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Abstract 

The Internet of Things (IoT) paradigm roles a crucial play to 
enhance smart city applications by controlling and tracking 
city procedures in real-time. Among the most important 
problems connected to smart city application is solid waste 
management that is a negative impression on our people's 
health and environment. The standard garbage 
management procedure starts with waste generated by 
city populations and garbage removal bins at the source. 
Smart waste management utilizing IoT contains for 
instance analytics and group of data in sensors on smart 
garbage bins (SGBs), management of waste trucks and city 
structure, formation and optimization of garbage truck 
routes, and so on. This study introduces an Elitist Barnacles 
Mating Optimizer with Hybrid Deep Learning Model for 
waste classification (EBMOHDL-WC) in the IoT enabled 
sustainable environment. The presented EBMOHDL-WC 
system allows the IoT devices to proceed data collection 
process. Next, the EBMOHDL-WC technique uses 
MobileNetv2 model for extracting features and the 
hyperparameter adjustment of the MobileNetv2 technique 
was implemented by the EBMO technique, showing the 
novelty of the work. Finally, the waste classification 
procedure is performed using HDL classifier which 
integrates two DL models. The experimental evaluation of 
the EBMOHDL-WC technique is tested on garbage 
classification dataset from Kaggle repository. 
Experimentation outcomes of the EBMOHDL-WC 
technique exhibit competitive results over other 
techniques. 

Keywords: Sustainability, waste management, smart city, 
deep learning, internet of things, barnacle mating 
optimizer 

1. Introduction 

The Internet of Things (IoT) is an ever-growing network of 
internet-connected devices that are presently being used 
globally. Notwithstanding the recent COVID-19 outbreak, 
the IoT industry was expanding, and it can be expected that 
approximately thirty billion IoT connection would be 
existed by 2025 (Dubey et al., 2020). Modern smart 
sensors, big data, cloud computing (CC), web development 
tools, lightweight transmission protocols, and publicly-
available server programs are the allowing technology that 
speeds up the deployment and development of domain-
specific IoT systems (Sarc et al., 2019). This interconnected 
device bridges the gap betwixt the digital and physical 
worlds to improve productivity, culture, and lifestyle. IoT is 
previously shown promising approaches toward domain-
specific applications like Smart Grids, Smart Homes, Smart 
Cities, Agriculture, Wearables, Smart Supply chain 
Management, and Industrial Internet Telehealth. IoT has 
played a vital role in increasing smart city applications by 
real-time management and monitoring of city processes 
(Lin et al., 2022). The major problem related to the smart 
city application is the disposal of solid waste that impact 
the nature and health of society. Solid waste can be 
generated due to animal and human activities and is 
usually thrown away as waste (Khoa et al., 2020). Around 
2.01 billion tons of urban solid waste are annually produced 
in the world, with minimum of 33% not being managed in 
an ecologically friendly way. Figure 1 depicts the overview 
of IoT-based sustainable applications. 

The typical waste management technique initiates with 
garbage being disposed of in garbage dumps and produced 
by residents in cities at the point of construction 
(Viswanathan et al., 2022). Corporations and Municipalities 
are struggling to maintain the outside bins to decide 
whether they are completely filled or not or when to clean 
them (Zhang et al., 2019). The most serious problems of 
our time are the treatment, prevention, and tracking of 
those garbage’s (Fayomi et al., 2021). The traditional way 
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of manually checking garbage in trash bins is a laborious 
process that needs more time, and money, and human 
labor is disregarded with current technology. Smart waste 
management (SWM) plays a crucial part in the smart city, 
and it needs a complex multi-criteria technique 
(Nowakowski. and Pamuła, 2020).  

 

Figure 1. IoT based Sustainable Applications 

SWM includes analytics and group of information in 
sensors on waste trucks and city structure; smart garbage 
bins (SGBs), data and decision support for consumers 
(citizens, dispatchers, and drivers); routes planning and 
optimization; waste classification and segregation; 
monitoring of the environmental situation; payments and 
benefits for citizens. At present, this technique is based 
mainly on IoT technologies (Bircanoğlu et al., 2018), which 
form SWM systems comprising a massive amount of smart 
devices that interact with typical protocol, have virtual and 
physical features are intelligent (AI-based), and can 
process, measure, calculate, transmit, and store data. The 
usage of SWM system, viz., the use of information and 
communication technology (ICT) in waste management, 
might enhance the energy efficacy and environment 
protection of solid waste export, reduce resource 
consumption, and increase quality of life (Varudandi et al., 
2021). 

This study introduces an Elitist Barnacles Mating Optimizer 
with Hybrid Deep Learning Model for waste classification 
(EBMOHDL-WC) in the IoT enabled sustainable 
environment. The presented EBMOHDL-WC algorithm 
allows the IoT devices to proceed data collection process. 
Next, the EBMOHDL-WC technique uses MobileNetv2 
model for extracting features and the hyperparameter 
adjustment of the MobileNetv2 technique was executed by 
the EBMO technique. Finally, the waste classification 
procedure is performed using HDL classifier which 
integrates two DL models. The experimental evaluation of 
the EBMOHDL-WC technique is tested on garbage 
classification dataset from Kaggle repository.   

2. Related works 

Adedeji and Wang (2019) examine an intelligent garbage 
material classifier method that is established by utilizing 
the ResNet50 and CNN method is an ML device and assists 
as the extractor, and SVM is utilized for classifying the 
waste as to distinct groups/types namely plastic, glass, 
paper, metal, and so on. In (Wang et al. 2021), the authors 
employ the DL-based classification and CC system for 
realizing maximum accuracy waste classifier at an early 
stage of garbage group. To support the subsequent 
disposal of waste, the authors segment selective waste 
collection as to metal, plastic, glass, fabric, 

paper/cardboard, and other selective waste collection, an 
overall of 6 types. DL-based CNNs are executed for realizing 
the garbage classifier task. Latha et al. (2022) examine a 
novel approach identified as e-waste management by 
developing the dynamic CNN. It increases the classifier 
accuracy with support of correctly mapping the image 
feature. In the meantime, the group of wastes is optimized 
for reducing the time and distance. The e-wastes in the 
smart waste bin can be regularly observed by smartphone 
applications for collecting not wasting time. 

Uganya et al. (2022) introduced an automatic system for 
achieving an effectual and intelligent waste management 
method utilizing IoT by forecasting the probability of 
garbage things. The garbage size, gas level, and metal level 
are observed constantly utilizing IoT-based dustbins that 
are located around town. Afterward, the presented 
approach is tested by ML classifier systems like linear 
regression, LR, SVM, DT, and RF techniques. Rahman et al. 
(2020) reveal an able structure of waste management 
methods dependent upon DL and IoT. The presented 
technique reduces an astute approach for sorting 
digestible and indigestible garbage utilizing a CNN, a 
general DL paradigm. This method also establishes an 
architectural proposal for smart trash bin which employs a 
microcontroller with several sensors. An IoT permits 
control of realtime data somewhere but Bluetooth 
supports short-range data observation by android 
applications.  

In (Sivakumar et al., 2022), an effort is aimed to progress a 
technique termed as SmartBin. The 2 distinct techniques 
are monitored for classifying solid wastes as non-
biodegradable and biodegradable effectively. A primary 
method was dependent upon CNN and IoT, but the 
secondary system enhances many sensors to model 
established utilizing the primary method Sheng et al. 
(2020) establish a smart garbage management approach 
utilizing LoRa communication protocol and TensorFlow 
based DL technique. The bin contains many partitions for 
segregating the garbage comprising paper, metal, plastic, 
and common garbage subdivision are dependent on the 
servo motor. Waste classifier and object detection are 
complete in TensorFlow infrastructure with pre-training 
object detection method. 

3. The proposed model 

In this article, the EBMOHDL-WC technique was developed 
for sustainable waste management in IoT platform. The 
projected EBMOHDL-WC system exploited the IoT devices 
to ensure data collection process. The waste classification 
module incorporates MobileNetv2 feature extraction, 
EBMO based hyperparameter tuning, and HDL classifier. 
Figure 2 depicts the block diagram of EBMOHDL-WC 
approach. 

3.1. Data collection process 

At first, the projected EBMOHDL-WC system performs IoT-
related camera sensor to gather data, and micro-controller 
was utilized to process it (Al Duhayyim et al., 2022). The 
camera was attached on the micro-controller and is 
accountable to capture images of garbage. Generally, this 
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method was initializing and preparing for image 
acquisition. It captures an image and sends it to micro-
controller. Afterward getting the image, the micro-
controller provides the image to previously trained CNN 
element and creates a response concerning that image. 

 

Figure 2 Block diagram of EBMOHDL-WC technique 

3.2. Feature extraction process 

At this stage, the features from the waste images are 
derived using MobileNet in this study. MobileNet is a CNN 
infrastructure which is a function to account requires. 
MobileNet is utilized on mobile phones (Rashid et al., 
2020). The common variance betwixt the mobilNet and 
CNN infrastructure are in the convolutional layer or layer 
with filtering thickness based on the input image. 
MobileNetV2 enhances method efficiency for optimum 
and is extremely utilized in assignment and develops the 
benchmark to distinct model size spectra. MobilenetV2 is 
an extracting feature which is highly efficient to object 
detection, for instance, for detecting it with a single shot 
detector lite. The bottleneck of MobileNetV2 encrypts in-
between input as well as output but the inner layer 
encapsulates the model power for transforming in lesser 
level models such as pixels to superior level descriptors 
namely image types. MobileNetV2 utilizes pointwise 
convolutional and depth wise. MobileNetV2 utilizes depth 
wise and pointwise convolutional. Besides, MobileNetV2 
also further 2 novel features like the primary linear 
bottleneck, and afterward shortcut connection betwixt 
bottlenecks. During the bottleneck subdivision, there are 
input and output betwixt the models, whereas the inner 
layer or layer covers the model capability for changing the 
input in the pixel levels towards the image classification is 
known. Therefore, shortcuts betwixt bottlenecks outcome 
in quicker training and optimum accuracy. 

Followed by, the hyperparameter adjustment of the 
MobileNetv2 technique was executed by the EBMO 
system. BMO presented by Sulaiman et al. (2020) is a novel 
population-based meta-heuristic system simulated by how 
acorn barnacles replicate naturally. The 3 stages of BMO to 
optimize a provided challenge comprise initialized 
selection method and reproduction. During the initialized 
step, an array 𝑋 including 𝑛 solutions affected as barnacles 
can be generated. Mathematically, this array was 
determined as: 

1
1 1

1

N

N
n n

X X

X

X X

 
 

=  
 
 

MM  (1) 

whereas N  implies the count of decision variables and n  

signifies the size of populations. All the cells viz., decision 

variable jX  for (1 ) j N  of barnacles iX  for 1( )i n   

was limited to upper as well as lower bounds written as ub  

and lb  correspondingly. Lastly, the sorting approach was 

executed for placing an optimum barnacle at top of .X  

The secondary step of BMO chooses parents termed as Dad 
and Mum for offspring generation. A major selective 
condition for his mom and dad is the penises size referred 

to as pl . The parents with longer pl  can be chosen to 

mate under this stage. BMO implements exploitation 

procedure using pl ‐based selective randomly of 

individual’s barnacle as parent and permits fertilization of 
barnacles by only another barnacles simultaneously. The 
exploration in BMO has required by sperm cast procedure 
that occurs if a barnacle chooses other barnacles to mate 

with index superior to its pl . Eq. (2) and Eq. (3) define this 

selective mathematical model. 

( )Dbarnacle randperm n=  (2) 

( )Mbarnacle randperm n=  (3) 

whereas Dbarnacle  and Mbarnacle  are parents which are 

assumed for matting from population X  of size .n  

Eventually, the Dad and Mum barnacles create offspring 
from the reproduction stage. The genotype frequency of 
these current barnacles can be assumed depending on 
Hardy‐Weinberg rule in offspring generation. At this point, 
the predictable genotype frequency of 2 alleles D  and M  

in parents demonstrated as 2( ) ,f DD p=  2( )f MM q=  

(homozygotes) and 2( )f DM pq=  (heterozygotes) are 

utilized for computing genotypes to novel offspring. Eq. (4) 

properly reveals the generation of novel barnacles 1( )iX T +  

1

D M

r
i barnacle barnacleX p X q X + =  +   (4) 

whereas p  signifies the arbitrarily chosen interval 0 1[ , ],  q  

is equivalent to 1 p− . These 2 values are assumed as the 

percentage features which a novel offspring 1t
iX
+  inherits 

in variable Dbarnacle  of Dad and variable Mbarnacle  of 

Mum. If 0 4.p= , afterward the novel offspring obtains 40% 

features in Dad while 60% in Mom. 

BMO changes to exploration procedure named as sperm 
cast procedure if indices of both mate barnacles exceeding 

than fixed pl  value (Zamli et al., 2022). In mathematical 

process, Eq. (5) determines this casting procedure. 

1 ()
M

t t
i barnacleX rand X+ =   (5) 

whereas  ()rand  proceeds an arbitrary number in the 

interval of zero and one. In specific cases, the position 
upgrade can lead to the present solution position that is 
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duplicated or out‐of‐boundary. For the purpose S ‐box, the 

objectivity condition dictates which all the items are 
uniquely determined in the range of [0-225] (viz., with no 
repetition). Therefore, in all the updates, the position of all 

the agents (for instance, item   )is S box‐  was checked 

consequently. This elitist process led to an adaptive and 
exponential probability.  

max  

max  

iteration

iteration

t T

T
elifeP e

−

=  (6) 

During the primary part of population iterations, the eliteP  

probability has smaller results than EBMO for exploring the 
searching space arbitrarily and changing the present worse 
population. To the end of population iterations, EBMO 
inclines to concentrate on exploiting the recognized 

optimum candidate solution (viz., eliteP  is huge) using 

swapping its respective position in any chosen dimensional. 
In order to effectively work the position upgrade iteration, 
novel agentbest  is presented. The iteration continues still 

Max fit eval is obtained. Finally, the global optimum agent 

( )agentbest  is returned. 

Algorithm 1: Pseudocode of BMO Algorithm 

begin 

Initialize max ,iterationT  r  and   Max  fit eval  

( . .,   max  )i e fitness  

Initialize the population of barnacles 1 2( , , , )iX i n=   

While (stopping criteria  max    ( . .,  )iterationot met i e t T  ) 

Generate Chebyshev map, 1 2( , , )nC i n=   , 
1

1  cos ( cos ( ))nC n C
−

+ =  with random initial position 

for each member in population 1 2( . .,   , ,   , )i e i n=   

Select parents (Dad and Mum) using Eq. (2) 
and Eq. (3) 

Set ( )rp C i=  and 1q p= −  

if the indexes of parents are equal to pl  

Generate offspring using Eq. (4) 
else 

Generate offspring using Eq. (5) 
End if 

Set 

 

 max 

max iteration

iteration

t T

T
eliteP e

−

=  

if ( () )eliterand P  

Find the worst 

min ( ) 
t
i

t t
i i

x X
X arg fitness X


=  

Update the worst t
iX = generate 

random t
iX  

else 
Find the best 

max i ( ) 
t
i

t t
i i

x X
X arg f tness X


=  

Update best t
iX  in random 

dimension 
t
iX swap=  ( ,tiX  position ,p  

position )q  where p q  

end if 

end for 
Update the best barnacle if found better than previous 
best 25. Set t t l= +  

break while loop when fitness evaluation  Max fit eval  

end While 

Return the global best t
iX   

End 

The fitness choice is a critical aspect of the MBMO 
technique. The solution encoded was utilized to assess the 
aptitude (goodness) of candidate solutions. At this point, 
the accuracy value is an important criterion employed to 
design a fitness function.  

( )   max Fitness P=  (7) 

TP
P

TP FP
=

+
 (8) 

From the expression, TP represents the true positive and 
FP denotes the false positive value. 

3.3. Waste classification process 
For waste classification process, the HDL model is used. In 
the HCNN-LSTM paradigm, the CNN layer dealt with 
extracting the pattern in an automatic fashion. The series 
of features is again learned from the LSTM layer (Akilan et 
al., 2019). The proposed method continuously adjusts the 
hyperparameter on the basis of outcome from the learning 
process of the LSTM and CNN techniques. The CNN 
approach is applied for extracting correlation that exists in 
the dataset and derives variable that is desired for the 
classification process that can be done using the class 
activation map. Eq. (9) characterizes the convolution 
function l  for deriving a sequence of features. The 
convolution technique performs a product function on the 

trained data by using the feature mapping of size 1
1
lm − . The 

kernel l
i,jK  signifies different weights in all the regions to 

extract the considerable region of the feature mapping. 
Furthermore, the correlations amongst the nearby feature 
can be derived by the product operations. As well, the bias 

matrix l
iB  is exploited for modifying the weight from NN 

function. The product function can be performed on the 

amount of feature maps 1
1
lm −  and pass l

iy  to the 

succeeding convolution layer. For constructing non-linear 

decision boundaries, f(z)  in Eq. (10) represents an 

activation function as ReLU applied from thl  layer. The 
feature extraction can be done by multiple layers of 
convolutional function. 

1
1

1

1

*l l l l
i i ij j

j

x B K X

−

−

=

= +
lm

 (9) 

( ) ( )1 0

0 0

   
,     

   
l l
i i i

z if z
Y g f y f z

if z
− 

= = 


 (10) 

The pooling layer is applied to improve the classifier 
outcome and reduce the computation cost. Eq. (11) 
indicates the pooling layer function that allows to decrease 
overfitting and efficiently deriving features. T  specifies the 
stride and R  represents the size of pooling area. 



102  VIJAYALAKSHMI et al. 

1
,maxl l

ij i T r j
r R

p Y −
 +


=  (11) 

In order to model the sequential data, the LSTM model is 
applied to store temporal data. The LSTM model is 
primarily applied for learning temporal information using 
the feature derived from CNN. Eq. (12) is defined by the 
three gate states that achieve the LSTM function that 
manages the sequential data as a continuous value within 
zero and one. All the cells hold forgotten input and output 

gates. Eq. (12) shows the output value of , ,i f  and o  for all 

the gates. Furthermore, in order to collect long term data, 

the hidden state rh  of LSTM cell can be transcribed for all 

the r  steps. Eq. (14) represents the hidden state of LSTM. 
Finally, Eq. (14) is defined by the cell state to transmit the 
state from existing to following one in the LSTM. Now, all 
the cells store the weight W  vector and adjust the bias b  

vector values. The activation function   such as sigmoid 

and hyperbolic tangents are applied for the generation of 
nonlinear decision boundaries. 

1

1

i
l
t fl

l
ot

c

i sig oid b

f sigmoid h b
w

o sigmoid bh

g tanh b

−

−

    
      
      = +
      

           
     

m

 (12) 

1
O o

r t t tc f c i g−= +  (13) 

( )oOt t th c=  (14) 

Eq. (15) shows the function of fully connected layer. The 
outcome of FC layer is classified into zero or one using the 
softmax  function.  

( )( )1 1 1
 

l l l l
i ji i i

j

d W h b − − −= +  (15) 

( )
( )

( )

1

1

1
k

exp
| a

 exp 
c

L L

c C N L

k

d w
P c d rg ax

d w

−


−

=

=


m  (16) 

Now C  represents the class, L  indicates the former layer 

index, and cN  shows the overall amount of classes.  

Table 1.Details of dataset 

Image Class Number of Images 

Cardboard 393 

Glass 491 

Metal 400 

Paper 584 

Plastic 472 

Trash 127 

Total Number of Images in Dataset 2467 

4. Results and discussion 

In this section, the waste classification outcome of the 
EBMOHDL-WC model was tested utilizing the waste 
classifier database in Kaggle repository 
(https://www.kaggle.com/datasets/asdasdasasdas/garbag
e-classification). The database contains 2467 instances 

with 6 classes as shown in Table 1. Figure 3 exhibits the 
sample images. The proposed model is simulated using 
Python 3.6.5 tool on PC i5-8600k, GeForce 1050Ti 4GB, 
16GB RAM, 250GB SSD, and 1TB HDD. The parameter 
settings are given as follows: learning rate: 0.01, dropout: 
0.5, batch size: 5, epoch count: 50, and activation: ReLU. 

 

Figure 3. Sample images 

In Figure 4, the confusion matrices of the EBMOHDL-WC 
model on waste classification process are demonstrated. 
The figure pointed out that the EBMOHDL-WC model has 
identified six types of waste classes. 

 

 

Figure 4. Confusion matrices of EBMOHDL-WC approach (a) 

Epoch 500, (b) Epoch 1000, (c) Epoch 1500, and (d) Epoch 2000 

Table 2 reports overall waste classification results of the 
EBMOHDL-WC approach under varying epochs. The results 
implied that the EBMOHDL-WC system has identified six 
different types of waste. Figure 5 represents a brief 
classifier result of the EBMOHDL-WC model in terms of 

balaccu , nprec , and lreca . The figure highlighted that the 

EBMOHDL-WC model has accurately categorized six waste 
classes. For sample, on 500 epochs, the EBMOHDL-WC 

system has attained average balaccu  of 96.39%, nprec  of 

89.41%, and lreca  of 87.36%. Concurrently, on 1000 

epochs, the EBMOHDL-WC approach has reached average 

balaccu  of 97.64%, nprec  of 92.65%, and lreca  of 91.87%. 

Simultaneously, on 2000 epochs, the EBMOHDL-WC 

system has gained average balaccu  of 98.04%, nprec  of 

93.89%, and lreca  of 93.33%. 

https://www.kaggle.com/datasets/asdasdasasdas/garbage-classification
https://www.kaggle.com/datasets/asdasdasasdas/garbage-classification
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Table 2 Waste classifier outcome of EBMOHDL-WC approach with varying epochs  

Class  Accuracybal Precision Recall F-Score MCC Jaccard Index 

Epoch-500       

Cardboard 97.57 91.32 93.64 92.46 91.02 85.98 

Glass 95.34 86.29 91.04 88.60 85.72 79.54 

Metal 94.53 87.54 77.25 82.07 79.07 69.59 

Paper 96.31 89.44 95.72 92.47 90.12 86.00 

Plastic 96.15 91.07 88.56 89.80 87.44 81.48 

Trash 98.46 90.83 77.95 83.90 83.36 72.26 

Average 96.39 89.41 87.36 88.22 86.12 79.14 

Epoch-1000       

Cardboard 98.42 94.25 95.93 95.08 94.15 90.62 

Glass 97.12 93.21 92.26 92.73 90.94 86.45 

Metal 96.76 90.61 89.25 89.92 88.00 81.69 

Paper 97.49 92.51 97.26 94.82 93.22 90.16 

Plastic 97.20 94.48 90.68 92.54 90.85 86.12 

Trash 98.82 90.83 85.83 88.26 87.68 78.99 

Average 97.64 92.65 91.87 92.23 90.80 85.67 

Epoch-1500       

Cardboard 98.18 93.50 95.17 94.33 93.24 89.26 

Glass 96.51 91.75 90.63 91.19 89.02 83.80 

Metal 95.95 87.50 87.50 87.50 85.08 77.78 

Paper 97.08 91.97 96.06 93.97 92.08 88.63 

Plastic 96.43 91.92 89.19 90.54 88.36 82.71 

Trash 98.66 91.23 81.89 86.31 85.74 75.91 

Average 97.14 91.31 90.07 90.64 88.92 83.02 

Epoch-2000       

Cardboard 98.74 95.71 96.44 96.07 95.32 92.44 

Glass 97.61 93.20 94.91 94.05 92.56 88.76 

Metal 97.16 92.53 89.75 91.12 89.44 83.68 

Paper 98.14 95.29 96.92 96.10 94.88 92.48 

Plastic 97.53 94.00 93.01 93.50 91.98 87.80 

Trash 99.07 92.62 88.98 90.76 90.29 83.09 

Average 98.04 93.89 93.33 93.60 92.41 88.04 

 

 

Figure 5 yAccu , nPrec , and lReca  outcome of EBMOHDL-WC 

approach with varying epochs 

Figure 6 signifies a detailed classifier outcome of the 

EBMOHDL-WC algorithm with respect to scoreF , MCC, and 

JI. The figure demonstrated that the EBMOHDL-WC 
approach has accurately considered 6 waste classes. For 
sample, on 500 epochs, the EBMOHDL-WC system has 

achieved average ScoreF  of 88.22%, MCC of 86.12%, and JI 

of 79.14%. Concurrently, on 1000 epochs, the EBMOHDL-

WC algorithm has accomplished average scoreF  of 92.23%, 

MCC of 90.80%, and JI of 85.67%. Likewise, on 2000 epochs, 

the EBMOHDL-WC method has reached average scoreF  of 

93.60%, MCC of 92.41%, and JI of 88.04%.   

 

Figure 6. scoreF , MCC, and JI outcome of EBMOHDL-WC 

approach with varying epochs 
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Figure 7 TACC and VACC outcome of EBMOHDL-WC approach 

The TACC and VACC of the EBMOHDL-WC approach are 
investigated on waste classifier performance in Figure 7. 
The figure referred that the EBMOHDL-WC algorithm has 
shown better performance with enhanced values of TACC 
and VACC. It is noticeable that the EBMOHDL-WC system 
has reached maximal TACC outcomes. 

The TLS and VLS of the EBMOHDL-WC technique are tested 
on waste classifier performance in Figure 8. The figure 
implied that the EBMOHDL-WC methodology has exposed 
optimum performance with minimal values of TLS and VLS. 
It is evident that the EBMOHDL-WC model has resulted in 
lesser VLS outcomes. 

An evident precision-recall study of the EBMOHDL-WC 
approach in the test database is displayed in Figure 9. The 
figure stated that the EBMOHDL-WC system has led to 
higher values of precision-recall values in several epochs. 

A comprehensive ROC exploration of the EBMOHDL-WC 
system in the test database is illustrated in Figure 10. The 
outcome referred that the EBMOHDL-WC algorithm has 
revealed its capability in classifying varying epochs.  

 

Figure 8.TLS and VLS outcome of EBMOHDL-WC approach 

In Table 3 and Figure 11, an overall comparison analysis of 
the EBMOHDL-WC approach on waste classification 
process is examined in detail (Al Duhayyim et al., 2022). The 
experimental values indicated that the ResNet50, VGG16, 

and AlexNet models have obtained poor classification 
performance. At the same time, the MLH-CNN model has 

resulted in reasonable yaccu  of 91.94%, nprec  of 91.28%, 

lreca  of 91.30%, and scoreF  of 90.46%.  

 

Figure 9. Precision-recall outcome of EBMOHDL-WC approach 

 

Figure 10. ROC outcome of EBMOHDL-WC approach 

 

Figure 11. yAccu  analysis of EBMOHDL-WC approach with 

other recent methodologies 

 

Table 3.Comparative analysis of EBMOHDL-WC system with other recent methodologies 

Methods yAccu  
nPrec  lReca  ScoreF  

EBMOHDL-WC 98.04 93.89 93.33 93.60 

AEOIDL-SWM 97.14 92.09 91.48 91.72 

MLH-CNN 91.94 91.28 91.30 90.46 

DLSODC-GWM 96.93 90.30 90.92 91.81 

RestNet50 73.55 71.75 72.06 71.62 

VGG16 72.46 69.54 69.09 67.30 

AlexNet 67.39 62.82 68.73 65.39 
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Contrastingly, the DLSODC-GWM and AEOIDL-SWM 
models have accomplished competitive performance. But 
the EBMOHDL-WC model has shown improved 

performance with yaccu  of 98.04%, nprec  of 93.89%, 

lreca  of 93.33%, and 
( )

!

! !
scoreF

n

r n r−
 of 93.60%. Thus, the 

EBMOHDL-WC model can be employed for maximum 
waste management process.  

5. Conclusion 

In this study, the EBMOHDL-WC technique has been 
developed for sustainable waste management in the IoT 
platform. The projected EBMOHDL-WC system exploited 
the IoT devices to ensure data collection process. Next, the 
EBMOHDL-WC technique uses MobileNetv2 model for 
extracting features and the hyperparameter adjustment of 
the MobileNetv2 technique was applied by the EBMO 
approach. Finally, the waste classification procedure is 
performed using HDL classifier which integrates two DL 
models. The experimental evaluation of the EBMOHDL-WC 
technique is tested on garbage classifier database from 
Kaggle repository. Experimentation outcomes of the 
EBMOHDL-WC technique exhibit competitive results over 
other techniques with accuracy of 98.04%. In future, the 
proposed model can be extended to the design of feature 
fusion based approaches to improve the classification 
performance.  
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