 
prediction's uncertainty. Using the predictive posterior 

probability distribution as an expectation: Eq(w|)[P(y|x,w) 
gives us the most probable prediction of the unknown 

data x. The predicted posterior probability distribution's 

variance: Varq(w|)[P(y|x,w)]quantifies the uncertainties. 
Aleatoric and epistemic uncertainties are the two 
different categories of uncertainty. The total of these two 
uncertainty is the variance of the predicted posterior 
probability distribution. 
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The variance of the predicted posterior probability 
distribution is used to calculate the uncertainties. 
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The aforementioned term, which is derived from a specific 
application of the law of total variance, represents the 
sum of aleatoric and epistemic uncertainty. The equation 

of the aleatoric uncertainty is: ( )
=
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where, pn = p(wn) = softmax{fwt(x)}. The formula for the 
epistemic uncertainty is as follows: 
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Eq. 11 may be used to determine the variance of the 
predictive distribution, which tells us how confident the 
network is in its ability to forecast an image. Exploding or 
disappearing gradients are possibilities when attempting 
to quantify uncertainty. As a result, a perceptron's 
learning capabilities and training complexity trade-off in a 
way that may be optimized. This is accomplished by 
modifying the Bayesian CNN and adding a stochastic 
activation function that can be learned and adjusted to 
the training set. A probabilistic parameter that is learned 
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during the neural network's training is a part of this 
adaptive activation function. To do this, the activation 
functions of a Bayesian-CNN are changed by the addition 
of a trainable probabilistic hyperparameter (∝) meter (α). 
Below are the specifics of the suggested adaptive 
activation function: 

( )( )1k
kf x  −

 (12) 

Where,  

( )1 ' 1k k k k
kf x w x b− −= +  (13) 

 is the activation function, α is the trainable probabilistic 

hyperparameter, w and b are the weight and bias of the 
kth layer and xk−1 is the results of the neural network's 
previous layer. The loss function F is changed to include 

the extra stochastic parameter  to integrate the 
stochastic adaptive activation. more particularly, the 

collection of trainable network characteristics w = {w,b} 

in F is extended to w = {w,b,}. So, the modified loss 

function F(D,) is  
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As with the parameters w, the parameter α is also 
learned. The posterior distribution for the parameter α is 
determined using Bayes' rule under the assumption that 
the parameter has a prior distribution (a mixture of 

Gaussian). A Gaussian variational posterior q with a 

mean of μ and a standard deviation of  comes the 
closest to representing this posterior distribution. 
Gradient descent is used to update this variational 
posterior's parameters as, 

1m m mF    + = −   (15) 

and 

    + = − 1m m mF  (16) 

where the pace of learning is γ. For the fully connected 

layers in this study, an adaptive ReLu provided by (δ) 
max (0, δx) is used. 

4. Performance analysis 

Tables 1 and 2 lists the total number of damage reports 
per economic sector included in HOWAS 21 as well as the 
average data availability rate for non-mandatory variables 
under the minimal standards for data inclusion into 
HOWAS 21. 

 

Table 1. Dataset description 

Sector Total number of images Fraction of the total number Average data 

Private households 4882 57.1 42 

Commercial and Industrial 2905 33.9 21.8 

Public thoroughfare, road, and transport 

infrastructure 
246 2.9 51.7 

Watercourses and hydraulic structure 525 6.1 43.5 

Agricultural and forested land 137 - - 

Urban open spaces 237 - - 

Total 8932 100 100 

 

 

Figure 3(a). Comparison of the Bayesian-CNN system for Training 

 

Figure 3(b). Comparison of the Bayesian-CNN system for Testing 

 

Figure 4(a). Comparison of Bayesian-CNN system for Training 

 

Figure 4(b). Comparison of the Bayesian-CNN system for Testing 
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In Figures 3(a) and 3(b) simulation was run with a split of 
the data into 80:20, and different numbers of images from 
100, 200, 300, 400, and 500 were utilized as inputs. Next, 
the comparison is evaluated as seen in Figure 3. As a 
consequence, during 80% of the training, the established 

Bayesian-CNN obtains 99.4% accuracy, 97.4% precision, 
94.6% recall, and 95.3% F1-score. Additionally, for 20% of 
testing, it scores 98.4% accuracy, 97.3% precision, 94.3% 
recall, and 95.3% F1-score (Tables 3 and 4). 

 

Table 2. Damage classifier outcome of Bayesian-CNN system for 80:20 

Number of images Accuracy Precn Recau Fscore 

Training (80%) 

100 98 96 93 95.5 

200 99 97 95 94.8 

300 99.5 98 94 96.2 

400 99.7 97.5 95.5 95.1 

500 99.2 97.9 94.2 94.9 

Average 99.4 97.4 94.6 95.3 

Testing (20%) 

100 98.6 96.5 93.5 94.8 

200 97.9 97.8 94.8 95.7 

300 99.2 97.2 95.2 95.5 

400 98.8 97.6 93.1 95.2 

500 97.5 98.1 94.6 95.1 

Average 98.4 97.3 94.3 95.3 

Table 3. Damage classifier outcome of Bayesian-CNN system for 70:30 

Number of images Accuracy Precn Recau Fscore 

Training (70%) 

100 98.2 96.8 95.8 97.2 

200 97.8 97.2 97.2 96.5 

300 99.1 97.5 96.5 96.9 

400 98.9 97.9 96.9 96.3 

500 98.6 97.7 96.1 97.1 

Average 98.4 97.3 96.4 96.8 

Testing (30%) 

100 98.2 97.8 93.5 94.8 

200 98.8 97.2 94.8 95.7 

300 99.0 97.5 95.2 95.5 

400 97.9 96.9 93.1 95.2 

500 98.7 97.1 94.6 95.1 

Average 98.6 97.3 94.3 95.3 

Table 4. Comparative analysis between existing and proposed methods 

Methods Accuracy Precn Recau Fscore 

TNN [14] 91 90 93 92 

LSTM+ANN [15] 92 89 91 90 

GRU [18] 90 87 85 83 

WNN [19] 89 88 86 82 

Bayesian-CNN [proposed] 99.3 98.5 96.4 95.7 

 

 

Figure 5. Comparison between existing and proposed methods 

The data is divided into two halves of 70:30, and 
simulations were run with varying numbers of input 
images from 100, 200, 300, 400, and 500 as shown in 
Figures 4(a) and 4(b). Next, the comparison is evaluated as 
seen in Figure 4. As a consequence, during 70% of the 
training, the established Bayesian-CNN obtains 98.4% 
accuracy, 97.3% precision, 96.4% recall, and 96.8% F1-
score. Additionally, for 20% of testing, it scores 98.6% 
accuracy, 97.3% precision, 94.3% recall, and 95.3% F1-
score. 

Figure 5 defines the overall comparative analysis between 
existing and proposed methods. The proposed Bayesian-
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CNN method demonstrates exceptional performance, 
achieving the highest accuracy (99.3%) among all the 
methods. It also showcases impressive precision (98.5%), 
recall (96.4%), and F-score (95.7%) values. These results 
highlight the effectiveness of the Bayesian-CNN approach 
in accurately classifying the task at hand. The high 
accuracy indicates that a significant proportion of the 
predictions made by the model are correct, while the high 
precision and recall values suggest a good balance 
between identifying true positive instances and 
minimizing false negatives. The impressive F-score reflects 
the harmonic mean of precision and recall, capturing the 
overall effectiveness of the model. Overall, the proposed 
Bayesian-CNN method showcases superior performance 
and holds promise for the given task compared to the 
other evaluated methods. 

5. Conclusion 

We were able to demonstrate the effectiveness of 
Bayesian-CNN for damage classification by utilizing the 
framework we developed for assessing environmental 
damage. Our classification model demonstrated a high 
degree of adaptability that may be employed throughout 
a spectrum of hurricane and other coastal hazard 
occurrences, given the relatively few and wide range of 
images used for the input data set. 

5.1. Findings and implications 

The findings of the proposed model demonstrate the 
model's capacity to quickly and accurately identify 
damaged sections of buildings and structures from test 
data, which is essential for more accurate damage 
assessment. It yields benefits including reduced risk of 
harm to society, human health, economic activities, 
infrastructure, cultural heritage, and the environment. 

5.2. Limitation of proposed method 

A good physical understanding of the hydrologic process 
can aid in the selection of the input vector and the design 
of a more efficient network which will leads to better 
results. But our proposed method is not concentrated on 
hydrologic process. 

5.3. Future enhancement 

Further studies exploring the use of transfer learning 
approaches to develop classification and object 
identification models trained on post-disaster images may 
enhance our work. The amount of time needed for 
damage assessment would be greatly decreased by using 
these machine-learning models. Therefore, the hours to 
days needed to calculate the entire damage sustained 
may be avoided if relief plans were developed in the 
aftermath of a future coastal catastrophe. As a conse-
quence of the direct deployment of artificial intelligence 
technologies such as our categorization and object 
identification algorithms, damaged coastal communities 
would be able to obtain more accurate and timely help. 
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