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Graphical abstract 

 

Abstract 

Owing to increased population, the ground water 
pollution and disposal of solid waste from the domestic, 
commercial and the industrial sources has become higher. 
Mainly, leachate from sanitary landfills increase the 
ground water pollution and disposal of solid wastes may 
produce the emission of carcinogenic greenhouse gases. 
The gases include Carbon-dioxide (CO2), Nitrogen-dioxide 
(NO2), Methane (CH4) and Hydrogen Sulphide (H2S) which 
will contributes to the major and detrimental in nature. To 
know about the extremity of the gases, implementation of 
integrated sensors networks can transmit and store data 
in the cloud using the Internet of Things (IoT) to perform 
future prediction using Machine Learning Algorithm. To 
estimate ground water pollution, sample locations have 
been chosen using random sampling method which holds 
89% efficiency in data sampling. Due to the increased 
proportion of liquid and solid waste at 17:93 ratio 
existence in the city, the study elaborates the health 
impacts of pathogens by pointing as a cancer capital of 
around 34% influence rates. Based on the CO2 emission 
and water pollution analysis, the modelling is done using 
Linear Regression Machine Learning algorithm which flags 
up the emission rate that could occur for the next three 
months with 86% accuracy. Also, appropriate mitigation 
measures can be suggested to the local government in the 
view of reducing both ground water pollution and the 

gaseous emissions. Finally, the identified pollution 
potential in the Vendipalayam site is compared with other 
landfill sites level of pollution for providing the adaptive 
measures further enhances environmental sustainability. 

Keywords: IoT emission gas monitoring, linear regression, 
future prediction, environment sustainability 

1. Introduction 

Toxic chemicals prevail everywhere due to 
industrialization, commercial activities, waste dumping 
facilities, etc. Under Indian context, from a Landfill site 
there is an intense release of contaminants directly or 
indirectly to the land which in turn pollutes soil initially 
later the ground water (Aziz et al., 2010; Bagheri et al., 
2020). Majorly Gaseous pollutants is released from the 
solid waste dumping sites in very short period of time 
(Bergersen et al., 2014). The major emissions were found 
to be from Carbon-dioxide (CO2), Nitrogen-dioxide (NO2), 
Methane (CH4) and Hydrogen Sulphide (H2S) gases (Bo-
Feng et al., 2014). Greenhouse gas emissions has been 
found to cover major concern in recent years. The world 
greenhouse gas emissions released from the disposal 
activities contributes to about 2.8% of the total emissions 
(Bolyard et al., 2019). Methane emission concerns about 
three to four percentage of annual GHG’s emissions 
worldwide. To avoid the adverse effects of waste 
management practices, alternatives for the solid waste 
practices such as reducing, recycling and reusing the 
generated waste has been implemented in many 
countries (Cao et al., 2019). Due to increased recycling 
methods, the method of land filling and the amount of 
generated waste in these landfills is getting reduced with 
time (Chen et al., 2020). But majority of the cities in India 
do have this Non-Engineered Landfills still today where 
Methane and Carbon-dioxide, by-products from anaerobic 
decomposition of the organic wastes, are found to be the 
main constituents of landfill gas (Chiemchaisri et al., 
2013). The analysis of different municipal solid waste 
management background in concern to the greenhouse 
gas emission, energy recovery and the probability of 
executing thermic transformation strategies is also 

https://doi.org/10.30955/gnj.004779


WATER POLLUTION AND CARBON DIOXIDE EMISSIONS FROM SOLID WASTE LANDFILLS  79 

challenging task nowadays (Couth et al., 2011; Das et al., 
2016). Due to highly informal in nature, sanitary 
department is facing lot of issues without the real time 
data for future predictions (Dmitrienko et al., 2018). In 
order to monitor those emissions in a real time, the 
sensors with data retrieval facilities plays an important 
role and further aids in depicting the emissions trend in an 
appropriate manner (Dong et al., 2017; Du et al., 2018). 
Many studies portrayed the prediction method for 
transferring novel GDP based on the carbon-dioxide 
emission data and simulations considered carbon-dioxide 
emission data on four economically heterogeneous 
nations (Fallahizadeh et al., 2019). Sijia Qu et.al 
summarized the methane emissions trend from 2015 to 
2050 by integrating IPCC technique with the SD model in 
Chinese Cities which is the motivation for prediction 
techniques (Friedrich and Trois, 2013). Mingxi Du et.al 
concentrated on Intergovernmental Panel on Climate 
Change (IPCC) and the first-order decay techniques along 
with greenhouse gas inventory guidelines for quantifying 
municipal solid waste landfills - Methane emissions 
(Ghosh et al., 2019). Because of the heterogeneous nature 
of the waste, notable variations are identified in emissions 
between different zones indicating different stages in 
waste degradation process and various environmental 
conditions (Huang et al., 2022).  

By considering this research gap into account, the study 
aims to monitor the gaseous emissions from the landfill 
site and estimate the rate of emission of gases like 
Carbon-dioxide (CO2), Nitrogen-dioxide (NO2), Methane 
(CH4) and Hydrogen Sulphide (H2S) from the dumping 
yard which helps to suggest appropriate mitigation 
measures for the reduction of the same in and around the 
study area. Also, to enhance the research aspect further, a 
linear prediction model is developed using time series 
linear regression algorithm by considering daily waste 
generation rate impact on the ground water. Further 
prevailing unsanitary conditions due to industrial 
discharges and non-engineered landfill sites increases the 
proximity of water borne diseases in the city space. So, to 
identify the level of ground water pollution potential from 
the study area various sample points are selected using 
Random Sampling method. The Chemical characterization 
of groundwater is carried out to evaluate the standard of 
groundwater in favor of checking its adequacy for drinking 
and irrigation purposes. 

2. Municipal solid waste investigation area and its 
impacts on environment 

Erode is a city which covers the seventh largest 
agglomeration in Tamil Nadu. The total area is measured 
to be 109.52 Sq.Km and population is around 567000. 
Location co-ordinates of Erode are 11°2027"N 77°43'02"E. 
An average of 250 MT/day wastes are generated every 
day around the city. The locations of a dumping yard must 
be situated outside the city premises, that it should obeys 
the existing rules and regulations imparted by the 
government in turn reduce the overall collection and 
disposal cost liable to the society and environment 
(Hwang et al., 2017).  

The collection vehicles depart from Erode Municipal 
Corporation reach various locations to collect the 
Municipal solid waste on regular basis (Hwang et al., 
2017). The Primary data regarding the collection and 
management of solid waste practices are collected from 
municipal corporation office in Erode city. The secondary 
information in the context of collection system, type and 
characteristics of waste, location of disposal sites, average 
rate of waste generation per day, number of vehicles 
available in the corporation for waste collection and its 
capacity, number of storage bins were obtained from the 
corporation office (Ilic and Ödlund, 2018). The overall 
solid waste constituents available from various source of 
waste disposal dumped in the landfills. In usual, door to 
door waste collection method is highly adopted in this 
locality. Once collection process is over, the waste 
collection vehicles reach dumping yard for further 
disposal of the wastes. During this unloading process, 
there is a significant release of gaseous emission from the 
Vendipalayam dumping yard. As far as Erode is concerned, 
over the last 61 years the municipal solid waste generated 
is being dumped at Vendipalayam yard spreader over 
19.45 acres and 7.4 acres capacity in Vairapalayam yards. 
Recent investigations shows that the amount of waste 
accumulated in the dump yards over the years are 4.45 
lakh cubic meter and 0.90 lakh cubic meter respectively. 
The particulate and gaseous emissions that’s increasing in 
Vendipalayam dumping site further causes frequent fire 
accidents, unpleasant odor from waste and Ground water 
contamination which also take to periodic protests by 
people living near the yard (Ke et al., 2018). In order to 
suggest better practices for cutting down these noxious 
emissions, it is mandatory to identify the rate of emissions 
generated from the solid wastes in the site (Kristanto and 
Koven, 2019). So based on the survey conducted nearby 
site about the emission of gases, emission monitoring 
sensors are designed to monitor the same in 
Vendipalayam area. Majorly Carbon-dioxide, Nitrogen-
dioxide, Methane and Hydrogen Sulphide gases are 
monitored during solid waste disposal process in landfill 
site to know about the emission concentration there by 
effective measures can be recommended further to 
render the balance occurring in the eco-stability (Kumar 
and Muhuri, 2019).  

3. Methods and materials 

3.1. Proposed iot based emission monitoring system on 
the vendipalaym MSW landfill 

The emission monitoring sensors, which provides the rate 
of emission for the following identified four types of gases 
emitting from the solid wastes generated in the dumping 
yard (Kumar et al., 2004). The vairapalayam dumpyard 
undertaken for the proposed solid waste monitoring and 
maintenance sitemap is shown in Figure 1a to show the 
major dumping of municipal solid waste for recycling 
micro compost centre. The Internet of Things (IoT) 
concept is used and sensors are connected to the 
electronic display through the node integrated circuit. The 
device to which the estimated data has to be sent is 
connected with the particular sensor setup and the help 
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of a Wi-Fi module. The Node MCU (Master Control Unit) 
acts as the controller and the outputs are displayed in LCD 
(Liquid Crystal Display) as shown in Figure 3b. The sensor 
produces a potential difference equal to the 
concentration of gas emission which got out from the 
solid wastes generated (Kumar et al., 2016). This 
proposed work integrates the monitoring of four gas 
sensors and derives the output using Multiplexing 
technique to the Wi-Fi ports for wireless communication. 
The proposed design holds AD8194ACPZ (Surface Mount 
type), 4–channel analog multiplexer is preferred to read 
out four outputs appropriately. Sometimes if the voltage 
is not enough, boost converter can be used to escalate the 
voltage.  By changing the resistance of the material inside 
the sensor, some emission values can be obtained which 
is measured as an output as shown in Figure 1b (Kuo et 
al., 2011).  

 

Figure 1a. Vairapalayam dumpyard Location sitemap 

 

Figure 1b. IOT based gaseous emission monitoring device in the 

investigating area of MSW 

The primary embedded software programme, which 
collects data from the sensors through Grove connectors, 
will be operated by the Node MCU. The gathered data is 
cleaned up before being uploaded to the cloud. The 
controller will sound an alarm when it finds out-of-bounds 
data (Lee et al., 2016). Architecture that is designed to be 
flexible and modular, with individual components that 
may be added, changed, or even eliminated without 
affecting how the other components perform.  

3.2. System architecture and decision-making tool 

Four levels make up the suggested architecture (Zhang 
and Huang, 2014). Connectivity: The MQTT (Message 
Queue Telemetry Transport) protocol will be used by the 
municipal solid waste management system to connect to 
the cloud. Clients can publish to and subscribe to a broker 
using the publish/subscribe protocol MQTT. Security: It 
works by creating a permanent connection between a 
device and a MQTT broker using WebSocket. Through 
client x509 digital certificates and Transport Layer Security 
(TLS), the WebSocket connection will be protected. Each 

device will receive a client x509 certificate that will be 
stored in a safe memory on the Node MCU through a 
secure out-of-band technique (Zhang et al., 2012; Zhu et 
al., 2019). Scalability: Cloud computing solutions give us 
the option to add resources, including storage. After that, 
the entire collection of data is uploaded to the cloud, 
where we may view and use it. Energy Harvesty: 
particularly for long-term, low-consumption electronic 
systems that run on their own. The system can potentially 
be powered by solar energy because to its low power 
usage capable of interacting with any MQTT broker that 
accepts MQTT over Web sockets as shown in Figure 2. 

 

Figure 2. IoT architecture for data processing and decision 

making 

 

Figure 3. ThingSpeak Code for receiving the emission gas data 

using MQTT protocol 

The proposed architecture starts with physical layer of 
four integrated sensors data acquisition followed by 
analyzing the ecological condition to communicate to the 
gateway. Once it reaches the network layers, the most 
pointed data acknowledgement will be initiated with 
cloud server for continuous data processing and storing in 
the cloud under specified decoding as shown in Figure 3. 
An open-source firmware and development kit called 
Node MCU aids in the creation of IoT-based application 
frameworks for municipal solid waste (MSWM) 
management emission gas monitoring system (Lee et al., 
2016). 

3.3. Analysis of gaseous emissions 

A complex Application Programming Interface (API) for IO 
devices was made easy to use by Node MCU. The amount 
of effort spent configuring and modifying hardware 
devices can be decreased with the aid of APIs. The Node 
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MCU has the benefit of being programmable with an 
open-source IDE and a range of programming languages. 
Using the Arduino IDE, the emission gas monitoring code 
will be directly uploaded to the node MCU device. In the 
meanwhile, a little Wi-Fi integrated chip called the 
ESP8266 is employed. For storing and retrieving data from 
objects that use HTTP (Hypertext Transfer Protocol) 
through the Internet or a local area network, ThingSpeak 
is an open-source internet of things (IoT) platform and API 
(LAN-Local Area Network). Bitrates of the each hub ports 
are examined and trend rate will be taken with timestamp 
as shown in Figure 4 by confirming the enhanced 
throughout for the entire wireless communication. It is 
inferred from Figure 4 that the bit rate was slow of around 
14dB initially and when it attains proper signal to noise 
ratio holding stronger signal strength it reaches to around 
24dB to show that the wireless communication is in 
continuous without loss of data packets. 

 

Figure 4. Bitrate analysis of four ports on transmitting emission 

gas data 

3.4. Proposed model 

It also functions as a data collector, gathering information 
from node MCU devices and loading it into the software 
environment for analysis of past data. The core of the 
ThingSpeak system is a channel, which consists of a data 
field, a position field, and a status field. Users have access 
to a wide variety of embedded devices and web services 
to incorporate the internet of things (IoT) supported with 
MATLAB (Matrix Laboratory) codes as shown in Figure 5. 
Additionally, it can gather, store, process, visualise, and 
act on data coming from sensors or actuators like Arduino, 
Node MCU and Raspberry Pi. Applications for sensor 
logging and position tracking are supported by 
ThingSpeak, for instance. 

Path-loss and interference are two of these characteristics 
that are influenced by the propagation channel 
environment (LLiu and Zheng, 2020). Empirical channel 
models and deterministic channel models are the two 
types of channel models used to describe radio wave 
propagation. However, accurately applying deterministic 
channel models will result in incredibly complex 
mathematical formulations for handling real-world issues 
that involve an infinite number of elements and several 

types of material with various electromagnetic properties. 
Empirical channel models describe radio wave 
propagation based solely on measurements and 
observations. These models can also produce accurate 
predictions with a fair amount of computing. Empirical 
channel models are frequently employed in network 
planning because they produce reliable prediction results 
with a reasonable computing cost. In the proposed work, 
to examine the efficiency of data transmission, each port 
bit rates are analysed in the ThingSpeak platform by 
storing reception rate for every minute of ports 4 and 5. 

 

Figure 5. Estimated sensor offset value for acquiring real-time 

data from the landfills 

Since, the module starts to fetch the data from the 
surrounding landfill, there will be influence of extreme 
temperature, pressure and humidity to fetch the emission 
gas rate. Hence, the sensor offset has been observed by 
taking the lag spectrum on the sending of data from the 
sensors which is given in Figure 5. It confirms that the 
once the four emission gas values retain at the same level, 
the sensor offset values leads to higher level of 1.7s 
otherwise when there exists the change of emission gas 
influence, the sensors send data to the cloud server by 
having sensor offset as minimum as 1.02s. Hence, 
adaptive continuous emission gas monitoring system for 
Municipal Solid Waste is developed and experimental 
data have been recorded for data analysis (Liu et al., 
2022). 

4. Results and discussion 

4.1. Real-time analysis of the vendipalaym mulnicipal 
waste composition on the available landfills 

There are roughly 56,789 people living in the undertaken 
area of Vendipalayam, and most of them live in single-
family homes. With an average daily generation per 
inhabitant of 1.9 kg, the entire village area generates 
89,457 tonnes of overall waste products annually. The 
solid wastes that were transported to the Vairapalayam 
yards in 2022 — including both residential and 
commercial waste was investigated in this study, as well 
as waste that was accepted from neighbouring Erode 
concerned communities. Municipal hazardous solid trash 
drop-offs and some construction wastes are also included 
in the municipal wastes. A total of 79,963 tonnes of 
municipal waste were produced in 2022, of which 48,223 
tonnes (32% of the material received in 2022) were 
organic waste. 24,763 tonnes (36% of the total) of the dry 
materials were recyclables and mixes. The analysed solid 
wastes constituents are shown as Figure 6. 
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Figure 6. Physical composition of solid waste 

 

Figure 7. Chemical composition of solid waste 

From the Physical Characterization of solid wastes, the 
following are identified such that landfill mostly consists 
of Municipal solid waste the highest fraction present is 
Compostable Matter and accounts for 41.7%.  The Lowest 
fraction is Paper with 2.2%.  

From the Figure 7, the Chemical Characterization of solid 
wastes is examined to find out the parameters like volatile 
solids, ash content, moisture content, calorific value, total 
carbon, pH, C/N ratio, etc after extensive segregation. The 
highest composition identified is volatile solids with 63.4% 
followed by calorific value and total carbon content of 
52.3% and 49.77% respectively. Nitrogen, Phosphorous 
and potassium concentration is very less as the soil 
encourages only stunted growth of plants. Once the 
physical and chemical constituents of the municipal solid 
waste available in the Vendipalayam area is examined, the 
main intention of analyzing the economic stability and 
eco-friendly of the specified environment is important. So 
that the emission gases evolving seem to be the most 
influencing harmful parameter which have to be 
examined to warn the nearby municipal sector to enhance 
the human well-being of that Vendipalayam area. Hence 
using IoT module, the four gaseous emission carbon 
dioxide and nitric oxide followed by hydrogen sulphide 
and methane were measured using gas sensor and stored 
in the cloud. In order to observe the hazard level of the 
gas impact, the data were retrieved from the cloud and 
subjected to data analysis using machine learning 
algorithms. Table 1 shows the retrieved real-time data of 
the gaseous emission from the solid waste landfills of the 
Vendipalayam yard. 

 

Table 1. Cloud retrieved rate of gaseous emissions from the solid waste landfill zone in Erode 

Day Daily Average (in ppm) 

 CO2 (x103) NO2 (x103)      CH4 (x103)   H2S (x103) 

DAY 1 30.33 10.04 3.52 9.26 

DAY 2 27.93 10.45 3.12 10.66 

DAY 3 27.93 10.11 3.12 8.635 

DAY 4 31.92 9.86 3.5 9.22 

DAY 5 29.89 11.3 4.8 9.83 

DAY 6 32.23 10.7 4.57 10.92 

DAY 7 33.78 10.78 4.12 10.23 

DAY 8 33.09 10.04 3.53 9.25 

DAY 9 33.11 10.04 3.54 9.26 

DAY 10 33.08 9.8 3.54 9.27 

DAY 11 33.06 10.04 3.65 9.40 

DAY 12 33.02 9.61 3.65 9.27 

DAY 13 32.96 10.02 3.65 10.40 

DAY 14 33.71 10.66 4.24 10.26 

DAY 15 32.98 9.91 3.66 9.27 

DAY 16 32.94 9.1 3.66 9.25 

DAY 17 32.92 10.2 3.66 9.51 

DAY 18 32.91 9.91 3.66 9.26 

DAY 19 32.89 9.93 3.66 9.27 

DAY 20 32.88 10.1 3.68 9.29 

DAY 21 32.88 9.94 3.68 9.5 

DAY 22 32.86 10.05 3.68 9.3 

DAY 23 33.75 10.07 3.71 9.36 

DAY 24 33.78 10.09 3.73 9.38 

DAY 25 30.33 10.04 3.52 9.26 

DAY 26 30.73 10.24 3.9 9.42 

DAY 27 28.33 10.65 3.5 10.82 

DAY 28 28.33 10.31 3.5 8.795 
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DAY 29 32.32 10.06 3.88 9.38 

DAY 30 30.29 11.5 5.18 9.99 

DAY 31 32.63 10.9 4.95 11.08 

DAY 32 34.18 10.98 4.5 10.42 

DAY 33 33.49 10.24 3.91 9.44 

DAY 34 33.51 10.24 3.92 9.45 

DAY 35 33.48 10.24 3.92 9.455 

DAY 36 33.46 10.24 3.92 9.455 

DAY 37 33.42 10.23 3.92 9.455 

DAY 38 33.36 10.22 3.92 9.455 

DAY 39 34.01 10.96 4.51 10.45 

DAY 40 33.28 10.21 3.93 9.46 

DAY 41 33.24 10.21 3.93 9.46 

DAY 42 33.22 10.21 3.93 9.47 

DAY 43 33.21 10.21 3.93 9.47 

DAY 44 33.19 10.23 3.93 9.48 

DAY 45 33.18 10.23 3.95 9.5 

DAY 46 33.18 10.24 3.95 9.5 

DAY 47 33.16 10.35 3.95 9.51 

DAY 48 34.05 10.37 3.98 9.57 

DAY 49 34.08 10.39 4 9.59 

DAY 50 34.04 10.41 4 9.6 

DAY 51 40.18 11.98 5.24 11.68 

DAY 52 43.89 12.14 5.35 12.02 

DAY 53 45.02 12.82 5.60 12.81 

DAY 54 47.24 13.41 5.89 13.08 

DAY 55 49.87 14.59 6.08 13.92 

Table 2. Statistical model ranking result to find the most priority gas emission 

Descriptive Statistics 

Gas ranking N Minimum Maximum Mean Std. Deviation 

CO2 (x103) 55 27.93 49.87 33.6860 4.12690 

NO2 (x103) 55 9.10 14.59 10.5055 .92725 

H2S (x103) 55 8.635 13.920 9.88545 1.053580 

CH4 (x103) 55 3.12 6.08 4.0349 .64555 

 

 

Figure 8. Graphical representation of various gas emission rate 

statistics 

In order to analyze the environmental sustainability, the 
multiple gas emission data have been undertaken, but 
when it comes to control strategy it is important to 
concentrate on the most predominant factors for better 
prevention. Since four gases such as carbon dioxide, 
Nitrogen dioxide, Hydrogen sulphide and methane have 
been monitored for 55 days have been taken for 
validation as shown in Figure 8. It is very important to 
identify the most prioritizing factor among four to get 

proper alert and warning to the nearby location to resolve 
the global issues of human health. Hence initially, the data 
are put to the descriptive statistics analysis, to find the 
individual impact on the ranking wise analysis. Table 2 
gives the numerical result of the descriptive statistical 
model with ranking from 1 to 4 in which carbon dioxide 
emission takes the highest priority as compared with NO2, 

H2S and CH4. Because CO2 emission holds the maximum 
emission rate of 49.87 (x103) kg holding mean of 33.6860 
with standard deviation of 4.126. Also, CH4 attain the 
least ranking by mean around 4.034 with standard 
deviation as 0.6444 with the maximum emission rate of 
6.08(x103) kg. 

Further, to evaluate the correlation among the gaseous 
emission due to the existence from the same municipal 
solid waste area, it is important to evaluate the 
significance level on the monitored datasets. Partial 
correlation analysis is carried out to find the individual 
emission rate coefficient value. From Table 3 it is inferred 
that the CO2 holds the correlation factor of 1 which 
indicates the most influence on the gathered gas emission 
rates. Others followed by NO2 and H2S by ignoring the CH4 
which infers that it holds the least coefficient value with 



84  Vijayashanthy et al. 

null-hypothesis. The significance value of CO2 indicates its 
less than 0.05 indicates the strong dominant correlation 
on comparing with the other emission rates of the 

Vendipalayam area for further alertness and precaution 
steps of analysis. 

 

Table 3. Correlation coefficient value of emission gas for finding the highest priority 

Correlations 

Ranking 1st three options CO2 (x103) NO2 (x103)   H2S (x103) 

Partial correlation 
coefficient ranking orders 

CO2 (x103) Correlation 1.000 .331 .409 

Significance (2 - tailed) . .015 .002 

df 0 52 52 

NO2 (x103) Correlation .331 1.000 .671 

Significance (2 - tailed) .015 . .000 

df 52 0 52 

H2S (x103) Correlation .409 .671 1.000 

Significance (2 - tailed) .002 .000 . 

df 52 52 0 

 

From this multiple gas sensors emission rate descriptive 
statistical results, the emission of carbon dioxide seems to 
be in higher rate as compared with nitrogen dioxide, 
hydrogen sulphide and methane. Hence there should be 
the need of continuous emission monitoring equipment’s 
for suggesting Greenhouse gas mitigation measures and 
validating the sources of carbon dioxide emission is 
necessary to reduce the gas rate in and around 
Vendipalayam zones. 

4.2. Real - time assessment of carbon dioxide sources and 
its characterization 

4.2.1. Assessment of CO2 emissions 

Since identifying the source the carbon dioxide emission is 
important, the proposed work starts with the recording of 
carbon emission from different disposal methods like 
Open burning/Incineration, Composting and Land 
treatment units was determined using empirical formulas 
from 2006 IPCC guidelines (Ma et al., 2019) to predict the 
CO2 inventories from the solid wastes incurred in the 
landfill site based on Daily waste generation rate. The 
data required for detailed analysis is listed below which 
has been taken for the proposed research work: 

WF     = 1  

DM / TS   = 77.2 % 

CF / CC    = 49.77 % 

FCF     = 35.87 % 

OF     = 100 % 

EFcompost     = 0.44 kg CO2 

4.2.2. Carbon emission from open burning / incineration 

CO2 emission due to open burning or incineration of 
municipal solid waste was calculated using 2006 IPCC 
Guidelines for National Greenhouse gas (GHG) 
inventories. Equation 1 is used to calculate the carbon 
dioxide gas emission from the incineration as follows 

( )2        
44

   [ ]
12

     CO Emissions MSW x WF x DM x CF x FCF x OF x= 

 
(1) 

CO2 Emissions = CO2 emissions (kg CO2/ day) (0.05053); 
MSW = Municipal solid waste as wet weight incinerated or 
open-burned (MT/day); WF = Fraction of waste type in the 
MSW; DM = Dry matter content; CF = Fraction of carbon in 
the dry matter; FCF = Fraction of fossil carbon in the total 
carbon of component; OF = Oxidation factor; 44 = 
Molecular weight of CO2 (kg/kg-mol); 12 = Molecular 
weight of carbon (kg/kg-mol). 

 

Figure 9. Recorded Carbon Emission from Open Burning / 

Incineration 

Figure 9 confirms that the maximum CO2 emission of 
14,337 kg is recorded in the month of November is on 4th 
and the minimum emission occurred is 2,920 kg on 24th 
November. For the December maximum and minimum 
emissions are 27,574 kg and 2346 kg respectively. In the 
month of January 24,674 kg of CO2 is emitted as maximum 
and 1,701 kg as minimum rate. The emission inventories 
have started to decrease to 9,946 kg as maximum and 
2,578 as minimum CO2 emission in the month of February.  

4.2.3. Carbon emission from composting facility 

The CO2 emission from the composting facility was 
determined by the following Equation 2 as given 

( ) ( )2      0.3396ECO EFcompost Mcompost x TS=  
(2) 

ECO2 = CO2 emissions (kg CO2/ day); EFcompost = CO2 
emission factor for composted material (kg CO2/ kg dry 
solids); Mcompost   = Municipal solid waste deposited to 
the compost process (MT/day, wet basis); TS = Total solids 
content of waste material (i.e., Dry matter content)  
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Figure 10. Recorded Carbon Emission from Composting Facility 

From Figure 10 it is inferred that the maximum CO2 
emission of 96,355kg is recorded in the month of 
November is on 4th and the minimum emission occurred 
is 19,625kg on 24th November. For the December 
maximum and minimum emissions are 1,85,320 kg and 
15,764 kg respectively. In the month of January 1,65,827 
kg of CO2 is emitted as maximum and 11,434 kg as 
minimum rate. The emission inventories have started to 
decrease to 66,845 kg as maximum and 17,326 kg as 
minimum CO2 emission in the month of February.  

4.2.4. Carbon emission from land treatment units 

It is finally vital to examine the carbon dioxide emission 
from the land treatment units to decide which month, the 
gas emission seems to be in higher range to design the 
alert system from the local control sector. The following 
Equation 3 considered to evaluate the CO2 emission from 
the land treatment unit: 

2

44
     ]   [

12
ECO Mw x TS x CCw x=

 
(3) 

ECO2 = CO2 emissions (kg CO2/ day) (1.4088); Mw = 
Municipal solid waste deposited to the land treatment 
unit (MT/day, wet basis); TS = Total solids content of 
waste material (kg dry solids / kg wet solids); CCw = 
Carbon content of waste material (kg C/ kg dry solids); 44= 
Molecular weight of CO2 (kg/kg-mol);12= Molecular 
weight of carbon (kg/kg-mol). 

 

Figure 11. Recorded Carbon Emissions from Land Treatment 

Units 

From Figure 11 it is clear that the maximum CO2 emission 
of 3,99,719 kg is recorded in the month of November is on 
4th and the minimum emission occurred is 81,415 kg on 
24th November. For the December maximum and 

minimum emissions are 3,64,534 kg and 65,397 kg 
respectively. In the month of January 24674kg of CO2 is 
emitted as maximum and 1701kg as minimum rate. The 
emission inventories have started to decrease to 9946kg 
as maximum and 2578 as minimum CO2 emission in the 
month of February. From the graphical analysis, the alert 
system has to be formulated mainly on the January month 
to control the emission of carbon dioxide to the 
vendipalayam area mainly by the land treatment units. 
Because its impact is in much higher rate as compared 
with composting facility followed by open burning and 
incineration. 

Recommendations: Based on the experimental real-time 
analysis, few recommendations may be implemented as 
best practices for preventing emission of greenhouse 
gases as follows: 

• 3 R (Reduce, Reuse and Recycle) Principles can be 
pursued for decreasing the waste generation and 
disposal rates. 

• Suitable Segregation and Treatment methods 
shall be opted by all the individuals at the source 
of generation itself for best results. 

• Landfill Gas recovery, Improved Landfill practices 
may be suggested for the improved management 
strategies. 

• By the expanded sanitation coverage and via 
controlled composting, significant Greenhouse 
gas emissions can be reduced. 

• Recovering energy from refuse (landfill gas, 
anaerobic digester, biogas and incineration) form 
will form a gradual reduction of those emissions 
through the preservation of raw substances, 
enhanced energy, material competence and 
fossil fuel avoidance. 

• Adequate waste treatment methods and 
financial inducement will enrich the waste 
management options to attain the diminution 
goals. 

• By creating Awareness on mitigation potentials 
could be made useful to reduce greenhouse 
gases emission. 

• Collection of Coordinated National and 
International data using the smart sensors will 
found to provide overview of the emission 
trends to pollution control board officials to 
suggest proper treatment methods. 

• Standardized data analysis after field validation 
of models shall be continued to identify the 
impacts occurred due to emission phenomenon. 

• Performing life-cycle assessment (Carbon 
Footprint) periodically using ICT (Interactive 
Communication Tools) tools may help to 
decrease the catastrophic effects of noxious 
emissions. 
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Table 4. Measured ground water pollution (Monthly Average) 

Sample 
Locations  
(20 Acres) 

pH Hardness BOD 
(mg/L) 

COD 
(mg/L) 

Chlorides 
(mg/L) 

Sulphates 
(mg/L) 

TDS 
(mg/L) 

Alkalinity 
(mg/L) 

EC (ppm) 

S1 8.9 337 7.35 28 1266 296 814 453 1271 

S2 8.3 326 6.81 27 1729 245 862 412 1589 

S3 8.7 351 7.07 31 1320 282 820 440 1312 

S4 8.1 315 6.77 21 1755 325 792 400 1603 

S5 6.9 260 5.51 13 1853 280 912 361 1637 

S6 9 228 7.83 36 1200 358 621 468 1197 

S7 5.6 192 4.21 34 2098 286 967 298 1744 

S8 7.8 268 6.12 26 1800 312 714 384 1623 

S9 8.5 283 7.13 31 1685 269 828 426 1573 

S10 6 216 4.58 28 1997 259 926 344 1645 

Table 5. Predicted ground water pollution range for 2023 (January-April) based on 2022 pollution occurrence rates 

t year quarter deviation from normal 
performance (%) 

MA (4) CMA St De-seasonalize Predicted 

1 1st Quarter (2022) 1 1.8   1.18 1.53 3.76 

2  2 1.1   0.72 1.53 2.39 

3  3 3.8 2.55 3.05 1.15 3.30 4.02 

4  4 3.5 3.55 3.68 1.08 3.24 3.93 

5 2nd Quarter (2022) 1 5.8 3.825 3.7 0.90 6.42 3.43 

6  2 2.2 3.575 3.68 0.77 2.87 3.03 

7  3 2.8 3.8 3.56 1.13 2.47 4.64 

8  4 4.4 3.325 3.37 1.21 3.63 5.15 

9 3rd Quarter (2022) 1 3.9 3.425 3.88 0.90 4.32 3.97 

10  2 2.6 4.35 4.4 0.77 3.39 3.49 

11  3 6.5 4.45 4.56 1.13 5.74 5.33 

12  4 4.8 4.675 4.87 1.21 3.96 5.89 

13 4th Quarter (2022) 1 4.8 5.075 4.98 0.90 5.32 4.52 

14  2 4.2 4.9 5.01 0.77 5.47 3.96 

15  3 5.8 5.125  1.13 5.12 6.01 

16  4 5.7   1.21 4.70 6.62 

17 Next Quarter 1 ?   0.90  5.07 

18  2 ?   0.77  4.42 

19  3 ?   1.13  6.70 

20  4 ?   1.21  7.36 

 

4.3. Analyzing the impact of solid waste landfills on the 
ground water 

Municipal solid waste (MSW) landfills are widespread, and 
the numerous hazardous items they house present a 
major threat to both the local environment and human 
populations. Because municipal solid waste from the local 
dumping site could be a source of pollution, areas close to 
landfills are more likely to have contaminated 
groundwater. Due to the sharp expansion in population, 
the effect of landfill on the surface and groundwater has 
been the subject of numerous research in recent years. 
Users of the local groundwater supply and the 
environment are both at significant danger as a result of 
this groundwater contamination. Once debris has been 
placed in a landfill, leachate may percolate to the ground's 
surface and cause contamination. Groundwater and the 
accompanying aquifer become unreliable for home water 
supply and other applications when contaminated by such 
leachate. The use of leachate-contaminated groundwater 

from these dumps is the threat to human health that is 
most frequently mentioned. Groundwater resources have 
been documented to be contaminated by MSW Landfill 
Leachate in a number of studies, particularly from unlined 
and uncontrolled landfills. In undeveloped and emerging 
nations, where landfills are typically uncontrolled open 
dumps and hazardous industrial waste is also co-disposed 
with municipal garbage, the threat posed by such landfills 
to groundwater resources is greater. By analyzing the 
greenhouse gas impact and assessment on concern with 
municipal solid waste management, it is very vital part to 
examine the quality of the ground water for the human 
survival on the Vendipalayam area. To evaluate the 
contamination of surface and groundwater, a variety of 
methods can be applied. It can be evaluated by either 
measuring the contaminants experimentally or estimating 
them through mathematical modelling. 

From different locations, Groundwater Samples (Point 
Sources) are collected on daily basis for two months and 



WATER POLLUTION AND CARBON DIOXIDE EMISSIONS FROM SOLID WASTE LANDFILLS  87 

water quality parameters such as pH, Turbidity, Chlorides, 
Sulphates, Alkalinity, Total Hardness, Electrical 
conductivity, TDS were analyzed in and around the 
dumping yard and Monthly average values are displayed 
in Table 4. Many locations shows that the water quality 
level is not pertaining to the permissible limits due to 
waste dumping activities and untreated effluents from 
industrial discharges. Due to seasonal differences in the 
type of waste dumped and different climates, it is 
observed that changes in solid waste creation and 
chemical properties take place (Saravanan et al., 2023; 
Arumugam et al., 2022). Additionally, it is discovered from 
the chemical properties of solid waste that variations in 
concentration level happen when waste layers 
deteriorate. The depth of the garbage pits at landfill sites 
varies, hence the waste layer's thickness is not constant. 
The temporal change of ground water pollution levels is 
also caused by the fluctuating age and thickness of waste 
compartments. 

From Table 4, it is inferred that the with levels of 
wastewater parameters including Chemical Oxygen 
Demand (COD), Biochemical Oxygen Demand (BOD), 
ammonium nitrogen, turbidity, and solids that are many 
times higher than those in municipal effluents, the 

leachate that is thus produced is a high strength 
wastewater. If soluble or suspended organic materials, 
ammonium nitrogen, and inorganic ions such heavy 
metals are not adequately collected, processed, and safely 
disposed of, leachate produced as a result of moisture 
release, precipitation, and infiltration will readily grow. In 
order to predict the ground water pollution for the 
upcoming month for better resolvent, hardness and 
chlorides parameters are considered as the main primary 
parameters to find the future forecasting of ground water 
pollution range. 

To execute the linear regression analysis, find the 
abnormality have to be identified, so the normal standard 
range of hardness and chlorides threshold values have to 
be fixed as the boundary limit. The ideal range for drinking 
water hardness is between 80 and 100 mg/L. In the 
majority of the province's regions, water with a hardness 
of over 200 mg/L is regarded as bad, and water with a 
hardness of over 500 mg/L is typically regarded as 
inappropriate for residential use (Sundar et al., 2022). 
Chloride in drinking water must not exceed a maximum of 
250 mg/L. Instead of health factors, this criterion is based 
on taste considerations. 

 

Table 6. Regression output for the ground water pollution 

Regression Statistics 

Multiple R 0.862 

R Square 0.838 

Adjusted R Square 0.8183 

Standard Error 1.222 

Observations 16 

ANOVA 

  df SS MS F Significance F 

Regression 1 16.346 16.346 10.929 0.0001 

Residual 14 20.938 1.4955   

Total 15 37.284    

 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95% Upper 95% 

Intercept 2.117 0.641 3.3018 0.005 0.7420 3.4929 0.742 3.492 

X Variable 0.2192 0.066 3.3059 0.005 0.0770 0.3615 0.077 0.361 

 

Time series forecasting of ground water pollution using 
linear regression analysis have been executed. The 
dataset is derived from the water analysis test taken from 
ten sample area location of vendipalayam to examine the 
impact of municipal solid waste landfills on the localized 
areas. It is inferred that it is not only the affects the 
environment sustainability but also the ground water due 
to the deposition of chemicals influences by the solid 
wastes. Table 5 gives the input of the forecasting as the 
deviation range of ground water of 2022 year samples 
taken from the water test report to predict the possible 
ground water pollution range to occur in the 2023 first 
quarter months. The dataset is validated by taking moving 
average for every quarter analysis followed by finding the 
center moving average to get the threshold level for the 
2023 pollution prediction. By taking intervals of centre 
moving average, the slope value of the best fit line of the 
linear regression will be finalized to fit the successive 

quarter deviated dataset. Table 6 gives the regression 
summary output to find the probability of the forecast 
model on finding the 2023 first quarter ground water 
pollution range in percentage. 

From Table 6, it is confirmed that the predicted ground 
water pollution estimation for 2023 model holds the R 
square value of 83.8% making the analysis to be best fit 
with the real-time validating model. Also, the standard 
error is found to be less than 2 confirming the residua 
rates are in the normal probability distribution template. 
Further, to analyze the null-hypothesis, the significance 
value is found to be less than 0.05 shows that the model 
gets well formulated from the given dataset. The sum of 
square value for the residual is around 20.938 with 
sufficient sig value holds higher degree of probability. The 
F-distribution of the test statistic is null under the null 
hypothesis. The F-statistics holds value of 10.929 
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determine which statistical model better represents the 
population from which the data were sampled, it is most 
frequently applied when contrasting models that have 
been fitted to data sets. 

 

Figure 12. Predicted ground water pollution of the proposed 

area of vendipalayam 

Figure 12 shows the predicted visual representation of the 
Vendipalayam ground water pollution probability possible 
to occur in future. From the regression summary graph, it 
shows that an active landfill is influenced by age, type of 
garbage discharged, and climatic circumstances, according 
to the variation in Vairapalayam yards leachate 
characteristics. Both varieties pose a serious concern to 
the environment and public health due to their extremely 
high contamination potential compared to municipal 
sewage. The outcomes of the leachate toxicity bio assay 
further demonstrate how crucial it is to conduct such eco-
toxicological evaluations in order to identify detrimental 
effects on the environment. The study unequivocally 
shows that leachate can cause serious harm if it is 
permitted to immediately leak into surface water or reach 
the groundwater aquifer. Therefore, upgrading the landfill 
is strongly advised in order to manage and reduce the 
effect of Vendipalayam municipal solid waste on the 
quality of the groundwater surrounding the dumping area. 

5. Conclusion 

In this proposed work, initially the ground water pollution 
potential is identified, by considering ten different 
locations in and around Vendipalayam dumping yard. 
From the samples collected it is clearly known that eight 
out of ten locations have ground water pollution. Also, a 
multidisciplinary combined approach is implemented to 
prevent the pollution using cloud computing techniques. 
Preliminary step has been taken for designing the 
networks of Internet of Things and sensors were 
wirelessly connected to the cloud which in turn provide 
continuous monitoring of the greenhouse gases emissions 
during the waste collection process in a minute wise 
manner, instead of weeks. This continuous gas emission 
monitoring system will help in reducing the pollution 
phenomenon and waste along with the likelihood of 
miserable events in the study area. Based on the waste 
generation data computed, a linear projection of gaseous 
emission is done for the next two months using Python 
coding. Periodic monitoring and analysis of COx, H2S, NOx 
and CH4 emissions along with cloud computation 
techniques will help in achieving better ambient air 

quality standards by suggesting the appropriate control 
measures then and there to the local officials for ensuring 
Environmental sustainability in and around the 
Vendipalayam dumping yard in Erode district. The results 
obtained from the modelling of COx, H2S, NOx and CH4 
emissions shows that, the peak emission of Carbon-
dioxide, Hydrogen sulphide, Nitrogen-dioxide and 
Methane will occur at a rate 57.87(x103) PPM on the 60th 
day, 19.92(x103) PPM on the 57th day, 22.12(x103) PPM 
on the 59th day and 19.12(x103) PPM on the 60th day 
respectively. Also, future forecasting of the ground water 
pollution is increasing exponentially based on the linear 
regression prediction model. So, this kind of models will 
help the decision makers to explore the futuristic 
carcinogenic emissions which will occur in and around 
Vendipalayam dumping yard along with the ecofriendly 
best practices. 
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