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Graphical abstract 

 

Abstract 

Land Use and Land Cover (LULC) maps perform a 
significant part in Remote Sensing (RS) in monitoring and 
analyzing earth information for human development. 
Because of the high spectrum variability, LULC 
classification from RS data is extremely difficult. The 
study's objective is to assess the object-based LULC 
classification (OBC) accuracy of composite images from 
the Landsat 8 OLI (Operational Land Imager) and auxiliary 
features using SNIC segmentation and five classifiers on 
Google Earth Engine (GEE). The outcome of the study 
indicates that the OBC with only spectral features 
achieves lesser accuracy, because small objects on the 
land surface cannot be observed. But when OBC is paired 
with a variety of auxiliary features, the OBC may recognize 
small objects with greater accuracy. After many 
subsequent assessments the combination of the following 
aspect: composite image of all the seven bands, new 
feature set, Simple Non-Iterative Clustering (SNIC) 
segmentation algorithm, and Support Vector Machine 
(SVM) classification algorithm gives better accuracy of ~ 
94.42% and kappa coefficient of 92.07. The inclusion of 

auxiliary feature and OBC method, reduces the 
misclassification rate related to the confusion of bare 
land, uncultivated land, and urban, which provides 
accurate information on forest, waterbody, and bare land 
classes. 

Keywords: Remote sensing, land use and land cover, 
object-based classification, google earth engine, support 
vector machine 

1. Introduction 

Remote sensing (RS) is the technique of monitoring or 
collecting details about the characteristic of distant 
objects without physically interacting with them. RS from 
satellites gives important information for mapping and 
understanding the earth's surface. Numerous remote 
sensing applications are utilized potentially in various 
fields including agriculture, disaster management, urban 
studies, weather forecasting, etc. RS is letting the user 
access and analyzes the large temporal dataset; on the 
other hand, it increases the time and computational cost. 
In the last decade, an extensive number of RS software is 
developed with the features of instantaneous access, pre-
processing, and web-based interfaces. Among them, 
Google Earth Engine (GEE) has obtained significant 
success as a result of providing a phenomenal cloud 
platform with ready-to-use remote sensing data and 
machine learning algorithms (Qu et al., 2021). Onisimo 
Mutanga et al demonstrated the power of the GEE 
platform in managing large data sets of various sizes and 
generated computerized systems for real implementation 
(Mutanga and Kumar, 2019). Meisam Amani et al briefly 
explain the performance of GEE for remote sensing big 
data applications and also discussed the trends, datasets, 
and application of GEE (Amani et al., 2020). 

One of the most important remote sensing techniques is 
Land Use and Land Cover (LULC) classification which helps 
to find the regional, local, and global changes on the 
earth's surface. In order to monitor land degradation 
accurately, up-to-date LULC information is highly needed. 
In LULC, the term "land cover" refers to the natural and 
manmade characteristics that can be seen on the earth's 
surface, and ''land use'' refers to the activities that occur 
on the land or represent the current usage of the 

mailto:geraldine.amali@vit.ac.in
https://doi.org/10.30955/gnj.004829


132  SELVARAJ AND AMALI 

property. Wetland, forest, grassland, water, and build 
areas are examples of land cover, whereas, for land use 
commercial complexes, state parks, residential residences, 
and tree nurseries can be taken as the examples (Fonji 
and Taff, 2014). Some of the most current studies based 
on LULC are, sand replenishment studies (Shah et al., 
2021), farmer’s perception of deforestation studies 
(Kouassi et al., 2021), land surface temperature change 
studies (Kafy et al., 2021), and classification of 
groundwater potentiality zone studies (Tegegne, 2022).  

LULC classification research has been carried out using 
several pixel-based and object-based algorithms with a 
variety of remote sensing data such as Landsat, Sentinel, 
Quick Bird, Modis, and IKONOS. Pixel-based classification 
method classifies the individual pixels directly, whereas 
the object-based method first segments the pixel into 
objects and then classifies the individual objects. Nanki 
Sidhu et al proposed the LULC classification analysis using 
GEE for finding the urbanization in the study area Tuas for 
the years 2006-2010 (Sidhu et al., 2018). Pixel-based LULC 
classification has primarily been used for remote sensing 
applications, but the object-based has proven even more 
standard in the last ten years.M. Gholoobi et al compared 
the pixel and object-based LULC classification using the 
maximum likelihood algorithm (M. Gholoobi et al, 2010) 
The result of the object-based approach gives higher 
accuracy without any noisy outcome, although the pixel-
based approach is noisy. In general, the object-oriented 
method delivers better results on high-resolution data, 
even though the use of several features for classification 
and higher computational cost for segmentation. Saeid 
Amini et al showed that the accuracy of the OBC method 
is 5.67 and 3.75 % better than the conventional Random 
Forest Classification (RFC) and Support Vector Machine 
(SVM) (Amini et al., 2018). Filiz Bektas Balcik et al 
proposed the OBC method of greenhouse mapping that 
achieved 82% and 74% accuracy with different datasets 
(Balcik et al., 2019).  Connor McLaughlin et al showed that 
the use of OBC in the identification of land changes 
outperform compared to the other methods (McLaughlin 
et al., 2020).  In both pixel and object-based classification, 
the accuracy depends on the certainty of data, auxiliary 
features, and classification algorithm.  

The quality and quantity of data play a vital role in the 
production of object-based LULC classification. High-
resolution data are important for analyzing the LULC 
classification in the large study area, but such a data set is 
limitedly available considering the financial aspect. On the 
other hand, medium resolution data like Landsat Thematic 
Mapper (TM), Multi-Spectral Scanner (MSS), and 
Operational Land Imager (OLI) are easily available for LULC 
classification. Landsat images to access the LULC 
classification for the different studies were effectively 
used by Olena Dubovyk a d et al(Dubovy et al., 2013), 
Kamrul Islam et al(Islam et al., 2018), Gebiaw T Ayele1et 
al(Ayele et al., 2018), Md. Inzamul Haque et al(Md. 
Inzamul Haque, 2017), and Gofamodimo Mashameet al 
(Mashame and Akinyemi, 2016).  

Image segmentation is the next and most important step 
in object-based LULC classification. Segmentation divides 
the image into small homogenous objects based on the 
spectral values. A few segmentation algorithms are Multi-
Scale Segmentation (MSS) (Blaschke, 2010), Simple Non-
Iterative clustering (SNIC) (Yang et al., 2021) 
segmentation, and Simple Linear Iterative Clustering (SLIC) 
segmentation. Both SNIC and SLIC segmentation 
algorithms are super pixel-based clustering algorithms. 
SLIC algorithm clusters the pixel based on the image plan 
space and five-dimensional color. SNIC is an upgraded 
version of SLIC and it requires lesser memory space as 
well as faster speed (Achanta and Süsstrunk, 2017). In 
MSS, there is no clear relationship between the scale and 
the success rate. The scale of the segmentation is 
determined by the trial-and-error method. The next step 
of the object-based LULC classification is feature 
extraction. In place of feature extraction, spectral, 
geometric, texture, and contextual information are 
considered for object-based methods, whereas in 
traditional pixel-based methods only spectral values are 
used. After completing the segmentation and feature 
extraction steps, the data classification starts. Numerous 
classification algorithms are developed for LULC 
classification (Alshari and Gawali, 2021), e.g. 
MaximumLikehood (ML) classifier(Shivakumar and 
Rajashekararadhya, 2018), Support Vector Machine 
(SVM)(Wang et al., 2018)(Heumann, 2011), K-Nearest 
Neighbor (KNN)(Ban et al., 2010), Classification And 
Regression Tree (CART)(Shao and Lunetta, 2012), Random 
Forest (RF)(Wang et al., 2018), Gradient Tree Boost 
(GTB)(Sun et al., 2019), Naive Bayes (NB)(Sitthi et al., 
2016). 

The novelty and contribution of this work is the hybrid 
procedure combining auxiliary features (GLCM, Greay’s C 
and some Vegetation Index) with the SNIC Segmentation 
algorithm applied in GEE for object-based LULC 
classification. In the earlier work, (Andrea Tassi et al., 
2020) performed object-based LULC classification with 
GLCM and SNIC segmentation algorithm and they have 
achieved only 89.3% and 86.9% accuracy with the RF and 
the SVM classifier respectively. Compared to this earlier 
work, this study achieves 94.42% by adding the auxiliary 
features with GLCM. The important tasks of proposed OBC 
are listed below 1) automatic extraction of remote sensing 
image for object-based LULC classification; 2) data 
preprocessing like finding the suitable band combination 
of an input image and extracting the state boundary 
image from the raw remote sensing image; 3) partitioning 
the image into the multiple objects (super pixel) to be 
used for SNIC segmentation method. 4) identifying which 
auxiliary features are most suitable for object-based LULC 
classification; 5) comparing the performance of the SVM 
classifier with the other supervised classification 
algorithms like ML, KNN, RF, CART, GTB, and NB. The 
paper is structured into various sections, such as the study 
area, data collection and preprocessing, methodology, 
results and discussions, and conclusions.  
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2. Study area 

Madurai district, that is located in the South Indian state 
of Tamil Nadu and has an estimated population of 1.75 
million people, is selected as the study area. The city's 
total area, including Madurai and the Vaigai River, is 
3741.73 km2. Madurai is the third-largest city in Tamil 
Nadu, and it is located between 90 30" and 100 30" north 
latitude and 770 00" and 780 30" east longitude.  The 
study region is covered by the southeast of the Western 
Ghats and several mountain spurs. The climate of the 
study area is changeable but prominently hot and dry for 
eight months of the year. The difficult patterns of 
topography and climate build the rich biodiversity and 
different landscape of Madurai’s LULC. To minimize the 
complexity of the landscape information the study area is 
divided into five major regions, and which are forest, 
agricultural land, urban land, waterbody, bare land, and 
uncultivated land. Bare land is a piece of land on which 
cultivation of any crop is not possible, whereas in the 
Uncultivated land, the soil retains the required minerals 
that’s go for cultivation. Figure 1 shows the location map 
and Landsat 8 OLI image of the study area. 

 

Figure 1. Location map showing the study area (Madurai) in 

large and Landsat 8 OLI image of the study area 

3. Methodology 

The study aims to determine the suitable feature set and 
classification algorithm for object-based LULC 
classification using the GEE cloud platform. Figure 2 
illustrates the overall workflow of the assessment of 
object-based LULC classification. The workflow is a 
composite of six sub-processes, which are data collection, 
pre-processing, segmentation, feature extraction, 
classification, and accuracy assessment. Among the 
aforementioned processes, segmentation and 
classification are the most important process for object-
based LULC classification. The GEE API is used for data 
collection and entire implementation (training and testing 
dataset creation, classification, and performance 
assessment).  GEE works with JavaScript programming 

language. All these methods are processed using GEE 
software and processes are discussed in detail. 

 

Figure 2. Flow chart for assessment of object-based LULC 

classification 

3.1. Data collection and preprocessing 

Landsat data is one of the most commonly utilized 
satellite datasets for LULC classification [1]. The Landsat 
data can be pre-processed and accessed from the GEE 
platform since it includes the United States Geological 
Survey (USGS) Landsat Operational Land Imager (OLI), 
Enhanced Thematic Mapper (ETM), and Thematic Mapper 
(TM). For this study, the ‘Landsat 8 OLI Tier 1 and Level 2’ 
atmospherically corrected and surface reflected images 
from 2015 are employed. It has 11 bands among them, 
seven bands are used for the composite, which are coastal 
blue, blue, green, red, Near Infrared(NIR), and Shortwave 
Infrared(SWIR1 and SWIR2). It consists of nine spectral 
bands (SR_B1-SR_B9) with 30-meter resolution excluding 
the panchromatic band (SR_B7: 15m resolution) and two 
thermal bands (SR_B10 and SR_B11) with 100-meter 
resolution. In Landsat 8 OLI, the sensor bands are 
SR_B1:costal aerosol (wavelength: 0.43-0.45 µm), 
SR_B2:blue (wavelength: 0.45-0.51 µm),  SR_B3:green 
(wavelength: 0.53-0.59 µm), SR_B4:red (wavelength: 0.64-
0.67 µm), SR_B5:Near InfraRed (wavelength: 0.85-0.88 
µm), SR_B6:SWIR1 (wavelength: 1.57-1.65 µm), 
SR_B7:SWIR2 (wavelength: 2.11-2.29 µm), 
SR_B8:panchromatic (wavelength: 0.50-0.68 µm), 
SR_B9:cirrus (wavelength: 1.36-1.38 µm), SR_B10:TIRS1 
(wavelength: 10.6-11.19 µm), SR_B11:TIRS2 (wavelength: 
11.50-12.51 µm). To create cloud-free composite images, 
the image synthesis and cloud mask approaches are used. 
The composite image is filtered with the geographical 
boundary conditions of the study area. 

3.2. Segmentation 

Image segmentation, the first step in object-based LULC 
classification, separates the image into homogenous and 
discrete objects depends on the object's colour, spectral 
characteristics, uniform texture, and shape. The SNIC 
segmentation algorithm is used in this study. It is one of 
the most dominant segmentation algorithms that use the 
general grid to make the k-centroids in the image plane. 
Based on the initial k-centroids, the size of the super 
pixels is determined from equation 1, 
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/s N K=  (1) 

where N is how many pixels there are in the picture and K 
is the initial centroids. SNIC segmentation algorithm 
proceeds based on the super-pixel label, color, spatial 
position, and distance from the super-pixel centroid to the 
prospective pixel.  These K elements are used to form a 
priority queue Q. Whenever Q is not empty, it always 
picks the element with the shortest distance. If the pixel 
has not yet been labeled, a new element is produced for 
each linked neighbor pixel of the popped element, and 
the distance from the connected centroid and the label of 
the connected centroid is assigned to it. The item is then 
placed in the queue and then an additional element 
added to the queue is used to update the related centroid 
value in real-time. The SNIC algorithm ends when all of 
the image's pixels have been tagged and Q has been 
emptied. 

In the GEE tool, the SNIC segmentation input arguments 
are the input images for segmentation, size of seed 
location for gridding, compactness, connectivity, 
neighborhood size, and seed30.  The segmentation input 
argument ‘Size’ determines the segmented object size, 
and it is finalized according to the trial-and-error method, 
in addition to subjective perception. The default seed size 
is 5, however, the size does not give a better result for the 
input image.  The seed size is linearly incremented and 
tested for the performance of the segmentation. Finally, 
the seed size 10 gives better segmentation than the other 
seed size segmentation. In this study, input arguments are 
set as follow: Size= 10, Compactness = 5, Connectivity = 8 
and Neighborhood Size = 256. The SNIC segmentation 
outcomes from GEE are shown in Figure 3. 

 

Figure 3. SNIC segmentation for the study area 

3.3. Feature extraction and feature set creation 

Image segmentation allows the extraction of features 
associated with image objects. Finding the appropriate 
auxiliary feature for object-based LULC classification is 
one of the main processes in the current study. The 
feature set is selected based on the performance analysis 
of LULC classification. In this study, a few spectral 
features, texture features, indices, and spatial correlation 
are investigated. For spectral feature, the mean of all the 
seven-band, mean of false-color composite bands, and 
spectral entropy are used. Texture features are extracted 
using entropy, GLCM, and Gearys C-correlation. 
Frequently used remote sensing indices, that are NDVI 
(Normalized Difference Vegetation Index), EVI (Enhanced 
Vegetation Index), DVI (Difference Vegetation Index), and 
RVI (Ratio Vegetation Index) are employed. The feature 
set selection method is implemented and tested in the 
GEE platform using the SVM classification algorithm. Table 
1 shows the details of the extracted features with band 
descriptions. Among all of the above features mean of all 
seven bands, GLCM (Entropy), Grearys C-correlation, 
entropy, and NDVI texture feature set gives a better 
result.   

 

Table 1. The details of the extracted features with band combinations 

Category Feature Description 

Spectral 

F1: mean of all seven bands 
Mean('SR_B4', 'SR_B3', 'SR_B2', 'SR_B5','SR_B1','SR_B6', 

'SR_B7') 

F2: mean of false-color urban composite Mean(‘SR_B7’, ‘SR_B6’, ‘SR_B4’) 

F3: mean of natural color composite Mean( ‘SR_B4’ , ‘SR_B3’, SR_B2’) 

F4: mean of natural with atmospheric removal 

composite 
Mean(‘SR_B7’, ‘SR_B5’, ‘SR_B3’) 

Texture 

F5: GLCM 

Angular Second Moment (GLCM_ASM), Energy, (inertia 

moment), Correlation, Entropy, and the Inverse Difference 

Moment 

F6: ENTROPY Entropy (‘SR_B2’) 

F7: NDTX Texture of NDVI (‘SR_B5’,’ SR_B4’) 

F8: Geary’s C Measure of spatial association 

Indices 

F9:RVI (‘SR_B5’)/(‘SR_B4’) 

F10:EVI 
'2.5 * ((‘SR_B5’ – ‘SR_B4’) / (‘SR_B5’ + 6 * ‘SR_B4’- 7.5 * 

‘SR_B2’ + 1) 

F11:DVI (‘SR_B5’)-(‘SR_B4’) 

F12:NDVI (‘SR_B5’)-(‘SR_B4’)/ (‘SR_B5’)+(‘SR_B4’) 

 

3.4. Reference data 

The reference datasets are utilized to generate ROI 
(region of interest) polygons on the Landsat data in GEE 

software, which is used to generate the training regions 
and testing regions. For training and testing, a total of 83 
polygons are used for classification and the pixel count of 
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each polygon is approximately (1500-2500 pixels). The 
collected reference data are randomly separated by 70:30 
percentages for training and testing and then the same 
set of data is used for validation assessment of the 
confusion matrix. To create the ground truth points, the 
polygon is overlaid with the Google Earth high-resolution 
base map and manually labeled each polygon as 
agricultural land, uncultivated land, forest, bare land, 
water body, and urban land type. Known ground truth 
points (training and validation) may create spatial 
autocorrelation.  Remove samples that are quite close to 
any other sample in order to rule out samples that could 
be associated in this way (s). Spatial joins can be used to 
achieve this. 

3.5. Object-based lulc classification 

The specific objective of this research is to compare the 
performance of the SVM classifier with other supervised 
classification algorithms. Here SVM, CART, RF, ML, RTB, 
and NB supervise classification algorithms are employed 
to find the object-based LULC classification (Adepoju K.A. 
and Adelabu S.A, 2020). Compared with SVM, in deep 
learning the training complexity is more for handling the 
hyperspectral data. Due to this difficulty, SVM is not 
compared with other deep learning methods. Some linear 
supervised machine learning algorithms normally require 
multicollinearity reduction and feature normalization.  In a 
regression model, multicollinearity occurs when more 
than two independent variables are significantly 
associated with one another. Because of their 
deterministic support vector solutions, support vector 
machines may not suffer from multicollinearity. The study 
implements the SVM algorithm with the least absolute 
shrinkage to avoid multicollinearity. The arguments of the 
SVM Classifier are SVM type (C_SVM), shrinkage (1), and 
kernel type (Linear).  The argument of RF is the number of 
trees (20). The arguments of the cart are maxnodes (10) 
and min leaf population (1). The arguments of GTB are the 
number of trees (20), shrinkage (0.1), and sampling rate 
(1). The arguments of MD are metric (Euclidean), kNearest 
(5). The argument of NB classifier is lambda (0.1). The 
arguments of the classifier are chosen by trial-and-error 
method based on the accuracy assessment. All the 
classification processes are performed in GEE using the 
above set of supervised classification algorithms. To 
implement the object-based LULC classification, the code 
requires a set of information like region of interest, class 
information, training data set, and testing dataset. In the 
study area, LULC classes mostly cover agricultural land, 
uncultivated land, forest, bare land, water body, and 
urban land type. Hence, the six-class training dataset is 
created using the GEE interface and the data points are 
imputed as polygons. For each class, more than 20 
polygons are created, and to improve the supervised 
classification information, some buffer data points are 
created for each class.  

4. Result and discussion 

4.1. Assessment of band combination 

In the assessment of band combinations, different false-
color combinations and all seven band combinations are 

compared. As a result, the final working band combination 
is a composite of seven bands that gives better results 
than the other composites and these specific 
combinations are chosen from the literature (Hütt et al., 
2016).  

 

Figure 4. Assessment of different band combinations for object-

based LULC classification 

Landsat 8 band combination details and accuracy 
assessment for the band combination are shown in Figure 
4. The SVM classification algorithm is used for the 
assessment of band combinations. BC1 is a combination of 
SWIR and the red band, and it gives the false-color urban 
composite. BC1 composite shows vegetation in various 
tones of green. Denser vegetation is represented by 
deeper colors of green, whilst minimal vegetation is 
represented by lighter tones. The color of urban areas is 
blue, whereas soils are varying degrees of brown. 
Compared to that of other band combinations, the overall 
accuracy of the BC1 is very low. BC2 is a natural color 
composite combination of the red, blue, and green bands. 
In BC2, healthy vegetation is green, but unhealthy 
vegetation is shown as brown. Water appears dark blue or 
black, whereas the urban areas seem white and grey. The 
accuracy of the BC2 is affected because not much 
difference between the classes of uncultivated land and 
bare land is noticed. BC3 is a combination of SWIR and 
green bands and the combination gives lower accuracy for 
the urban classes. BC4 is natural with an atmospheric 
removal color composite combination of SWIR1, NIR, and 
green bands. BC5 is the combination of all seven bands 
that give a false-color composite. In BC5, the composite 
image is very near to what normal human eyes can 
observe. In comparison to the other band combinations, 
BC5 gives a better result for object-based LULC 
classification.  

4.2. Selection of auxiliary feature 

The selection of appropriate features is the most 
important part of an object-based LULC classification. 
Figure 5 shows the feature set combination details and 
assessment of the different feature sets. FC1 exhibits 
spectral features of the study area, and it is calculated 
from the mean of all seven bands. The overall accuracy of 
FC1 is 93.8%. For the next feature set FC2 spectral and 
texture, features are combined. GLCM entropy is used for 
the texture feature and the FC2 combination is achieved 
about 94% of overall accuracy. In the next feature set FC3, 
GLCM_ASM is added with the FC2 feature set. But this 
feature set reduces the overall accuracy by 0.1 % 
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compared with the previous feature set. The FC4 feature 
set is a combination of spectral features, texture features, 
and indices. For indices, EVI is used, and the present 
combination provides 87.7% overall accuracy.  A 
considerable percentage of accuracy is reduced because 
of the EVI feature, as a result of IDM feature is added with 
the FC2 feature set. The overall accuracy of FC5 and FC6 is 
93.6% and 92.6% respectively. Entropy with the FC2 
feature set achieves the new highest accuracy of 94.1%. 
The aforementioned feature set is FC7 and this feature set 
creates a new breakpoint. The FC8 feature set is the 
combination of NDVI texture with the FC7 feature set and 
this feature set improves the accuracy by 94.27%. Among 
the above feature sets, the mean of all seven bands, 
GLCM(Entropy), Grearys C-correlation, entropy, and NDVI 
texture feature set (FC9) gives a better result. The average 
spectral signature of all LULC classes concerning the 
selected feature set is explained in Figure 6, which 
demonstrates the effect of the spectral band for specific 
classes. For example, the impact of the red band in the 
forest class is low compared to the uncultivated class.   

 

Figure 5. The assessment of different feature sets combinations 

for object-based LULC classification 

 

Figure 6. Average Spectral Signature of LULC classes for the 

selected auxiliary feature set 

4.3. Assessment of object-based supervised classification 

The accuracy of different object-based supervised 
classifications is investigated in this study using the error 
matrix with validation samples. The outcome of object-
based LULC Classification for various supervised 
classification methods is shown in Figures 7 and 8. 

Among the various classifiers used in the study, SVM and 
RF provide better results for LULC classification obtaining 
results with comparable accuracy. NB classifier shows a 
very low overall accuracy compared with the other 
classification. 

The error matrix of the SVM classifier and sample LULC 
classification result is shown in Figure 9. The error matrix 

of the SVM classifier is evident that there are 
misclassifications between the classes. The majority of the 
misclassification happened between bare land class, 
uncultivated land class, and urban land class. 
Misclassification is rarely present in the water body and 
forest classes. In this study, the term accuracy refers to 
the ratio of the correctly predicted land class to the total 
predicted class. Other performance metrics like precision 
and recall are used, but they are mentioned in different 
terms like recall as producer accuracy and precision as 
user accuracy. The class-wise user accuracy and producer 
accuracy are as follows: UA: [0:0.9929, 1: 0.8863, 2:  
0.9826, 3: 0.8571, 4: 0.5205, 5:  0.9263], PA: [0: 0.9770, 1: 
0.7414, 2: 0.9941, 3: 0.9638, 4: 0.5757, 5: 0.9554] . 

 

Figure 7. Object-based LULC classification outcome for different 

supervised classification 

 

Figure 8. Assessment of different supervised classifications for 

object-based LULC classification 

 

Figure 9. LULC classification result and error matrix for SVM 

classifier 

The area distribution of the study area is presented in 
Figure 10. Among the various LULC classes, the water class 
covers only 66.820 km2 and the next lowest distribution is 
the forest class 265.52 km2.  In the total study area, 66.71 
% of the land is covered by the uncultivated class 
(1038.933 km2) and bare land class (1422.76 km2).  LULC 
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area distribution of urban and agriculture classes is 534.41 
km2, and 367.65 km2 respectively.  

 

Figure 10. Land Use and Land Cover area distribution 

5. Conclusion 

The accurate mapping of LULC is extremely helpful for 
many environmental applications like urban planning, 
land rehabilitation, land management, and risk analysis. 
The objective of this research was to assess the land 
distribution of the study area using the object-based LULC 
classification method and demonstrated how the GEE 
platform supported the analysis by providing a user-
friendly interface. The results of this research can be 
summarized as follows: (i) feature set was selected based 
on the performance analysis of different feature sets; (ii) 
the accuracy of different object-based supervised 
classification results was investigated (iii) the area 
distribution of the study area is calculated. Within the GEE 
tool, this work implemented and tested an OBC method 
using the SNIC algorithm to create spatial clusters.  As the 
accuracy of the classification varied continuously, it 
depends on the different features, composite imageries, 
and classification algorithms. Therefore, the single feature 
set or the single classification algorithm may not be 
optimal for all LULC classification problems. Accordingly, 
for this study area, the set of features and classification 
algorithms gives an improved outcome with an overall 
accuracy of 94.42% and kappa coefficient of 92.07. 
Further, the work could be expanded by adding annual 
temporal data for LULC change detection to find the 
annual land degradation report. 

Data availability statement 

Landsat 8 OLI Data was taken from the Google Earth 
Engine Data Catalog (Landsat-8 image courtesy of the U.S. 
Geological Survey). The Google Earth Engine script, 
reference data, and LULC outputs may be made available 
on request from the authors. 

References 

Achanta R. and Süsstrunk S. (2017). Superpixels and polygons 

using simple non-iterative clustering. Proceedings - 30th IEEE 

Conference on Computer Vision and Pattern Recognition, 

CVPR 2017, 2017-Janua (Ic), 4895–4904. https://doi.org/ 

10.1109/CVPR.2017.520 

Adepoju K.A. and Adelabu S.A. (2020). Improving accuracy 

evaluation of Landsat-8 OLI using image composite and 

multisource data with Google Earth Engine. Remote Sensing 

Letters, 11(2), 107–116. https://doi.org/10.1080/ 

2150704X.2019.1690792 

Alshari E.A. and Gawali B.W. (2021). Development of 

classification system for LULC using remote sensing and GIS. 

Global Transitions Proceedings, 2(1), 8–17. https://doi.org/ 

10.1016/j.gltp.2021.01.002 

Amini S., Homayouni S., Safari A. and Darvishsefat A.A. (2018). 

Object-based classification of hyperspectral data using 

Random Forest algorithm. Geo-Spatial Information Science, 

21(2), 127–138. https://doi.org/10.1080/10095020.2017 

.1399674 

Ayele G., Tebeje A.K., Demissie S., Belete M., Jemberie M., 

Dereje T. and Teshale E. (2018). Time series land cover 

mapping and change detection analysis using geographic 

information system and remote sensing, Northern Ethiopia. 

Air, Soil and Water Research, 11, 1–18. https://doi.org/ 

10.1177/1178622117751603 

Balcik F.B., Senel G. and Goksel C. (2019). Greenhouse mapping 

using object based classification and sentinel-2 satellite 

imagery. 2019 8th International Conference on Agro-

Geoinformatics, Agro-Geoinformatics 2019, June 2015, 2–6. 

https://doi.org/10.1109/Agro-Geoinformatics.2019.8820252 

Ban Y., Hu H. and Rangel I.M. (2010). Fusion of Quickbird MS and 

RADARSAT SAR data for urban land-cover mapping: Object-

based and knowledge-based approach. International Journal 

of Remote Sensing, 31(6), 1391–1410. https://doi.org/ 

10.1080/01431160903475415 

Blaschke T. (2010). Object based image analysis for remote 

sensing. ISPRS Journal of Photogrammetry and Remote 

Sensing, 65(1), 2–16. https://doi.org/10.1016/j.isprsjprs. 

2009.06.004 

Fonji S.F. and Taff G.N. (2014). Using satellite data to monitor 

land-use land-cover change in North-eastern Latvia. Sprin-

gerPlus, 3(1), 1–15. https://doi.org/10.1186/2193-1801-3-61 

Gholoobi M., Tayyebib A., Taleyi M. and Tayyebi A.H. (2010). 

Comparing pixel based and object based approaches in land 

use classification in mountainous areas. International 

Archives of the Photogrammetry, Remote Sensing and 

Spatial Information Sciences - ISPRS Archives, XXXVIII(2), 

573–581. https://doi.org/10.1109/JBHI.2016.2515993 

Heumann B.W. (2011). An object-based classification of 

mangroves using a hybrid decision tree-support vector 

machine approach. Remote Sensing, 3(11), 2440–2460. 

https://doi.org/10.3390/rs3112440 

Islam K., Jashimuddin M., Nath B. and Nath T.K. (2018). Land use 

classification and change detection by using multi-temporal 

remotely sensed imagery: The case of Chunati wildlife 

sanctuary, Bangladesh. Egyptian Journal of Remote Sensing 

and Space Science, 21(1), 37–47. https://doi.org/10.1016/ 

j.ejrs.2016.12.005 

Jin Y., Liu X., Yao J., Zhang X. and Zhang H. (2020). Mapping the 

annual dynamics of cultivated land in typical area of the 

Middle-lower Yangtze plain using long time-series of Landsat 

images based on Google Earth Engine. International Journal 

of Remote Sensing, 41(4), 1625–1644. https://doi.org/ 

10.1080/01431161.2019.1673917 

Kouassi J.L., Gyau A., Diby L., Bene Y. and Kouamé C. (2021). 

Assessing land use and land cover change and farmers’ 

perceptions of deforestation and land degradation in south-

west Côte d’Ivoire, West Africa. Land, 10(4). 

https://doi.org/10.3390/land10040429 

https://doi.org/10.1080/10095020.2017


138  SELVARAJ AND AMALI 

Mashame G. and Akinyemi F. (2016). Towards a remote sensing-

based assessment of land susceptibility to degradation: 

examining seasonal variation in land use-land cover for 

modelling land degradation in a semi-arid context. ISPRS 

Annals of the Photogrammetry, Remote Sensing and Spatial 

Information Sciences, 3(July), 137–144. https://doi.org/ 

10.5194/isprs-annals-III-8-137-2016 

McLaughlin C., Woodley A., Geva S., Chappell T., Kelly W., Boles 

W., De Vine L. and Hutson H. (2020). Object Based Remote 

Sensing Using Sentinel Data. 2020 Digital Image Computing: 

Techniques and Applications, DICTA 2020. https://doi.org/ 

10.1109/DICTA51227.2020.9363427 

Md. Inzamul Haque R.B.D. (2017). Land cover change  

detection using GIS and remote sensing techniques: A spatio-

temporal study on Tanguar Haor, Sunamganj, Bangladesh. 

The Egyptian Journal of Remote Sensing and Space  

Sciences Journal, 3, 417–451. https://doi.org/10.1201/ 

b19321 

Mutanga O. and Kumar L. (2019). Google earth engine 

applications. Remote Sensing, 11(5), 11–14. https://doi.org/ 

10.3390/rs11050591 

Olena D., Gunter M., Christopher C. and Thonfeld F.K. (2013). 

Object-based identification of vegetation cover decline in 

irrigated agro-ecosystems in Uzbekistan. Quaternary 

International, 311, 163–174. https://doi.org/10.1016/ 

j.quaint.2013.07.043 

Qu L., Chen Z., Li M., Zhi J. and Wang H. (2021). Accuracy 

improvements to pixel-based and object-based LULC 

classification with auxiliary datasets from google earth 

engine. Remote Sensing, 13(3), 453. https://doi.org/10.3390/ 

rs13030453 

Shah A.K., Morya J. and Majethiya H.V. (2021). Application  

of Land-Use Land-Cover Map for Sand Replenishment  

Study:  A case study of Orsang River, Gujarat. February 2022, 

17–25. 

Shao Y. and Lunetta R.S. (2012). Comparison of support vector 

machine, neural network, and CART algorithms for the land-

cover classification using limited training data points. ISPRS  

Journal of Photogrammetry and Remote Sensing, 70, 78–87. 

https://doi.org/10.1016/j.isprsjprs.2012.04.001 

Shivakumar B.R. and Rajashekararadhya S.V. (2018). 

Investigation on land cover mapping capability of maximum 

likelihood classifier: A case study on North Canara, India.  

Procedia Computer Science, 143, 579–586. https://doi.org/ 

10.1016/j.procs.2018.10.434 

Sidhu N., Pebesma E. and Câmara G. (2018). Using Google Earth 

Engine to detect land cover change: Singapore as a use case. 

European Journal of Remote Sensing, 51(1), 486–500. 

https://doi.org/10.1080/22797254.2018.1451782 

Sitthi A., Nagai M., Dailey M. and Ninsawat S. (2016). Exploring 

land use and land cover of geotagged social-sensing images 

using naive bayes classifier. Sustainability (Switzerland), 8(9), 

921. https://doi.org/10.3390/su8090921 

Sun F., Wang R., Wan B., Su Y., Guo Q., Huang Y. and Wu X. 

(2019). Efficiency of extreme gradient boosting for imbalan-

ced land cover classification using an extended margin and 

disagreement performance. ISPRS International Journal  

of Geo-Information, 8(7), 0315. https://doi.org/10.3390/ 

ijgi8070315 

Tassi A. and Vizzari M. (2020). Object-Oriented LULC 

Classification in Google Earth Learning Algorithms. Remote 

Sensing, 12, 1–17. doi:10.3390/rs12223776 

Tegegne A.M. (2022). Applications of Convolutional Neural 

Network for Classification of Land Cover and Groundwater 

Potentiality Zones. Journal of Engineering (United Kingdom), 

2022. https://doi.org/10.1155/2022/6372089 

Wang X., Liu S., Du P., Liang H., Xia J. and Li Y. (2018). Object-

based change detection in urban areas from high spatial 

resolution images based on multiple features and ensemble 

learning. Remote Sensing, 10(2), 276. https://doi.org/ 

10.3390/rs10020276 

Yang L., Wang L., Abubakar G.A. and Huang J. (2021). High‐

resolution rice mapping based on snic segmentation and 

multi‐source remote sensing images. Remote Sensing, 13(6), 

1148. https://doi.org/10.3390/rs13061148 


