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GRAPHICAL ABSTRACT 

 

 

Abstract 

In recent times, advanced technologies in transportation are developing like connected and 

automated vehicles and shared mobility services. A rapidly increasing number of vehicles in 

intelligent transportation system (ITS) and smart cities causes pollution and degrade the 

quality of air. Owing to the incredible effect of air quality on individual lives, it is 

indispensable to design a system by which air pollutants (PM2.5, NOx, COx, SOx) are 

predicted. But predicting air quality and its pollutants was complex since air quality relies on 

various elements like power plants, weather, and vehicular emissions. Deep learning (DL) 

and Machine learning (ML) techniques are leveraged for developing an air quality predictive 

method. This study develops an Air Quality Prediction utilizing Ensemble Voting based Deep 

Learning with Mud Ring Algorithm (AQP-EDLMRA) technique. The presented AQP-
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EDLMRA technique follows the ensemble voting model, which exploits three DL 

classification methods like long short-term memory (LSTM), deep belief network (DBN), 

and stacked autoencoder (SAE). Then, the new data can be classified by the weighted vote of 

their prediction outcomes. To adjust the hyperparameter values of the DL methods, the MRA 

was exploited, showing the novelty of the work. The simulation values of the AQP-EDLMRA 

approach are tested using a series of air quality data and the comprehensive comparative 

results demonstrated that the AQP-EDLMRA technique has reached improved forecasting 

performance. 

Keywords: Intelligent transportation system; Air quality; Deep learning; Ensemble models; 

Mud ring algorithm; Normalization; Pollution monitoring 

 

1. Introduction 

Intelligent Transportation Systems (ITS) have emerged as a vital component to improve 

human life and the modern economy, to optimize road traffic by handling the road capacity, 

enhancing driver safety, decreasing energy consumption and improving the quality of the 

environment, among many other things. Among several natural resources, Air is one 

significant natural resource for the survival of the entire life on this planet [1]. The basic 

survival of all organisms like animals and plants relies upon the air. Hence, all living 

creatures require good quality air free from detrimental gases for a healthy life. As per the 

report of the Blacksmith Institute in 2008, the two worst pollution issues in the world were 

indoor air pollution and urban air quality [2]. The rising population, industries, and vehicles 

were polluting the air at an alarming rate. Air pollution may cause short or long-term health 

disorders. It is found that young children and the elderly were most affected by air pollution 

[3]. Air quality assessment will be considered a significant means for controlling and 

monitoring air pollution. Some air pollutants known as criteria air pollutants are commonly 

seen in the US. Such pollutants can be harmful and affect the health and environment. In 

addition to monitoring, precise air quality prediction is highly significant, which will be 

advantageous to governments’ pollution controls and individual activity arrangements [4]. If 

air pollution is informed to be severe in the future, an individual can postpone meetings and 

cancel outdoor activities to ignore exposure to detrimental air pollution. The ruling classes 

make initiatives to thwart the quality of air from worsening by constraining factories of high 

pollution and executing traffic control [5]. Furthermore, it is practical to make citywide air 



 

 

quality forecasting, which allows flexible options like reorganizing outdoor actions to 

somewhere free from air pollution instead of postponing or cancelling. The main aim of this 

work is to forecast future air quality for city air quality monitoring stations [6]. 

The statistical prediction methods depend on statistics and leverage historic time sequence 

data for forecasting upcoming air quality [7]. Through the comparison made with physical 

predictive techniques, statistical predictive approaches not only avoid complicated systems 

thereby the cost of each estimation will be reduced and the calculation is faster, but even 

attain an equivalent level of PM2.5 concentration estimation precision of physical predictive 

methods. Owing to such benefits, the implementation of statistical predictive techniques was 

more extensive [8]. Typically employed statistical predictive techniques involved artificial 

neural network (ANN) and machine learning (ML) methods. ML techniques have clear 

mathematical logic, where the relation between output and input was relatively definite, and 

structures were simple. But such methods avoid the influences of spatial factors and external 

variables and are vulnerable to overfitting because of improper index selection [9]. With the 

advances in artificial intelligence (AI), ANN techniques, particularly DL techniques, which 

consider the non-linear relationships among the external variables and prediction targets, 

have outstanding performance in predictive tasks due to their robustness and adaptiveness.  

With the rapid growth of DL and AI techniques, the method performance of conventional ML 

shallow neural networks no longer exists. Different types of DL techniques were devised for 

enhancing the predictive performance of air quality [10]. In addition, the existing models 

does not focus on the hyperparameter selection process which mainly influence the 

performance of the classification model. Since the trial and error method for hyperparameter 

tuning is a tedious and erroneous process, metaheuristic algorithms can be applied. Therefore, 

in this work, we employ metaheuristic algorithm for the parameter selection of the DL model. 

This study develops an Air Quality Prediction utilizing Ensemble Voting based Deep 

Learning with Mud Ring Algorithm (AQP-EDLMRA) technique. The presented AQP-

EDLMRA technique follows the ensemble voting model, which exploits three DL 

classification methods like long short-term memory (LSTM), deep belief networks (DBNs), 

and stacked autoencoder (SAE). Then, the new data can be classified by the weighted vote of 

their prediction outcomes. To adjust the hyperparameter values of the DL methods, the MRA 

was used in this article. The simulation values of the AQP-EDLMRA approach are tested 

utilizing a sequence of air quality data. 



 

 

2. Related Works 

In [11], a novel hybrid intelligent system dependent upon LSTM and multi-verse 

optimization (MVO) system was established for analyzing and predicting air pollution 

achieved in Combined Cycle Power Plants. During the presented method, the LSTM 

technique has an analyst engine for predicting the count of produced NO2 and SO2 by the 

Combined Cycle Power Plant, whereas the MVO system was utilized for optimizing the 

LSTM parameter for achieving a lesser predictive error. Gu et al. [12] examine a novel 

Hybrid Interpretable Predictive ML approach for Particulate Matter 2.5 predictive that takes 2 

novelties. Primarily, a hybrid method infrastructure was generated with DNN and Non-linear 

Auto Regressive Moving averages with an Exogenous Input method. Second, the automatic 

feature generation and FS methods were combined as in this hybrid system. In [13], a new 

DL infrastructure combining multiple nested LSTM networks (MTMC-NLSTM) was 

presented to correct AQI predicting learned with federated learning. The presented MTMC-

NLSTM systems performance was related to typical ML, DL, and hybrid DL approaches.  

Chang et al. [14] examine an Aggregated LSTM method (ALSTM) dependent upon the 

LSTM using the DL approach. During this novel approach, the authors integrate local air 

quality monitor places, stations for external pollution causes, and stations in neighboring 

industrial regions. For improving predicting accuracy, the authors combined 3 LSTM 

approaches to predicting systems to primary predictive dependent upon external sources of 

pollution and data in neighboring industrial air quality stations. Gilik et al. [15] establish a 

supervised method for forecasting air pollution by employing real sensor information and for 

transferring the method betwixt cities. An integration of CNN and LSTM-DNN approach has 

been presented for predicting the focus on air pollutants in several places of cities by utilizing 

spatial-temporal connections.  

A novel hybrid system utilizing outlier recognition and correction techniques and a heuristic 

intelligent optimized system was presented in [16]. Primary, data pre-processed systems were 

conducted for detecting and correcting outliers, and excavating the essential features of a 

novel time series; secondary, an extremely utilized heuristic intelligent optimized system was 

implemented for optimizing the parameter of ELM for obtaining the predicting outcomes of 

all the subseries with enhancement in accuracy. Yi et al. [17] introduce a DNN depending on 

the method (allowed DeepAir) that contains spatial transformation element and deep 

distributed fusion network. Assuming air pollutant spatial correlations, the former element 



 

 

adapts the spatial sparse air quality information as to reliable input for simulating the 

pollutant source. The latter network implements a neural distributed infrastructure for fuse 

heterogeneous city information to concurrently capture the factors that affect air quality.  

3. The Proposed Model 

Automated air quality forecasting using the AQP-EDLMRA technique has been introduced in 

this study. The presented AQP-EDLMRA technique employed the ensemble voting model by 

the use of three DL methods namely LSTM, DBN, and SAE. In the ensemble voting model, 

the new data can be classified by the weighted vote of their prediction outcomes. Fig. 1 

illustrates the workflow of the AQP-EDLMRA system. 

 

Fig. 1. Workflow of AQP-EDLMRA system 

3.1. Data Normalization 

In this work, the input data is initially pre-processed by the use of a min-max normalization 

process. The min-max technique is renowned as and simple normalization technique in 

medical imaging. Depending on this method, above and over the unifying data scales, the 

data changing edges are dispersed in the range between 1 and 0. By considering attribute 𝑋, it 

has a mapping from the dataset among 𝑋max  and 𝑋min, the min‐max normalization (𝑋𝑛𝑜𝑟𝑚) 

is achieved by the following: 



 

 

𝑋𝑛𝑜𝑟𝑚 =
𝑋 − 𝑋 min 

𝑋 max − 𝑋 min 
.                                                  (1) 

3.2. Ensemble Voting based Prediction Model 

For the air quality prediction process, the ensemble voting process is performed in this study. 

The results of separate classification techniques were integrated through a majority vote 

utilizing a voting method. Class labels were allocated to test data by every technique 

separately after the outcomes were collected through voting, and the final class prediction 

was made by considering the class with a maximum number of votes. The following equation 

was employed to execute majority voting on a dataset: 

∑𝐷𝑐,𝑖

𝑐

𝑐=1

(𝑥) = max𝑖=1,2,3….𝑛 ∑(

𝐶

𝑐=1

𝐷𝑐,𝑖)                             (2) 

where 𝐶 denotes the total number of classification models, 𝑎𝑛𝑑 𝐷(𝑐, 𝑖) indicates the classifier 

decision and class labels. 

3.2.1. LSTM Model 

LSTM is a development over the RNN that was formerly applied in the analyses of EEG. In 

comparison with traditional RNN, the innovation of the LSTM network includes: (1) an 

output gate, (2) a forget gate, and (3) an input gate [18].  

Forget gate: It will decide what preceding data need to be forgotten. The existing input 𝑥𝑡 and 

hidden state ℎ𝑡−1 from previous units were concatenated into novel vectors. Multiplier by the 

𝑊𝑓 weight parameter of the gate, all element values of the output vectors 𝑓𝑡 were scaled from 

0 -1 through component-wise sigmoid function 𝜎. A 0′ component allows the respective data 

in 𝐶𝑡−1 to be disregarded, whereas a 1′ shows that the respective data is allowable to be 

passed through.  

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ ⌈ℎ𝑡−1, 𝑥𝑡⌉ + 𝑏𝑓)                                      (3) 

Input gate: It decides how much of input 𝑥𝑡 is saved to unit state 𝐶𝑡. The fulfilment of this 

gate needs co-operation amongst 2 parallel layers. The tangent layer output candidate’s data 

𝐶𝑡 for selection, whereas the sigmoidal layer, performs as the forget gate and determines what 

candidate data would be chosen by outputting the decision vector . Afterwards, the 

component-wise multiplication of the candidate data through decision vector 𝐶𝑡 × 𝑖𝑡 is 



 

 

implemented, and final update data which must be included in the cell state can be defined. 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ ⌈ℎ𝑡−1, 𝑥𝑡⌉ + 𝑏𝑖)                                    (4) 

𝐶𝑡 =  tan(𝑊𝑐 ⋅ ⌈ℎ𝑡−1, 𝑥𝑡⌉ + 𝑏𝑐)                                 (5) 

Thus, 𝑡ℎ𝑒 𝐶𝑡 cell state of the existing chain was an integration of the reserved past data 

𝑜𝑓 𝐶𝑡−1, and the updated data were chosen from 𝐶𝑡 (Eq. 6). 

𝐶𝑡 = 𝐶𝑡−1 × 𝑓𝑡 + 𝐶𝑡 × 𝑖𝑡                                         (6) 

Output gate: It determined which hidden state ℎ𝑡 in the existing chain to output through the 

multiplication of decision vector 0𝑡 by the candidate data chosen from 𝐶𝑡, as follows. 

0𝑡 = 𝜎(𝑊0 ⋅ ⌈ℎ𝑡−1, 𝑥𝑡⌉ + 𝑏0)                                      (7) 

ℎ𝑡 = tan(𝐶𝑡) × 0𝑡                                                    (8) 

Depending on the LSTM structure, context time sequence data can be learned from the 

feature sequence derived from the CNN and later defines the total classification. 

3.2.2. DBN Model 

The DBN of NN is regarded as a generative mechanism which applies a set of Boltzmann 

machines as fundamental components [19]. All layers of the DBN contain an RBM. DBN 

will extract the H.L. feature from the dataset slated for training to increase between‐classes 

separation power. The training can be implemented on each layer in a supervised manner, and 

the backpropagation method alters the weight in the network for reducing overfitting. This 

study presents a DBN method well-trained through greedy layer‐wise learning by stacking up 

RBM. The RBM focuses on a specific layer during its learning process and neglects others. 

In this work, a set of hidden layers as ℎ = {ℎ𝑙, ℎ2, ℎ3} and the set of weight matrices is 

allocated as 𝑊 = {𝑊1,𝑊2,𝑊3}. The weight matrices among 𝑖-𝑡ℎ and (𝑖 + 1) layers, can be 

represented as Wi, whereas the 𝑗-𝑡ℎ hidden layers are represented as ℎ𝑗: 

𝑝(𝑣, ℎ) =
𝑒−𝐸(𝑣,ℎ)

𝛴𝑣,ℎ𝑒−𝐸(𝑣,ℎ)
                                               (9) 

Whereas 𝐸(𝑣, ℎ) signifies energy function of RBM, 



 

 

𝐸(𝑣, ℎ) = −∑𝑎𝑖

𝑖=1

𝑣𝑖 − ∑𝑏𝑗

𝑗=1

ℎ𝑗 − ∑𝑣𝑖

𝑖,𝑗

ℎ𝑗𝑊𝑖𝑗                       (10) 

 

Fig. 2. Architecture of DBN 

𝑊𝑖𝑗 signifies the weight among the visible layer (VL) and hidden layer (HL), 𝑎𝑖 and 𝑏𝑗 define 

the coefficients of VB and HL. This work applies the SGD technique and log‐likelihood 

(L.L.) to achieve optimum training. This can be attained by enhancing RBM parameters, 𝑏, 

and 𝑤𝑖𝑗. The derivative of log 𝑝(𝑣, ℎ) concerning 𝑊𝑖𝑗, 𝑎𝑖 and 𝑏𝑗 should be calculated for 

upgrading the biases and weights. 

𝑊𝑡+1 = 𝑊𝑡 + 𝜂(𝑝(ℎ|𝑣)𝑣𝑇 − 𝑝(ℎ|𝑣)𝑣𝑇) − 𝜆𝑊𝑡 + 𝛼𝛥𝑊𝑡−1   (11) 

𝑎𝑡+1 = 𝑎𝑡 + 𝜂(𝑣 − 𝑣̃) + 𝛼𝛥𝑎𝑡−1                                    (12) 

𝑏𝑡+1 = 𝑏𝑡 + 𝜂 (𝑝(ℎ|𝑣) − 𝑝(ℎ̃|𝑣̃)) + 𝛼𝛥𝑏𝑡−1                       (13) 

𝑝(ℎ𝑗 = 1|𝑣) = 𝜎(𝛴𝑖=1
𝑚 𝑤𝑖𝑗𝑣𝑖 + 𝑏𝑗), 𝑝(𝑣𝑖 = 1|ℎ) = 𝜎(𝛴𝑗=1

𝑛 𝑤𝑖𝑗ℎ𝑗 + 𝑎𝑖) , and 𝜎(∙)  



 

 

Where signifies logistic sigmoid function. 𝑣̃) and ℎ̃ represent reconstructed 𝑣 and ℎ, 

correspondingly. Fig. 2 exhibits the framework of DBN. 𝑁 denotes the hidden nodes count, 𝜂, 

the learning ratio, 𝛼 is momentum weight, and 𝜆 signifies weight decay. The weighted 

matrices and accompanying bias vectors of hidden and visible nodes were studied through 

persistent contrastive divergence (PCD) and contrastive divergence (CD). This optimization 

technique employs BP with SGD for tuning the weight matrix to an optimum value. The 

optimization technique considers the outcomes of the additional layer constructed on DBN 

afterwards and it's preceding greedy training to minimalize error metrics. Logistic units, or 

Softmax, are widely applied in this layer. 

3.2.3. SAE Model 

An Autoencoder (AE) comprises interlayer connection, input layer, intermediate layer, and 

reconstruction layer neurons [20]. The dataset (𝑥1, 𝑥2, … , 𝑥𝑛) in the input layer was encoded 

to attain (𝑦1, 𝑦2, … ,  𝑦𝑚) in the intermediate layer. Next, the dataset (𝑦1, 𝑦2, … , 𝑦𝑚) is decoded 

to attain (𝑥̃1, 𝑥̃2, … , 𝑥̃n) from the intermediate layer to the reconstructed layer. In the 

supervised learning technique, every sample is encompassed by an input object and expected 

target values (named supervised signal). In contrast, when the input objects are included 

without target values are named unsupervised learning and it is used to train the AEs and 

supervised learning can be used to fine‐tune SAE. Beforehand establishing the SAE, various 

AEs must be trained based on the abovementioned technique. In the data‐training method, the 

output values produced by the intermediate layer of the initial AE can be applied as the input 

values to train the next AEs, and the succeeding AEs are sequentially trained based on the 

abovementioned rules. At last, the SAE was fine‐tuned through supervised learning: 

(1) Train initial AEs with the trained set as input, and stop training while error becomes 

minimal. 

(2) Train second AEs with the encoding outcome of the initial AE as input. Stop training 

while the error was minimalized. Likewise, the remaining AEs were trained. 

(3) Train the softmax classification layer with the encoding outcome of the final AE as input. 

Halt training while the error becomes minimal um 

(4) Stack the output layer intermediate layer of each AE input layer, and the softmax 

classification layer to attain SAE. Fine-tuning the parameter of each layer of SAE must be 



 

 

implemented using the backpropagation in a supervised manner. 

3.3. Hyperparameter Tuning 

To adjust the hyperparameter values of the DL models, the MRA is exploited in this work. 

The mathematical model of the search for prey and mud ring feeding was projected [21]. 

According to the subsequent, the basic steps of the MRA are represented: 

Exploitation Phase  

When it can be idealized one of the echolocation features of dolphins, it can be utilizing the 

subsequent rules: Each dolphin employs echolocation for measuring distance, in seeking 

prey; dolphins swim arbitrarily but utilise velocity 𝑉⃗  at position 𝐷⃗⃗  with sound loudness 𝐾⃗⃗  to 

search for prey. Every dolphin is mechanically changing its created sounds loudness 

dependent upon the closeness of its prey; although loudness can alteration in several 

approaches, it is assumed that loudness variations depend on the time step and rate of pulse 'r' 

that differs betwixt zero and one, whereas zero defines the no emission pulses, and one 

signifies the highest rate of pulse emission. The computations of vectors 𝐾⃗⃗  were: 

𝐾⃗⃗ = 2𝑎 ⋅ 𝑟 − 𝑎                              (14) 

whereas 𝑟  implies the arbitrary vector betwixt zero and one, and 

𝑎 = 2 (1 −
𝑡

𝑇−max 
)                            (15) 

For determining prey (exploration), it can be utilized virtual dolphin (searching agent) 

naturally. In a 𝑑‐dimension parameter space, the dolphin searches in an arbitrary position, 

defined as its comparative places to one another. Thus, it can be employed 𝐾⃗⃗  which differs 

arbitrarily with values superior to 1 or lesser than -1 for driving the dolphin for diverging in 

everyone and attempting to determine the fittest prey. Therefore, an arbitrarily selective 

dolphin was selected rather than an optimum dolphin. This selective process and |𝐾⃗⃗ | ≥ 1 

encourage exploration and allow the MRA technique for undertaking global searching. Next 

mathematical process of the MRA technique. The workability 𝐷⃗⃗  dependent upon velocity 𝑉⃗  

at time step 𝑡 is offered as: 

𝐷⃗⃗ t = 𝐷⃗⃗ t + 𝑉⃗ 𝑡,                              (16) 



 

 

whereas 𝑉 has been established as an arbitrary vector. Primarily, all the dolphins are assigned 

an arbitrary velocity in [Vmin, Vmax] which was chosen depending on the size of the interest 

issue. 

Exploitation Phase 

Afterwards identifying the prey, the dolphin is placed and surrounds it. The MRA approach 

assumes the targeted prey (optimal or adjacent to it) as present optimum solutions as a place 

of an optimum plan in searching space was not recognized a priori. The other dolphins are 

thus effort for updating their places based on an optimum dolphin position when the optimum 

searching agents were defined. The subsequent formulas define this performance: 

𝐴 = |𝐶 𝐷⃗⃗ ∗𝑡 − 𝐷⃗⃗ 𝑡−1|                            (17) 

𝐷⃗⃗ t = 𝐷⃗⃗ ∗𝑡 ⋅  sin(2𝜋𝑙) − 𝐾⃗⃗ ⋅ 𝐴                       (18) 

whereas 𝑡 marks the present time step, 1 defines the arbitrary number, 𝐶  and 𝐾⃗⃗  were co-

efficient vectors, 𝐷⃗⃗  implies the dolphin position vector, and 𝐷⃗⃗  represents position vectors of 

the optimum dolphin position attained. Monitored that 𝐷⃗⃗ ∗ can be altered in all the time steps 

when there is an optimum position. Noticeably the optimum dolphin moves in a circle but 

moves its tail swiftly in the sand generating the shape of a sine wave for producing a plume 

but other dolphins enclose prey. 

The computation of vector, 𝐶  is given below: 

𝐶 = 2 ⋅ 𝑟                               (19) 

By defining the arbitrary vector 𝑟, some positions are attained in the searching region. 

Therefore, Eq. (18) put on the prey surrounding and supports some dolphins for justifying 

their place nearby the current optimum positions. The search procedure of MRA begins with 

a population of arbitrary solutions (dolphin position). At all times steps, dolphins validate 

their position concerning both the optimum position placed so far and arbitrarily selective 

dolphins. So, the parameter is dependent upon the time step for transferring betwixt the 

exploration as well as exploitation. If, |𝐾⃗⃗ | < 1 the optimum dolphin position was chosen, but 

if |𝐾⃗⃗ | ≥ 1, arbitrary dolphins are chosen to justify the dolphin positions. 



 

 

Algorithm 1: Pseudocode of MRA 

Arbitrary Dolphin population initiation, 𝐷𝑖, 𝑖 ∈ [1,2,… , 𝑛] and Velocity 𝑣𝑖 

Determine the fitness value of all Dolphins 

𝐷∗ = optimal Dolphin location 

While (𝑡 < 𝑇−max ) 

for 𝑖 = 1 to 𝑛 

Change 𝐾, 𝐶, 𝑎, and 𝑙 

if |𝐾| >= 1 Then 

Produce New Solution by Changing Velocity 𝑣𝑖  

Else 

/* Form Mud ring */ 

Upgrade the present place of dolphins 

end If 

end for 

Upgrade the limits of the Dolphin exterior to the search area 

Obtain the fitness function of a dolphin 

Upgrade 𝐷∗ for improved location  

Set 𝑡 → 𝑡 + 1 

end While 

Display 𝐷∗ (Optimal location position) 

 

4. Experimental Validation  

The proposed model is simulated using Python 3.6.5 tool on PC i5-8600k, GeForce 1050Ti 

4GB, 16GB RAM, 250GB SSD, and 1TB HDD. The parameter settings are given as follows: 

learning rate: 0.01, dropout: 0.5, batch size: 5, epoch count: 50, and activation: ReLU. 

The air quality prediction results of the AQP-EDLMRA method are tested using the air 



 

 

quality dataset. The dataset comprises 3000 samples with six classes as shown in Table 1. 

Each class label holds a set of 500 samples. 

 

 

Table 1 Details of the dataset  

Class No. of Instances 

Good 500 

Satisfactory 500 

Moderate 500 

Poor 500 

Very Poor 500 

Severe 500 

Total Number of Instances 3000 



 

 

 

Fig. 3. Confusion matrices of AQP-EDLMRA system (a) Entire database, (b) 70% of TR 

database, and (c) 30% of TS database 

The confusion matrices of the AQP-EDLMRA method obtained under the applied dataset are 

given in Fig. 3. The outcomes showcased that the AQP-EDLMRA method has effectually 

forecast different classes of air quality under all cases. 

Table 2 Result analysis of the AQP-EDLMRA scheme with various classes under the Entire 

dataset  

Entire dataset 

Class  𝑨𝒄𝒄𝒖𝒚 𝑺𝒆𝒏𝒔𝒚 𝑺𝒑𝒆𝒄𝒚 𝑭𝒔𝒄𝒐𝒓𝒆 𝑹𝑶𝑪𝒔𝒄𝒐𝒓𝒆 MCC 

Good 99.27 98.20 99.48 97.81 98.84 97.37 

Satisfactory 99.20 97.60 99.52 97.60 98.56 97.12 



 

 

Moderate 99.33 97.40 99.72 97.99 98.56 97.59 

Poor 99.03 96.80 99.48 97.09 98.14 96.51 

Very Poor 99.00 96.80 99.44 96.99 98.12 96.39 

Severe 98.70 96.80 99.08 96.13 97.94 95.35 

Average 99.09 97.27 99.45 97.27 98.36 96.72 

 Table 2 and Fig. 4 report a detailed results analysis of the AQP-EDLMRA method on the 

entire database. The AQP-EDLMRA method has classified samples under the 'good' class 

with an 𝑎𝑐𝑐𝑢𝑦 of 99.27%, 𝑠𝑒𝑛𝑠𝑦 of 98.20%, 𝑠𝑝𝑒𝑐𝑦 of 99.48%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 97.81%, 𝑅𝑂𝐶𝑠𝑐𝑜𝑟𝑒 

of 98.84%, and MCC of 97.37%.  Also, the AQP-EDLMRA method has classified samples 

under the 'poor' class with an 𝑎𝑐𝑐𝑢𝑦 of 99.03%, 𝑠𝑒𝑛𝑠𝑦 of 96.80%, 𝑠𝑝𝑒𝑐𝑦 of 99.48%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 

97.09%, 𝑅𝑂𝐶𝑠𝑐𝑜𝑟𝑒 of 98.14%, and MCC of 96.51%. Moreover, the AQP-EDLMRA technique 

has classified samples under the 'severe' class with 𝑎𝑛 𝑎𝑐𝑐𝑢𝑦 of 98.70%, 𝑠𝑒𝑛𝑠𝑦 of 96.80%, 

𝑠𝑝𝑒𝑐𝑦 of 99.08%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 96.13%, 𝑅𝑂𝐶𝑠𝑐𝑜𝑟𝑒 of 97.94%, and MCC of 95.35%.   

 

Fig. 4. Result in the analysis of the AQP-EDLMRA method under the Entire Database  

Table 3 and Fig. 5 illustrate a brief results analysis of the AQP-EDLMRA method on 70% of 

the TR database. The AQP-EDLMRA method has classified samples under the 'good' class 

with an 𝑎𝑐𝑐𝑢𝑦 of 99.14%, 𝑠𝑒𝑛𝑠𝑦 of 97.68%, 𝑠𝑝𝑒𝑐𝑦 of 99.43%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 97.40%, 𝑅𝑂𝐶𝑠𝑐𝑜𝑟𝑒 

of 98.56%, and MCC of 96.89%. Similarly, the AQP-EDLMRA technique has classified 

samples under the 'poor' class with 𝑎𝑛 𝑎𝑐𝑐𝑢𝑦 of 98.86%, 𝑠𝑒𝑛𝑠𝑦 of 96.49%, 𝑠𝑝𝑒𝑐𝑦 of 99.32%, 

𝐹𝑠𝑐𝑜𝑟𝑒 of 96.49%, 𝑅𝑂𝐶𝑠𝑐𝑜𝑟𝑒 of 97.90%, and MCC of 95.81%. Furthermore, the AQP-

EDLMRA algorithm has classified samples under the 'severe' class with an 𝑎𝑐𝑐𝑢𝑦 of 98.71%, 

𝑠𝑒𝑛𝑠𝑦 of 96.94%, 𝑠𝑝𝑒𝑐𝑦 of 99.08%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 96.28%, 𝑅𝑂𝐶𝑠𝑐𝑜𝑟𝑒 of 98.01%, and MCC of 

95.50%.   



 

 

Table 3 Result analysis of the AQP-EDLMRA approach with various classes under 70% of 

the TR dataset  

Training Phase (70%) 

Class  𝑨𝒄𝒄𝒖𝒚 𝑺𝒆𝒏𝒔𝒚 𝑺𝒑𝒆𝒄𝒚 𝑭𝒔𝒄𝒐𝒓𝒆 𝑹𝑶𝑪𝒔𝒄𝒐𝒓𝒆 MCC 

Good 99.14 97.68 99.43 97.40 98.56 96.89 

Satisfactory 99.05 97.14 99.43 97.14 98.29 96.57 

Moderate 99.43 97.40 99.83 98.25 98.61 97.91 

Poor 98.86 96.49 99.32 96.49 97.90 95.81 

Very Poor 98.90 96.64 99.37 96.77 98.00 96.11 

Severe 98.71 96.94 99.08 96.28 98.01 95.50 

Average 99.02 97.05 99.41 97.06 98.23 96.47 

 

Fig. 5. Result in the analysis of the AQP-EDLMRA system under 70% of the TR database  

Table 4 and Fig. 6 exhibits a detailed results analysis of the AQP-EDLMRA method on 30% 

of the TS database. The AQP-EDLMRA algorithm has classified samples under the 'good' 

class with an 𝑎𝑐𝑐𝑢𝑦 of 99.56%, 𝑠𝑒𝑛𝑠𝑦 of 99.35%, 𝑠𝑝𝑒𝑐𝑦 of 99.60%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 98.72%, 

𝑅𝑂𝐶𝑠𝑐𝑜𝑟𝑒 of 99.48%, and MCC of 98.45%.  Similarly, the AQP-EDLMRA approach has 

classified samples under the 'poor' class with 𝑎𝑛 𝑎𝑐𝑐𝑢𝑦 of 99.44%, 𝑠𝑒𝑛𝑠𝑦 of 97.47%, 𝑠𝑝𝑒𝑐𝑦 

of 99.87%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 98.40%, 𝑅𝑂𝐶𝑠𝑐𝑜𝑟𝑒 of 98.67%, and MCC of 98.07%. Furthermore, the 

AQP-EDLMRA method has classified samples under the 'severe' class with an 𝑎𝑐𝑐𝑢𝑦 of 

98.67%, 𝑠𝑒𝑛𝑠𝑦 of 96.43%, 𝑠𝑝𝑒𝑐𝑦 of 99.08%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 95.74%, 𝑅𝑂𝐶𝑠𝑐𝑜𝑟𝑒 of 97.75%, and 

MCC of 94.96%.   

Table 4 Result analysis of AQP-EDLMRA approach with various classes under 30% of the 

TS dataset  

Testing Phase (30%) 



 

 

Class  𝑨𝒄𝒄𝒖𝒚 𝑺𝒆𝒏𝒔𝒚 𝑺𝒑𝒆𝒄𝒚 𝑭𝒔𝒄𝒐𝒓𝒆 𝑹𝑶𝑪𝒔𝒄𝒐𝒓𝒆 MCC 

Good 99.56 99.35 99.60 98.72 99.48 98.45 

Satisfactory 99.56 98.67 99.73 98.67 99.20 98.40 

Moderate 99.11 97.40 99.46 97.40 98.43 96.87 

Poor 99.44 97.47 99.87 98.40 98.67 98.07 

Very Poor 99.22 97.20 99.60 97.54 98.40 97.08 

Severe 98.67 96.43 99.08 95.74 97.75 94.96 

Average 99.26 97.75 99.56 97.75 98.66 97.31 

 

 

Fig. 6. Result in the analysis of the AQP-EDLMRA system under 30% of the TS database  

Fig. 7 reveals an average result of the AQP-EDLMRA method on the entire dataset. On the 

entire dataset, the AQP-EDLMRA method has attained an average 𝑎𝑐𝑐𝑢𝑦 of 99.09%, 𝑠𝑒𝑛𝑠𝑦 

of 97.27%, 𝑠𝑝𝑒𝑐𝑦 of 99.45%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 97.27%, 𝑅𝑂𝐶𝑠𝑐𝑜𝑟𝑒 of 98.36%, and MCC of 96.72%. 

Additionally, on 70% of the TR database, the AQP-EDLMRA approach has achieved an 

average 𝑎𝑐𝑐𝑢𝑦 of 99.02%, 𝑠𝑒𝑛𝑠𝑦 of 97.05%, 𝑎 𝑠𝑝𝑒𝑐𝑦 of 99.41%, 𝑎 𝐹𝑠𝑐𝑜𝑟𝑒 of 97.06%, 

𝑎 𝑠𝑐𝑜𝑟𝑒 of 98.23%, and MCC of 96.47%. Also, on 30% of the TS database, the AQP-

EDLMRA approach has gained an average 𝑎𝑐𝑐𝑢𝑦 of 99.26%, 𝑠𝑒𝑛𝑠𝑦 of 97.75%, 𝑠𝑝𝑒𝑐𝑦 of 

99.56%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 97.75%, 𝑅𝑂𝐶𝑠𝑐𝑜𝑟𝑒 of 98.66%, and MCC of 97.31%. 



 

 

 

Fig. 7. Average analysis of the AQP-EDLMRA system with various measures 

 

Fig. 8. TACY and VACY analysis of AQP-EDLMRA approach  



 

 

The TACY and VACY of the AQP-EDLMRA system are inspected on air quality prediction 

outcome in Fig. 8. The figure exhibited that the AQP-EDLMRA approach has displayed 

improvized performance with increased values of TACY and VACY. Visibly, the AQP-

EDLMRA technique has reached maximum TACY values. 

The TLOS and VLOS of the AQP-EDLMRA approach are tested on air quality prediction 

performance in Fig. 9. The figure shows the AQP-EDLMRA method has exposed superior 

outcomes with the least values of TLOS and VLOS. Especially, the AQP-EDLMRA 

technique has lesser VLOS values. 

 

Fig. 9. TLOS and VLOS analysis of AQP-EDLMRA scheme  

A comprehensive precision-recall investigation of the AQP-EDLMRA methodology under 

the test database is exhibited in Fig. 10. The figure highlighted that the AQP-EDLMRA 

approach has enhanced values of precision-recall values in every class label. 

The brief ROC study of the AQP-EDLMRA methodology under the test database is shown in 

Fig. 11. The outcomes signified the AQP-EDLMRA technique has emphasized its ability in 

classifying distinct classes under the test database.  

 



 

 

 

Fig. 10. Precision-recall analysis of AQP-EDLMRA approach  

 

Fig. 11. ROC curve analysis of AQP-EDLMRA approach  

The air quality forecasting outcomes of the AQP-EDLMRA method were compared with 

recent ML methods in Table 5. 



 

 

A comparative 𝑎𝑐𝑐𝑢𝑦 and 𝐹𝑠𝑐𝑜𝑟𝑒 investigation of the AQP-EDLMRA model with recent 

methods is offered in Fig. 12. The outcomes indicated that the LOR, SGD, and MLP methods 

have obtained poor performance with minimal values of 𝑎𝑐𝑐𝑢𝑦 and 𝐹𝑠𝑐𝑜𝑟𝑒. Next to that, the 

GBR model has reached slightly improvised 𝑎𝑐𝑐𝑢𝑦 and 𝐹𝑠𝑐𝑜𝑟𝑒 of 80.67% and 81.22% 

respectively. Although the XGBoost model has gained reasonable 𝑎𝑐𝑐𝑢𝑦 and 𝐹𝑠𝑐𝑜𝑟𝑒 of 

98.34% and 97.14%, the AQP-EDLMRA model has shown maximum 𝑎𝑐𝑐𝑢𝑦  and 𝐹𝑠𝑐𝑜𝑟𝑒 of 

99.26% and 97.75% respectively. 

Table 5 Comparative analysis of AQP-EDLMRA approach with existing methods  

Methods 𝑨𝒄𝒄𝒖𝒚 𝑺𝒆𝒏𝒔𝒚 𝑺𝒑𝒆𝒄𝒚 𝑭𝒔𝒄𝒐𝒓𝒆 

AQP-EDLMRA 99.26 97.75 99.56 97.75 

XGBoost Algorithm 98.34 96.55 98.23 97.14 

LOR Algorithm 75.32 75.80 75.70 76.15 

SGD Algorithm 78.61 79.17 79.42 79.04 

MLP Algorithm 79.54 79.68 79.92 80.15 

GBR Algorithm 80.67 80.42 80.89 81.22 

 

Fig. 12. 𝐴𝑐𝑐𝑢𝑦 and 𝐹𝑠𝑐𝑜𝑟𝑒 analysis of AQP-EDLMRA system with existing approaches  



 

 

A comparative 𝑠𝑒𝑛𝑠𝑦 and 𝑠𝑝𝑒𝑐𝑦 study of the AQP-EDLMRA technique with current methods 

is given in Fig. 13. The outcomes exhibited that the LOR, SGD, and MLP techniques have 

gained poor performance with minimal values of 𝑠𝑒𝑛𝑠𝑦 and 𝑠𝑝𝑒𝑐𝑦. Then, the GBR technique 

has reached slightly improvised 𝑠𝑒𝑛𝑠𝑦 and 𝑠𝑝𝑒𝑐𝑦 of 80.42% and 80.89% correspondingly. 

Although the XGBoost approach has obtained reasonable 𝑠𝑒𝑛𝑠𝑦 and 𝑠𝑝𝑒𝑐𝑦 of 96.55% and 

98.23%, the AQP-EDLMRA methodology has shown maximum 𝑠𝑒𝑛𝑠𝑦 and 𝑠𝑝𝑒𝑐𝑦 of 97.75% 

and 99.56% correspondingly. These outcomes ensured the enhanced predictive outcomes of 

the AQP-EDLMRA method. 

 

Fig. 13. 𝑆𝑒𝑛𝑠𝑦 and 𝑠𝑝𝑒𝑐𝑦 analysis of AQP-EDLMRA system with existing approaches  

5. Conclusion 

Automated air quality forecasting using the AQP-EDLMRA technique has been introduced in 

this study. The presented AQP-EDLMRA technique employed the ensemble voting model by 

the use of three DL methods namely LSTM, DBN, and SAE. In the ensemble voting model, 

the new data can be classified by the weighted vote of their prediction outcomes. To adjust 



 

 

the hyperparameter values of the DL methods, the MRA was exploited in this work. The 

experimental evaluation of the AQP-EDLMRA approach is tested using a series of air quality 

data and the comprehensive comparative results demonstrated that the AQP-EDLMRA 

technique has reached improved forecasting performance. In future, the performance of the 

proposed model can be boosted by the design of feature selection approaches. 
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