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ABSTRACT: Land Use and Land Cover (LULC) maps perform a significant part in Remote 

Sensing (RS) in monitoring and analyzing earth information for human development. Because of 

the high spectrum variability, LULC classification from RS data is extremely difficult. The 

study's objective is to assess the object-based LULC classification (OBC) accuracy of composite 

images from the Landsat 8 OLI (Operational Land Imager) and auxiliary features using SNIC 

segmentation and five classifiers on Google Earth Engine (GEE). The outcome of the study 

indicates that the OBC with only spectral features achieves lesser accuracy, because small 

objects on the land surface cannot be observed. But when OBC is paired with a variety of 

auxiliary features, the OBC may recognize small objects with greater accuracy. After many 

subsequent assessments the combination of the following aspect: composite image of all the 

seven bands, new feature set, Simple Non-Iterative Clustering (SNIC) segmentation algorithm, 

and Support Vector Machine (SVM) classification algorithm gives better accuracy of ~ 94.42% 

and kappa coefficient of 92.07. The inclusion of auxiliary feature and OBC method, reduces the 

misclassification rate related to the confusion of bare land, uncultivated land, and urban, which 

provides accurate information on forest, waterbody, and bare land classes. 

Key Words : Remote Sensing, Land Use and Land Cover, Object-Based Classification, Google 

Earth Engine, Support Vector Machine. 

 

1. Introduction 

Remote sensing (RS) is the technique of monitoring or collecting details about the characteristic 

of distant objects without physically interacting with them. RS from satellites gives important 

information for mapping and understanding the earth's surface. Numerous remote sensing 

applications are utilized potentially in various fields including agriculture, disaster management, 



 

 

urban studies, weather forecasting, etc. RS is letting the user access and analyzes the large 

temporal dataset; on the other hand, it increases the time and computational cost. In the last 

decade, an extensive number of RS software is developed with the features of instantaneous 

access, pre-processing, and web-based interfaces. Among them, Google Earth Engine (GEE) has 

obtained significant success as a result of providing a phenomenal cloud platform with ready-to-

use remote sensing data and machine learning algorithms (Qu et al., 2021). Onisimo Mutanga et 

al demonstrated the power of the GEE platform in managing large data sets of various sizes and 

generated computerized systems for real implementation (Mutanga and Kumar, 2019). Meisam 

Amani et al briefly explain the performance of GEE for remote sensing big data applications and 

also discussed the trends, datasets, and application of GEE (Amani et al., 2020). 

   One of the most important remote sensing techniques is Land Use and Land Cover 

(LULC) classification which helps to find the regional, local, and global changes on the earth's 

surface. In order to monitor land degradation accurately, up-to-date LULC information is highly 

needed. In LULC, the term "land cover" refers to the natural and manmade characteristics that 

can be seen on the earth's surface, and ''land use'' refers to the activities that occur on the land or 

represent the current usage of the property.  Wetland, forest, grassland, water, and build areas are 

examples of land cover, whereas, for land use commercial complexes, state parks, residential 

residences, and tree nurseries can be taken as the examples (Fonji and Taff, 2014). Some of the 

most current studies based on LULC are, sand replenishment studies (Shah et al., 2021), farmer’s 

perception of deforestation studies (Kouassi et al., 2021), land surface temperature change 

studies (Kafy et al., 2021), and classification of groundwater potentiality zone studies (Tegegne, 

2022).  



 

 

LULC classification research has been carried out using several pixel-based and object-

based algorithms with a variety of remote sensing data such as Landsat, Sentinel, Quick Bird, 

Modis, and IKONOS. Pixel-based classification method classifies the individual pixels directly, 

whereas the object-based method first segments the pixel into objects and then classifies the 

individual objects. Nanki Sidhu et al proposed the LULC classification analysis using GEE for 

finding the urbanization in the study area Tuas for the years 2006-2010 (Sidhu et al., 2018). 

Pixel-based LULC classification has primarily been used for remote sensing applications, but the 

object-based has proven even more standard in the last ten years. M. Gholoobi et al compared the 

pixel and object-based LULC classification using the maximum likelihood algorithm (M. 

Gholoobi et al, 2010) The result of the object-based approach gives higher accuracy without any 

noisy outcome, although the pixel-based approach is noisy. In general, the object-oriented 

method delivers better results on high-resolution data, even though the use of several features for 

classification and higher computational cost for segmentation. Saeid Amini et al showed that the 

accuracy of the OBC method is 5.67 and 3.75 % better than the conventional Random Forest 

Classification (RFC) and Support Vector Machine (SVM) (Amini et al., 2018). Filiz Bektas 

Balcik et al proposed the OBC method of greenhouse mapping that achieved 82% and 74% 

accuracy with different datasets (Balcik et al., 2019).  Connor McLaughlin et al showed that the 

use of OBC in the identification of land changes outperform compared to the other methods 

(McLaughlin et al., 2020).  In both pixel and object-based classification, the accuracy depends on 

the certainty of data, auxiliary features, and classification algorithm.  

 The quality and quantity of data play a vital role in the production of object-based LULC 

classification. High-resolution data are important for analyzing the LULC classification in the 

large study area, but such a data set is limitedly available considering the financial aspect. On the 



 

 

other hand, medium resolution data like Landsat Thematic Mapper (TM), Multi-Spectral Scanner 

(MSS), and Operational Land Imager (OLI) are easily available for LULC classification. Landsat 

images to access the LULC classification for the different studies were effectively used by Olena 

Dubovyk a d et al(Dubovy et al., 2013), Kamrul Islam et al(Islam et al., 2018), Gebiaw T 

Ayele1et al(Ayele et al., 2018), Md. Inzamul Haque et al(Md. Inzamul Haque, 2017), and 

Gofamodimo Mashameet al (Mashame and Akinyemi, 2016).  

Image segmentation is the next and most important step in object-based LULC 

classification. Segmentation divides the image into small homogenous objects based on the 

spectral values. A few segmentation algorithms are Multi-Scale Segmentation (MSS) (Blaschke, 

2010), Simple Non-Iterative clustering (SNIC) (Yang et al., 2021)  segmentation, and Simple 

Linear Iterative Clustering (SLIC) segmentation. Both SNIC and SLIC segmentation algorithms 

are super pixel-based clustering algorithms. SLIC algorithm clusters the pixel based on the image 

plan space and five-dimensional color. SNIC is an upgraded version of SLIC and it requires 

lesser memory space as well as faster speed (Achanta and Süsstrunk, 2017). In MSS, there is no 

clear relationship between the scale and the success rate. The scale of the segmentation is 

determined by the trial and error method.  The next step of the object-based LULC classification 

is feature extraction.  In place of feature extraction, spectral, geometric, texture, and contextual 

information are considered for object-based methods, whereas in traditional pixel-based methods 

only spectral values are used. After completing the segmentation and feature extraction steps, the 

data classification starts. Numerous classification algorithms are developed for LULC 

classification (Alshari and Gawali, 2021), e.g. MaximumLikehood (ML) classifier(Shivakumar 

and Rajashekararadhya, 2018), Support Vector Machine (SVM)(Wang et al., 2018)(Heumann, 

2011), K-Nearest Neighbor (KNN)(Ban et al., 2010), Classification And Regression Tree 



 

 

(CART)(Shao and Lunetta, 2012), Random Forest (RF)(Wang et al., 2018), Gradient Tree Boost 

(GTB)(Sun et al., 2019), Naive Bayes (NB)(Sitthi et al., 2016). 

The novelty and contribution of this work is the hybrid procedure combining auxiliary features 

(GLCM, Greay’s C and some Vegetation Index) with the SNIC Segmentation algorithm applied 

in GEE for object-based LULC classification. In the earlier work, (Andrea Tassi et al., 2020) 

performed object-based LULC classification with GLCM and SNIC segmentation algorithm  and 

they have achieved only 89.3% and 86.9% accuracy with the RF and the SVM classifier 

respectively. Compared to this earlier work, this study achieves 94.42% by adding the auxiliary 

features with GLCM. The important tasks of proposed OBC are listed below 1) automatic 

extraction of remote sensing image for object-based LULC classification; 2) data preprocessing 

like finding the suitable band combination of an input image and extracting the state boundary 

image from the raw remote sensing image; 3) partitioning the image into the multiple objects 

(super pixel) to be used for SNIC segmentation method. 4) identifying which auxiliary features 

are most suitable for object-based LULC classification; 5) comparing the performance of the 

SVM classifier with the other supervised classification algorithms like ML, KNN, RF, CART, 

GTB, and NB. The paper is structured into various sections, such as the study area, data 

collection and preprocessing, methodology, results and discussions, and conclusions.   

 

2. Study Area 

Madurai district, that is located in the South Indian state of Tamil Nadu and has an estimated 

population of 1.75 million people, is selected as the study area. The city's total area, including 

Madurai and the Vaigai River, is 3741.73 km2. Madurai is the third-largest city in Tamil Nadu, 



 

 

and it is located between 90 30" and 100 30" north latitude and 770 00" and 780 30" east 

longitude.  The study region is covered by the southeast of the Western Ghats and several 

mountain spurs. The climate of the study area is changeable but prominently hot and dry for 

eight months of the year. The difficult patterns of topography and climate build the rich 

biodiversity and different landscape of Madurai’s LULC. To minimize the complexity of the 

landscape information the study area is divided into five major regions and which are forest, 

agricultural land, urban land, waterbody, bare land, and uncultivated land. Bare land is a piece of 

land on which cultivation of any crop is not possible, whereas in the Uncultivated land, the soil 

retains the required minerals that’s go for cultivation.   Figure 1 shows the location map and 

Landsat 8 OLI image of the study area. 

 

Fig 1. Location map showing the study area (Madurai) in large and Landsat 8 OLI image of the 

study area. 



 

 

3. Methodology 

 The study aims to determine the suitable feature set and classification algorithm for 

object-based LULC classification using the GEE cloud platform. Figure 2 illustrates the overall 

workflow of the assessment of object-based LULC classification. The workflow is a composite 

of six sub-processes, which are data collection, pre-processing, segmentation, feature extraction, 

classification, and accuracy assessment. Among the aforementioned processes, segmentation and 

classification are the most important process for object-based LULC classification. The GEE 

API is used for data collection and entire implementation (training and testing dataset creation, 

classification, and performance assessment).  GEE works with JavaScript programming 

language. All these methods are processed using GEE software and processes are discussed in 

detail. 
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Fig 2. Flow chart for assessment of object-based LULC classification. 

3.1 Data Collection and Preprocessing 

Landsat data is one of the most commonly utilized satellite datasets for LULC classification [1]. 

The Landsat data can be pre-processed and accessed from the GEE platform since it includes the 

United States Geological Survey (USGS) Landsat Operational Land Imager (OLI), Enhanced 

Thematic Mapper (ETM), and Thematic Mapper (TM). For this study, the ‘Landsat 8 OLI Tier 1 

and Level 2’ atmospherically corrected and surface reflected images from 2015 are employed. It 

has 11 bands among them, seven bands are used for the composite, which are coastal blue, blue, 

green, red, Near Infrared(NIR), and Shortwave Infrared(SWIR1 and SWIR2). It consists of nine 



 

 

spectral bands (SR_B1-SR_B9) with 30-meter resolution excluding the panchromatic band 

(SR_B7: 15m resolution) and two thermal bands (SR_B10 and SR_B11) with 100-meter 

resolution.   In Landsat 8 OLI, the sensor bands are SR_B1:costal aerosol (wavelength: 0.43-0.45 

µm), SR_B2:blue (wavelength: 0.45-0.51 µm),  SR_B3:green (wavelength: 0.53-0.59 µm), 

SR_B4:red (wavelength: 0.64-0.67 µm), SR_B5:Near InfraRed (wavelength: 0.85-0.88 µm), 

SR_B6:SWIR1 (wavelength: 1.57-1.65 µm), SR_B7:SWIR2 (wavelength: 2.11-2.29 µm), 

SR_B8:panchromatic (wavelength: 0.50-0.68 µm), SR_B9:cirrus (wavelength: 1.36-1.38 µm), 

SR_B10:TIRS1 (wavelength: 10.6-11.19 µm), SR_B11:TIRS2 (wavelength: 11.50-12.51 µm). 

To create cloud-free composite images, the image synthesis and cloud mask approaches are used. 

The composite image is filtered with the geographical boundary conditions of the study area. 

3.2 Segmentation 

Image segmentation, the first step in object-based LULC classification, separates the image into 

homogenous and discrete objects depends on the object's colour, spectral characteristics, uniform 

texture, and shape. The SNIC segmentation algorithm is used in this study. It is one of the most 

dominant segmentation algorithms that use the general grid to make the k-centroids in the image 

plane. Based on the initial k-centroids, the size of the super pixel s is determined from equation 

1,    

𝑠 = √𝑁 𝐾⁄                      (1) 

where N is how many pixels there are in the picture and K is the initial centroids. SNIC 

segmentation algorithm proceeds based on the super-pixel label, color, spatial position, and 

distance from the super-pixel centroid to the prospective pixel.  These K elements are used to 

form a priority queue Q. Whenever Q is not empty, it always picks the element with the shortest 



 

 

distance. If the pixel has not yet been labeled, a new element is produced for each linked 

neighbor pixel of the popped element, and the distance from the connected centroid and the label 

of the connected centroid is assigned to it. The item is then placed in the queue and then an 

additional element added to the queue is used to update the related centroid value in real-time. 

The SNIC algorithm ends when all of the image's pixels have been tagged and Q has been 

emptied. 

In the GEE tool, the SNIC segmentation input arguments are the input images for segmentation, 

size of seed location for gridding, compactness, connectivity, neighborhood size, and seed30.  

The segmentation input argument ‘Size’ determines the segmented object size and it is finalized 

according to the trial-and-error method, in addition to subjective perception. The default seed 

size is 5, however, the size does not give a better result for the input image.  The seed size is 

linearly incremented and tested for the performance of the segmentation. Finally, the seed size 10 

gives better segmentation than the other seed size segmentation. In this study, input arguments 

are set as follow: Size= 10, Compactness = 5, Connectivity = 8 and Neighborhood Size = 256. 

The SNIC segmentation outcomes from GEE are shown in figure 3. 

  

 



 

 

Fig 3.  SNIC segmentation for the study area. 

3.3 Feature Extraction and Feature Set Creation 

Image segmentation allows the extraction of features associated with image objects. Finding the 

appropriate auxiliary feature for object-based LULC classification is one of the main processes 

in the current study. The feature set is selected based on the performance analysis of LULC 

classification. In this study, a few spectral features, texture features, indices, and spatial 

correlation are investigated. For spectral feature, the mean of all the seven-band, mean of false-

color composite bands, and spectral entropy are used. Texture features are extracted using 

entropy, GLCM, and Gearys C-correlation. Frequently used remote sensing indices, that are 

NDVI(Normalized Difference Vegetation Index), EVI(Enhanced Vegetation Index), 

DVI(Difference Vegetation Index), and RVI (Ratio Vegetation Index)are employed. The feature 

set selection method is implemented and tested in the GEE platform using the SVM 

classification algorithm. Table 1 shows the details of the extracted features with band 

descriptions. Among all of the above features mean of all seven bands, GLCM (Entropy), 

Grearys C-correlation, entropy, and NDVI texture feature set gives a better result.   

Table 1. The details of the extracted features with band combinations.  

Category Feature Description 

Spectral 

F1: mean of all seven bands 

Mean('SR_B4', 'SR_B3', 'SR_B2', 

'SR_B5','SR_B1','SR_B6', 'SR_B7') 

F2: mean of false-color urban 

composite 

Mean(‘SR_B7’, ‘SR_B6’, ‘SR_B4’) 

F3: mean of natural color composite Mean( ‘SR_B4’ , ‘SR_B3’, SR_B2’) 

F4: mean of natural with atmospheric Mean(‘SR_B7’, ‘SR_B5’, ‘SR_B3’) 



 

 

removal composite 

Texture 

F5: GLCM 

Angular Second Moment 

(GLCM_ASM), Energy, (inertia 

moment), Correlation, 

Entropy, and the Inverse Difference Moment 

F6: ENTROPY Entropy (‘SR_B2’) 

F7: NDTX Texture of NDVI (‘SR_B5’,’ SR_B4’) 

F8: Geary’s C Measure of spatial association 

Indices 

F9:RVI (‘SR_B5’)/(‘SR_B4’) 

F10:EVI 

'2.5 * ((‘SR_B5’ – ‘SR_B4’) / 

(‘SR_B5’ + 6 * ‘SR_B4’- 7.5 * 

‘SR_B2’ + 1) 

F11:DVI (‘SR_B5’)-(‘SR_B4’) 

F12:NDVI 

(‘SR_B5’)-(‘SR_B4’)/ 

(‘SR_B5’)+(‘SR_B4’) 

 

3.4 Reference data 

The reference datasets are utilized to generate ROI (region of interest) polygons on the Landsat 

data in GEE software, which is used to generate the training regions and testing regions. For 

training and testing, a total of 83 polygons are used for classification and the pixel count of each 

polygon is approximately (1500-2500 pixels). The collected reference data are randomly 

separated by 70:30 percentages for training and testing and then the same set of data is used for 

validation assessment of the confusion matrix. To create the ground truth points, the polygon is 

overlaid with the Google Earth high-resolution base map and manually labeled each polygon as 

agricultural land, uncultivated land, forest, bare land, water body, and urban land type. Known 



 

 

ground truth points (training and validation) are may create spatial autocorrelation.  Remove 

samples that are quite close to any other sample in order to rule out samples that could be 

associated in this way (s). Spatial joins can be used to achieve this. 

3.5 Object-based LULC classification 

  The specific objective of this research is to compare the performance of the SVM 

classifier with other supervised classification algorithms. Here SVM, CART, RF, ML, RTB, and 

NB supervise classification algorithms are employed to find the object-based LULC 

classification (Adepoju, K.A. and Adelabu, S.A. 2020). Compared with SVM, in deep learning 

the training complexity is more for handling the hyperspectral data. Due to this difficulty, SVM 

is not compared with other deep learning methods. Some linear supervised machine learning 

algorithms normally require multicollinearity reduction and feature normalization.  In a 

regression model, multicollinearity occurs when more than two independent variables are 

significantly associated with one another. Because of their deterministic support vector solutions, 

support vector machines may not suffer from multicollinearity. The study implements the SVM 

algorithm with the least absolute shrinkage to avoid multicollinearity. The arguments of the 

SVM Classifier are SVM type (C_SVM), shrinkage (1), and kernel type (Linear).  The argument 

of RF is the number of trees (20). The arguments of the cart are maxnodes (10) and min leaf 

population (1). The arguments of GTB are the number of trees (20), shrinkage(0.1), and 

sampling rate(1). The arguments of MD are metric (Euclidean), kNearest (5). The argument of 

NB classifier is lambda(0.1).  The arguments of the classifier are chosen by trial and error 

method based on the accuracy assessment. All the classification processes are performed in GEE 

using the above set of supervised classification algorithms. To implement the object-based 

LULC classification, the code requires a set of information like region of interest, class 



 

 

information, training data set, and testing dataset. In the study area, LULC classes mostly cover 

agricultural land, uncultivated land, forest, bare land, water body, and urban land type.   Hence, 

the six-class training dataset is created using the GEE interface and the data points are imputed 

as polygons. For each class, more than 20 polygons are created, and to improve the supervised 

classification information, some buffer data points are created for each class.  

4. Result and Discussion 

4.1 Assessment of band combination 

In the assessment of band combinations, different false-color combinations and all seven band 

combinations are compared.  As a result, the final working band combination is a composite of 

seven bands that gives better results than the other composites and these specific combinations 

are chosen from the literature (Hütt et al., 2016).  

  

 

Fig4. Assessment of different band combinations for object-based LULC classification 



 

 

Landsat 8 band combination details and accuracy assessment for the band combination are 

shown in figure 4. The SVM classification algorithm is used for the assessment of band 

combinations. BC1 is a combination of SWIR and the red band and it gives the false-color urban 

composite.  BC1 composite shows vegetation in various tones of green. Denser vegetation is 

represented by deeper colors of green, whilst minimal vegetation is represented by lighter tones. 

The color of urban areas is blue, whereas soils are varying degrees of brown. Compared to that 

of other band combinations, the overall accuracy of the BC1 is very low. BC2 is a natural color 

composite combination of the red, blue, and green bands. In BC2, healthy vegetation is green, 

but unhealthy vegetation is shown as brown. Water appears dark blue or black, whereas the 

urban areas seem white and grey. The accuracy of the BC2 is affected because not much 

difference between the classes of uncultivated land and bare land is noticed. BC3 is a 

combination of SWIR and green bands and the combination gives lower accuracy for the urban 

classes. BC4 is natural with an atmospheric removal color composite combination of SWIR1, 

NIR, and green bands. BC5 is the combination of all seven bands that give a false-color 

composite. In BC5, the composite image is very near to what normal human eyes can observe. In 

comparison to the other band combinations, BC5 gives a better result for object-based LULC 

classification.  

4.2 Selection of Auxiliary Feature 

The selection of appropriate features is the most important part of an object-based LULC 

classification. Figure 5 shows the feature set combination details and assessment of the different 

feature sets. FC1 exhibits spectral features of the study area and it is calculated from the mean of 

all seven bands. The overall accuracy of FC1 is 93.8%. For the next feature set FC2 spectral and 

texture, features are combined. GLCM entropy is used for the texture feature and the FC2 



 

 

combination is achieved about 94% of overall accuracy. In the next feature set FC3, 

GLCM_ASM is added with the FC2 feature set.  But this feature set reduces the overall accuracy 

by 0.1 % compared with the previous feature set. The FC4 feature set is a combination of 

spectral features, texture features, and indices. For indices, EVI is used and the present 

combination provides 87.7% overall accuracy.  A considerable percentage of accuracy is reduced 

because of the EVI feature, as a result of IDM feature is added with the FC2 feature set. The 

overall accuracy of FC5 and FC6 is 93.6% and 92.6% respectively. Entropy with the FC2 feature 

set achieves the new highest accuracy of 94.1%. The aforementioned feature set is FC7 and this 

feature set creates a new breakpoint. The FC8 feature set is the combination of NDVI texture 

with the FC7 feature set and this feature set improves the accuracy by 94.27%. Among the above 

feature sets, the mean of all seven bands, GLCM(Entropy), Grearys C-correlation, entropy, and 

NDVI texture feature set (FC9) gives a better result. The average spectral signature of all LULC 

classes concerning the selected feature set is explained in figure 6, which demonstrates the effect 

of the spectral band for specific classes. For example, the impact of the red band in the forest 

class is low compared to the uncultivated class.   

 

 



 

 

Fig 5. The assessment of different feature sets combinations for object-based LULC 

classification. 

  

Fig6. Average Spectral Signature of LULC classes for the selected auxiliary feature set. 

4.3 Assessment of object-based supervised classification. 

The accuracy of different object-based supervised classifications is investigated in this study 

using the error matrix with validation samples.  The outcome of object-based LULC 

Classification for various supervised classification methods is shown in figure 7 and figure 8. 

  



 

 

 

Fig 7. Object-based LULC classification outcome for different supervised classification. 

Among the various classifiers used in the study, SVM and RF provide better results for LULC 

classification obtaining results with comparable accuracy. NB classifier shows a very low overall 

accuracy compared with the other classification.  

  

Fig 8. Assessment of different supervised classifications for object-based LULC classification. 

The error matrix of the SVM classifier and sample LULC classification result is shown in figure 

9. The error matrix of the SVM classifier is evident that there are misclassifications between the 



 

 

classes. The majority of the misclassification happened between bare land class, uncultivated 

land class, and urban land class. Misclassification is rarely present in the water body and forest 

classes. In this study, the term accuracy refers to the ratio of the correctly predicted land class to 

the total predicted class.  Other performance metrics like precision and recall are used, but they 

are mentioned in different terms like recall as producer accuracy and precision as user accuracy. 

The class-wise user accuracy and producer accuracy are as follows: UA: [0:0.9929, 1: 0.8863, 2:  

0.9826, 3: 0.8571, 4: 0.5205, 5:  0.9263], PA: [0: 0.9770, 1: 0.7414, 2: 0.9941, 3: 0.9638, 4: 

0.5757, 5: 0.9554] . 

  

Fig 9. LULC classification result and error matrix for SVM classifier 

  The area distribution of the study area is presented in figure 10. Among the various 

LULC classes, the water class covers only 66.820 km2 and the next lowest distribution is the 

forest class 265.52 km2.  In the total study area, 66.71 % of the land is covered by the 

uncultivated class (1038.933 km2) and bare land class (1422.76 km2).  LULC area distribution 

of urban and agriculture classes is 534.41 km2, and 367.65 km2 respectively.   



 

 

  

Fig 10. Land Use and Land Cover area distribution. 

5. Conclusion: 

 The accurate mapping of LULC is extremely helpful for many environmental 

applications like urban planning, land rehabilitation, land management, and risk analysis. The 

objective of this research was to assess the land distribution of the study area using the object-

based LULC classification method and demonstrated how the GEE platform supported the 

analysis by providing a user-friendly interface. The results of this research can be summarized as 

follows: (i) feature set was selected based on the performance analysis of different feature sets; 

(ii) the accuracy of different object-based supervised classification results was investigated (iii) 

the area distribution of the study area is calculated. Within the GEE tool, this work implemented 

and tested an OBC method using the SNIC algorithm to create spatial clusters.  As the accuracy 

of the classification varied continuously, it depends on the different features, composite 

imageries, and classification algorithms. Therefore, the single feature set or the single 

classification algorithm may not be optimal for all LULC classification problems. Accordingly, 

for this study area, the set of features and classification algorithms gives an improved outcome 



 

 

with an overall accuracy of 94.42% and kappa coefficient of 92.07.  Further, the work could be 

expanded by adding annual temporal data for LULC change detection to find the annual land 

degradation report. 
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