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ABSTRACT 

Flood management is the act of determining the frequency, magnitude, and duration of 

flood episodes based on the elements of a river basin that may be monitored. Floods endanger 

human lives and inflict significant property damage. It is essential for creating suitable flood risk 

management plans, lowering flood dangers, and evacuating people from flood-prone locations. 

Hydrodynamic methods for managing floods may be replaced with deep learning. Existing 

methods, however, concentrate on employing CNNs or RNNs to capture either the spatial or 
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temporal flood patterns. Despite several advancements in flood control technology, less focus 

has been placed on minimising the damage that these systems do to the environment in order to 

boost their dependability and effectiveness. When the data is skewed, CNNs might overfit. We 

demonstrate how automated regularisation and uncertainty quantification allows Bayesian-CNN 

to get beyond these drawbacks. We have created a unique method to make use of the 

uncertainties that the Bayesian-CNN provides, which greatly improves performance on a big 

portion of the test data (around a 6% increase in accuracy on 77% of test data). By projecting the 

data into a low-dimensional space using a nonlinear dimensionality reduction approach, we also 

provide an entirely novel rationale for the uncertainty. This dimensionality reduction makes it 

possible to visualize the test data for interpretation and displays the data's structure in a low-

dimensional feature space. This paper discusses and makes use of uncertainties for flood control 

while demonstrating the benefits of Bayesian-CNN over state-of-the-art technology. As a 

consequence, the Bayesian-CNN obtains 95.7% F1-score, 99.3% F1-score, 98.5% precision, and 

98.3% recall. 

Keywords: Flood management, Convolution Neural Network, Environment damage, 

Forecasting, Deep learning,  

1. Introduction 

Globally, the frequency of natural catastrophes has grown as a result of climate change. 

These natural occurrences, such as floods, droughts, fires, cyclones, hurricanes, and others, have 

significant effects on both developed and developing nations [1]. Recently, a lot of research has 

been done to create effective early warning systems and enhance disaster management 

techniques. Natural occurrences cannot be prevented, but efficient disaster management 

strategies may lessen the damage and the number of victims [2]. At each of the three phases of 

the event, many disaster management techniques are relevant [3]. The first phase, known as the 

pre-disaster stage, focuses on monitoring or an early warning system to inform the authorities of 

an impending natural catastrophe. The second phase, known as damage control during the event, 

and the third phase, known as post-disaster recovery, aim to restore normalcy [4]. The 

International Emergency Management System (IEMS) was formed in 1993 to build up processes 

and principles for nations to adjust during a crisis scenario to face the problems of natural 

occurrences. The most recent communication and information technology techniques may be 



 

 

utilized to improve the relief effort following a natural catastrophe, according to the Millenium 

Development Goals (MDG) 2015 [5]. With the use of new technology, relief operations may be 

hastened to assist as many people as possible in a short amount of time.  Therefore, constructing 

infrastructure that is robust to disasters and achieving good disaster management may benefit 

greatly from emerging technologies [6]. The area of catastrophe management procedure has a 

knowledge deficit. With the use of modern techniques, a special emphasis should be placed on 

climate change and the accompanying hazards. It is necessary to create advanced early warning 

systems based on the framework, algorithms, and ideas. The UN has set achieving catastrophe 

resilience as one of its main objectives to be accomplished by 2030 [7,8]. This goal has been 

highlighted by several nations across the globe. It may be reached through using human 

resources, creating cutting-edge technology, and boosting flexibility via government. 

Infrastructure and capacities for resilience should concentrate on minimizing disasters and 

financial losses [9]. The only way ahead is to quickly identify the risk and use the right 

technologies to reduce it. The decision-making process is critical in all phases of crisis 

management because it affects the success of rescue missions and events [10]. Big data analysis 

is required for this decision-making, which is more difficult than regular data analysis. This 

emphasizes the need for computational intelligence, real-time algorithms, and data extraction and 

visualization techniques [11]. These algorithms must be able to make prompt judgments, 

examine various data formats, and extract the data. Computational intelligence is widely used in 

most flood management systems to make timely choices. The use of the computationally 

intelligent approach for flood control systems is gaining a lot of attention. The most recent 

computational techniques must be examined to pinpoint any gaps in flood control that still exist 

[12].  Applying artificial intelligence and machine learning algorithms for weather forecasts, 

flood-affected areas, damage identification, and other uses is a new trend in computational 

technology [13]. Researchers are also examining several methods for large-scale data analysis 

that would resolve real-time problems with the least amount of processing time. 

• We suggest a new model to build on the Bayesian- CNN and call it the Modified 

Bayesian-CNN to further enhance its performance.  

• The learnable parameter in the suggested adaptivity is random as opposed to the 

deterministic parameters described in the literature, which makes it innovative. As a 



 

 

result, the activation function is now selected from a set of similar functions using the 

probability distribution of parameters discovered via data analysis. 

This paper is structured as follows: In section 2, related works for flood management and the 

detection of environmental degradation using neural networks are presented. In Section 3, the 

proposed feature extractor and classifier are described in detail. In section 4, the performance of 

the proposed model is presented alongside a comparison. In Section 5, the overarching inference 

for the proposed model is presented. 

2. Related works 

The findings of studies using deep neural networks for time-series data are excellent, and 

they provide a clear vision for expanding the use of neural network designs in time-series data. 

Researchers have shown the application of neural networks for forecasting financial time series, 

taxi demand, and traffic speed. Since both tasks depend on changes in linked nodes in the 

network, traffic speed prediction and flood management are highly comparable tasks. 

In [14] investigate the Transformer neural network (TNN)'s relevance to the task of flood 

forecasting. In comparison to recurrent networks, the Transformer has reduced computing 

expenses. The acquired forecasting errors are deemed acceptable by domain norms, confirming 

the Transformer's suitability for the job of flood forecasting. In [15] proposes a novel approach 

for the quick prediction of the danger of urban flooding by combining a numerical model with 

great computational efficiency with an LSTM artificial neural network model (LSTM+ANN) 

with high computational accuracy. The technique builds an LSTM neural network prediction 

model for each waterlogging location using simulation results from a numerical model of urban 

floods as the data driver. The focused time delay network (FTDN), layered recurrent Network 

(LRN), and nonlinear autoregressive network with exogenous inputs (NARX) networks are 

examples of dynamic networks. In [16], a comprehensive framework was presented to 

consistently characterize these networks. Using a convolutional neural network (CNN), [17] 

suggests a technique for forecasting the long-term temporal two-dimensional range and depth of 

flooding in all grid locations. The associated raster flood statistics were generated using a 

physical model, and the deep learning model was trained using a large rainfall dataset gathered 

from real flooding occurrences. A Deep Learning (DL) based flood management model is 



 

 

investigated and used for interpretation and prediction utilizing meteorological data in the [18] 

proposed study to minimize computational and time complexity with high accuracy. The deep 

learning architecture used is called Gated Recurrent Networks (GRU), a variation of the 

recurrent neural network model that can efficiently employ historical data knowledge for 

prediction and is quicker in terms of training speed. In [19], which examined the potential of a 

wavelet neural network (WNN) hybrid model to predict the maximum monthly discharge of a 

specific area, it was discovered that the WNN hybrid machine learning model consistently 

outperformed both the standalone artificial neural network (ANN) model and the multiple linear 

regression model in terms of performance in predicting flood discharges. 

There are fewer papers accessible for the flood management process when older 

techniques of flood management are examined. High complexity and comparatively poor 

prediction accuracy continue to plague statistical formula-based and numerical approaches. The 

asymmetry of the wind profile and the inability of the previous temporal-spatial wind speed 

model to accommodate many wind speed measurements were also issues that went unaddressed. 

As a result, a new deep neural network is built, as described below. 

3. Proposed methodology 

In this research, we developed a unique Bay_CNN method for detecting road damage in 

Flooding Management. The Bay_CNN method was developed to accurately categorize defective 

regions into their respective classes. The Bay_CNN method does this by using a preprocessor, a 

3D-CNN-based feature extractor, and a Bayesian-CNN-based classification, as seen in figure-1.  
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Figure 1. Block diagram for cyclone prediction 

Dataset description 

The Fluvial, Plumvial, and Groundwater Flood Damage Database HOWAS 21 includes object-

specific flood damage data. The databases include different flood risk, exposure, susceptibility, 

and direct palpable damage characteristics for properties across several economic sectors. Six 

sectors are used by the database to classify object-specific damage: 

• Private residences;  

• The commercial and industrial sectors; 

• Public municipal infrastructure (administration, social services, education, etc.);  

• Agricultural structures;  

• Wooded and agricultural land; 

• Public thoroughfares, such as highways and other forms of transportation; 

• Waterways and hydraulic features (especially those used for flood defense);  

• Urban green areas. 

HOWAS 21 includes a wide range of variables such as hazard characteristics (e.g., flow velocity, 

flood duration, and contamination), vulnerability parameters such as building characteristics 

(e.g., building shape, year of construction), precautionary measures, warning lead time, and flood 

consequences (e.g., absolute and relative damage to flood-affected objects, economic damage 

due to business interruption in the commercial sector). 

3.1 Preprocessing of data 

Preprocessing involves picture enhancement and denoising. The first method is carried 

out by computing the grey coefficient in the space domain and then correcting the coefficient of 

the image transformation before an inverse transformation is used to draw attention to the image 

flaws. The latter tries to suppress impulsive sounds, and salt-and-pepper noises, and to reduce 

picture blurring; while doing so, significant image structures should be retained. The 

fundamental unit of image accuracy and heterogeneity detection sensitivity is the grey level. The 



 

 

categorization is more favorable the higher the grey level resolution of the image and the richer 

the image information. 

A single frame's Signal Noise Ratio (SNR) 

SNR=
𝑥𝑠

𝜎𝑛
. 𝑥𝑛         (1) 

The image signal is denoted by 𝑥𝑠, the noise by 𝑥𝑛, and the variance of xn by 𝜎𝑛. The 

frame's total SNR is 

SNR = 
∑ 𝑥𝑠𝑖𝑚

𝑖=1

∑ 𝑥𝑛𝑖𝑚
𝑖=1

         (2) 

 ∑ 𝑥𝑛𝑖𝑚
𝑖=1  =m 𝜎𝑛        (3) 

SNR= 
𝑚𝑥𝑠

𝑚𝜎𝑛
 = 𝑀𝑠𝑛𝑟        (4) 

Since then, the SNR has increased by m times. The key to image blurring is that the 

image is averaged or integrally processed such that it may be recovered by an inverse process. 

The second-order differential's edge placement capability is greater, and the sharpening impact is 

better than the first-order differential. The differential operation may emphasize picture features 

to make the image sharper. Define a discrete form of the second-order differential, then create a 

filter template based on this form to convolve with the image. This is the fundamental way to use 

the second-order differential operator. The rotation invariance of an isotropic filter means that its 

response is unaffected by the direction of an abrupt shift in the image. The features (mutations) 

that can be recognized at a specific place in the initial image may thus still be detected after the 

original image has been rotated by 90 degrees. 

3.2 Feature extraction  

Following preprocessing, the following characteristics of filtered damaged pictures are 

extracted. Some complex characteristics, including hot bags, gas tungsten components, and ray 

effects, have an impact on the extraction of damaged parts. Additionally, a data-driven model's 

output is significantly influenced by the dataset it is driven. As a result, the multi-dimensional 

feature extraction layer is recommended as the model's topmost layer. This layer may choose the 

variables that are best connected with the defect detection track from the attribute dimension. 



 

 

This layer may examine the most closely linked time window to the target timestamp from the 

temporal dimension. This layer's goal is to minimize the size of the input variables and get rid of 

extraneous noise data, which may boost the efficiency and accuracy of predictions in the layers 

below. In this case, the ideal period is chosen using the Auto Correlation Function (ACF) and 

Partial Auto Correlation Function (PACF). In statistics, the Pearson Correlation (PC) between 

values of the process at various periods is the autocorrelation of a random process. Equation (5) 

is used to get the PCC for the first N -k values L1 ={lt1; lt2,….., lt(N-k), and the final N - k 

values L2={ltk, lt(kC1),…., ltN}, respectively. 

Β1 = 
∑ (𝑙𝑖−𝐿1)(𝑙𝑖+𝑘−𝐿2)𝑁−𝐾

𝑖=1

√∑ (𝑙𝑖−𝐿1)√∑ (𝑙𝑖−𝐿2)𝑁−𝐾
𝑖=1

𝑁−𝐾
𝑖=1

   (5) 

where L1 and L2 are the averages of the most recent N-k values, respectively. The equation (60 

for the autocorrelation coefficient at time lag k may be given by omitting the difference between 

L1 and L2 

ACF = 
∑ (𝑙𝑖−𝐿1)(𝑙𝑖+𝑘−𝐿1)𝑁−𝐾

𝑖=1

(𝑙𝑖−𝐿1)2     (6) 

The partial autocorrelation coefficient of time lag k, given the steel defects, tracks 

L={lt1,lt2…..ltm}, relates to the effect of lt-k on lt after eliminating k - 1 random variables.  

Equation (7) provides the PACF, 

PACF =
𝐸 [(𝑙𝑡−𝐸𝑙𝑡)(𝑙𝑡−𝑘−𝐸𝑙𝑡−𝑘)]

𝐸[𝑙𝑡−𝑘−𝐸𝑙𝑡−𝑘)]
    (7) 

The initial features F=f1,f2,…fc will change to F’={f1,f2….fd} where (d ≤c), once the 

multi-dimensional feature selection layer is applied, and the most correlated time range k is also 

chosen. 

3.3 Classification using Bayesian-CNN 

Short-term flood damage identification is still a difficult job to complete despite several 

advancements in artificial intelligence, machine learning, and statistical weather prediction 

models. As a result, figure 2 illustrates the implementation of stochastic adaptive activation on 

Bayesian-CNN. 



 

 

 

Figure 2. Architecture of Bayesian_CNN for the classification process 

The parameters of CNNs are filters or kernels that must be learned during training. These 

kernels are represented by probability distributions in the case of a Bayesian CNN. These filters 

or kernels, which are of form ℎ × 𝑤 × 𝑑, are subjected to the reparameterization procedure while 

the Bayesian-CNN is being trained. They are generated using the following equation from the 

variational posterior 𝑞(𝑤|𝜃): 

𝑤ℎ,𝑤,𝑑 = 𝜇ℎ,𝑤,𝑑 + 𝑙𝑜𝑔 (1 + 𝑒𝑥𝑝(𝜌ℎ,𝑤,𝑑)) . 𝜖ℎ,𝑤,𝑑  (8) 

where the filter's height, breadth, and depth are h, w, and d, respectively, and stands for point-

wise multiplication. Due to the probability distribution across the weights, Bayesian deep 

learning allows us to quantify the prediction's uncertainty. Using the predictive posterior 

probability distribution as an expectation: 𝐸𝑞(𝑤|𝜃) [𝑃(𝑦′|𝑥′, 𝑤) gives us the most probable 

prediction of the unknown data 𝑥′. The predicted posterior probability distribution's variance: 

𝑉𝑎𝑟𝑞(𝑤|𝜃)[𝑃(𝑦′′|𝑥′′, 𝑤) ] quantifies the uncertainties. Aleatoric and epistemic uncertainties are 

the two different categories of uncertainty. The total of these two uncertainty is the variance of 

the predicted posterior probability distribution. 

𝑉𝑎𝑟𝑞(𝑤|𝜃)[𝑃(𝑦′′|𝑥′′, 𝑤) = 𝑎𝑙𝑒𝑎𝑡𝑜𝑟𝑖𝑐 + 𝑒𝑝𝑖𝑠𝑡𝑒𝑚𝑖𝑐  (9) 



 

 

The variance of the predicted posterior probability distribution is used to calculate the 

uncertainties. 

𝑉𝑎𝑟𝑞(𝑤|𝜃)[𝑃(𝑦′′|𝑥′′, 𝑤) = 𝐸𝑞(𝑤|𝜃)[𝑦 − 𝐸[𝑦])2 = ∫ [[𝑑𝑖𝑎𝑔 (𝐸
𝑝(𝑦′

|𝑥′, 𝑤)
[𝑦′]) −

𝑛

𝛿𝑣

𝐸
𝑝(𝑦′

|𝑥′, 𝑤)
[𝑦′]. 𝑘      (10) 

The aforementioned term, which is derived from a specific application of the law of total 

variance, represents the sum of aleatoric and epistemic uncertainty. The equation of the aleatoric 

uncertainty is:  
1

𝑁
∑ 𝑑𝑖𝑎𝑔(𝑝′𝑛

𝑁
𝑛=1 ) − 𝑝′𝑛𝑝′𝑛

𝑇, where, 𝑝′𝑛 = 𝑝(𝑤′
𝑛) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥{𝑓𝑤′

𝑡(𝑥’)}. The 

formula for the epistemic uncertainty is as follows:  
1

𝑁
∑ (𝑝′

𝑛
− 𝑝′)(𝑝′

𝑛
− 𝑝′)𝑇𝑁

𝑛=1 , Where, 𝑝′
𝑛

=

𝑝(𝑤′
𝑛) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥{𝑓𝑤′

𝑡(𝑥’)} and 𝑝′ = ∑
𝑝′𝑛

𝑛
𝑁
𝑛=1  N. The general formula for calculating 

variance is: 

𝑉𝑎𝑟𝑞(𝑤|𝜃)[𝑃((𝑦′|𝑥′, 𝑤)] = [
1

𝑁
∑ 𝑑𝑖𝑎𝑔(𝑝′

𝑛
) − 𝑝′

𝑛
𝑝′

𝑛

𝑇
] +𝑁

𝑛=1 [
1

𝑁
∑ (𝑝′

𝑛
− 𝑝′)(𝑝′

𝑛
− 𝑝′)𝑇]𝑁

𝑛=1 (11) 

Eq. 11 may be used to determine the variance of the predictive distribution, which tells us how 

confident the network is in its ability to forecast an image. Exploding or disappearing gradients 

are possibilities when attempting to quantify uncertainty. As a result, a perceptron's learning 

capabilities and training complexity trade-off in a way that may be optimized. This is 

accomplished by modifying the Bayesian CNN and adding a stochastic activation function that 

can be learned and adjusted to the training set. A probabilistic parameter that is learned during 

the neural network's training is a part of this adaptive activation function. To do this, the 

activation functions of a Bayesian-CNN are changed by the addition of a trainable probabilistic 

hyperparameter (∝) meter (α). Below are the specifics of the suggested adaptive activation 

function: 

𝜎(𝛼𝑓𝑘(𝑥𝑘−1))     (12) 

Where,  

𝑓𝑘(𝑥𝑘−1) = 𝑤′𝑘𝑥𝑘−1 + 𝑏𝑘   (13) 

𝜎 is the activation function 



 

 

α is the trainable probabilistic hyperparameter  

𝑤′ and 𝑏 are the weight and bias of the 𝑘𝑡ℎ layer and 𝑥𝑘−1 is the results of the neural network's 

previous layer. The loss function 𝐹 is changed to include the extra stochastic parameter ∝ to 

integrate the stochastic adaptive activation. more particularly, the collection of trainable network 

characteristics 𝑤 = {𝑤′, 𝑏} in 𝐹 is extended to 𝑊 = {𝑤′𝑏, ∝}. So, the modified loss function 

𝐹′(𝐷, 𝜃) is  

𝐹′(𝐷, 𝜃) = ∑ [log 𝑞 (𝑛
𝑖=1 (𝑊(𝑖)|𝜃) − 𝑙𝑜𝑔𝑃(𝑊(𝑖)) − 𝑙𝑜𝑔𝑃(𝐷|𝑊(𝑖))  (14) 

As with the parameters 𝑤, the parameter 𝛼 is also learned. The posterior distribution for the 

parameter 𝛼 is determined using Bayes' rule under the assumption that the parameter has a prior 

distribution (a mixture of Gaussian). A Gaussian variational posterior 𝑞∝ with a mean of 𝜇𝛼 and 

a standard deviation of 𝜎𝛼 comes the closest to representing this posterior distribution. Gradient 

descent is used to update this variational posterior's parameters as, 

𝜇𝛼
𝑚+1 = 𝜇𝛼

𝑚 − 𝛾∇𝜇𝛼𝐹𝑚    (15) 

and 

𝜎𝛼
𝑚+1 = 𝜎𝛼

𝑚 − 𝛾∇𝛼𝐹𝑚   (16) 

where the pace of learning is 𝛾. For the fully connected layers in this study, an adaptive ReLu 

provided by 𝜎(𝛿)max (0, 𝛿𝑥) is used. 

4. Performance analysis 

Table 1 lists the total number of damage reports per economic sector included in HOWAS 21 as 

well as the average data availability rate for non-mandatory variables under the minimal 

standards for data inclusion into HOWAS 21. 

Table 1. Dataset description 

Sector Total number of 

images 

Fraction of the total 

number 

Average data 

Private households 4882 57.1 42 



 

 

Commercial and 

Industrial 

2905 33.9 21.8 

Public thoroughfare, 

road, and transport 

infrastructure 

246 2.9 51.7 

Watercourses and 

hydraulic structure 

525 6.1 43.5 

Agricultural and 

forested land 

137 - - 

Urban open spaces 237 - - 

total 8932 100 100 

 

 

 

Table 2. Damage classifier outcome of Bayesian-CNN system for 80:20 

Number of 

images 
𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍𝒍 𝑭𝒔𝒄𝒐𝒓𝒆 

Training (80%)  

100 98 96 93 95.5 

200 99 97 95 94.8 

300 99.5 98 94 96.2 

400 99.7 97.5 95.5 95.1 

500 99.2 97.9 94.2 94.9 

Average 99.4 97.4 94.6 95.3 

Testing (20%)  

100 98.6 96.5 93.5 94.8 

200 97.9 97.8 94.8 95.7 

300 99.2 97.2 95.2 95.5 

400 98.8 97.6 93.1 95.2 

500 97.5 98.1 94.6 95.1 

Average 98.4 97.3 94.3 95.3 

 



 

 

 

Figure 3(a).  Comparison of the Bayesian-CNN system for Training 

 

 

Figure 4(b). Comparison of the Bayesian-CNN system for Testing 
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In Figures 3(a) and 3(b) simulation was run with a split of the data into 80:20, and different 

numbers of images from 100, 200, 300, 400, and 500 were utilized as inputs. Next, the 

comparison is evaluated as seen in Figure 3. As a consequence, during 80% of the training, the 

established Bayesian-CNN obtains 99.4% accuracy, 97.4% precision, 94.6% recall, and 95.3% 

F1-score. Additionally, for 20% of testing, it scores 98.4% accuracy, 97.3% precision, 94.3% 

recall, and 95.3% F1-score. 

 

Table 3. Damage classifier outcome of Bayesian-CNN system for 70:30 

Number of 

images 
𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍𝒍 𝑭𝒔𝒄𝒐𝒓𝒆 

Training (70%)  
100 98.2 96.8 95.8 97.2 

200 97.8 97.2 97.2 96.5 

300 99.1 97.5 96.5 96.9 

400 98.9 97.9 96.9 96.3 

500 98.6 97.7 96.1 97.1 

Average 98.4 97.3 96.4 96.8 

Testing (30%)  

100 98.2 97.8 93.5 94.8 

200 98.8 97.2 94.8 95.7 

300 99.0 97.5 95.2 95.5 

400 97.9 96.9 93.1 95.2 

500 98.7 97.1 94.6 95.1 

Average 98.6 97.3 94.3 95.3 

 



 

 

 

Figure 4(a). Comparison of Bayesian-CNN system for Training 

 

Figure 4(b).  Comparison of the Bayesian-CNN system for Testing 

The data is divided into two halves of 70:30, and simulations were run with varying numbers of 

input images from 100, 200, 300, 400, and 500 as shown in Figures 4(a) and 4(b). Next, the 

comparison is evaluated as seen in Figure 4. As a consequence, during 70% of the training, the 
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established Bayesian-CNN obtains 98.4% accuracy, 97.3% precision, 96.4% recall, and 96.8% 

F1-score. Additionally, for 20% of testing, it scores 98.6% accuracy, 97.3% precision, 94.3% 

recall, and 95.3% F1-score. 

Table 4. Comparative analysis between existing and proposed methods 

Methods 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍𝒍 𝑭𝒔𝒄𝒐𝒓𝒆 

TNN [14] 91 90 93 92 

LSTM+ANN 

[15] 

92 89 91 90 

GRU [18] 90 87 85 83 

WNN [19] 89 88 86 82 

Bayesian-CNN 

[proposed] 

99.3 98.5 96.4 95.7 

 

 

Figure 5. Comparison between existing and proposed methods 

Figure 5 defines the overall comparative analysis between existing and proposed methods. The 

proposed Bayesian-CNN method demonstrates exceptional performance, achieving the highest 

accuracy (99.3%) among all the methods. It also showcases impressive precision (98.5%), recall 

(96.4%), and F-score (95.7%) values. These results highlight the effectiveness of the Bayesian-

CNN approach in accurately classifying the task at hand. The high accuracy indicates that a 

significant proportion of the predictions made by the model are correct, while the high precision 

and recall values suggest a good balance between identifying true positive instances and 
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minimizing false negatives. The impressive F-score reflects the harmonic mean of precision and 

recall, capturing the overall effectiveness of the model. Overall, the proposed Bayesian-CNN 

method showcases superior performance and holds promise for the given task compared to the 

other evaluated methods. 

 

5. Conclusion 

We were able to demonstrate the effectiveness of Bayesian-CNN for damage classification 

by utilizing the framework we developed for assessing environmental damage. Our classification 

model demonstrated a high degree of adaptability that may be employed throughout a spectrum 

of hurricane and other coastal hazard occurrences, given the relatively few and wide range of 

images used for the input data set.  

Findings and implications- The findings of the proposed model demonstrate the model's capacity 

to quickly and accurately identify damaged sections of buildings and structures from test data, 

which is essential for more accurate damage assessment. It yields benefits including reduced risk 

of harm to society, human health, economic activities, infrastructure, cultural heritage, and the 

environment. 

Limitation of proposed method- A good physical understanding of the hydrologic process can 

aid in the selection of the input vector and the design of a more efficient network which will 

leads to better results. But our proposed method is not concentrated on hydrologic process. 

Future enhancement-Further studies exploring the use of transfer learning approaches to develop 

classification and object identification models trained on post-disaster images may enhance our 

work. The amount of time needed for damage assessment would be greatly decreased by using 

these machine-learning models. Therefore, the hours to days needed to calculate the entire 

damage sustained may be avoided if relief plans were developed in the aftermath of a future 

coastal catastrophe. As a consequence of the direct deployment of artificial intelligence 

technologies such as our categorization and object identification algorithms, damaged coastal 

communities would be able to obtain more accurate and timely help. 
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