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Abstract 

Urban air pollution poses a major threat to human health. 
Recently, environment monitoring is become a smart 
environment monitoring (SEM) scheme, with the 
development of modern sensors and the advancements in 
the internet of things (IoT). Consequently, the modern 
method of environmental monitoring is called an SEM 
system, owing to the usage of wireless sensors, IoT and 
artificial intelligence (AI). This paper leverages IoT devices 
for sustainable air pollution monitoring. The presented 
model derives an improved red fox optimizer with a deep 
learning-based air pollution monitoring system (IRFODL-
APMS) using IoT devices. The presented IRFODL-APMS 
technique makes use of different IoT devices to collect 

data. Besides, the IRFODL-APMS model performs a 
prediction process using deep learning based on long short-
term memory (LSTM). At last, the IRFO technique is 
exploited as a hyperparameter tuning process of the LSTM 
model to accomplish enhanced prediction performance. 
The presented IRFODL-APMS model is simulated under 
distinct measures and the outcomes reported the 
enhanced predictive outcomes of the IRFODL-APMS 
approach over other existing models.  

Keywords: Sustainability, air pollution monitoring, deep 
learning, red fox optimizer, internet of things 

1. Introduction 

Sustainable development of the entire world mainly relies 
upon various components namely industries, economy, 
agriculture, education, and much more, however, the 
environment was one among them that had a great 
contribution to the development. Health and hygiene will 
be considered the main elements for the progression of 
any country that come with a pollution-free, clean, and 
hazardous-free atmosphere (Amuthadevi et al., 2021). 
Therefore, its observation is highly essential for leading a 
healthy life. Environment monitoring (EM) has appropriate 
planning and disaster management, supervising various 
pollutions, and efficiently addressing the difficulties that 
occur because of unhealthy external circumstances (Adong 
et al., 2022). EM would deal with hazardous radiation, 
water pollution, weather changes, air pollution, 
earthquake events, and so on. The pollution can be caused 
by numerous components, some man-made and others 
because of natural calamities, and the EM plays a major 
role in addressing challenges precisely thereby the 
environment will be protected for a healthy society (Zhang 
and Woo, 2020).  

With the rapid growth in transportation and industry, air 
pollution is becoming a severe issue for developing nations 
and gained higher attention from the public and 
governments (Goh et al., 2021). It is known that individuals 
who are exposed to air pollutants for a longer period were 
probably suffered from respiratory diseases 
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(Dhanalakshmi, 2021). The cost of pollution harnesses 
might be burdensome for the government if air quality 
(AQ) stays to deteriorate. Thus, AQ monitoring systems 
were extremely helpful for effectual monitoring of air 
pollution before the condition turn out to be worse. 
Conventionally, AQ monitoring stations were large and 
need high costs for maintenance and installation, which 
limits their potentiality in densely deployed cities (Shetty et 
al., 2020). Also, though accurate measurement outcomes 
are made, time-taking processes are required offline. 
Accordingly, AQ data could not be offered in real-time in 
this way. But AQ data of high spatial as well as temporal 
resolution in both the spatial and temporal dimensions can 
be extremely desired, which was the focal point of this 
study (Baldi et al., 2022). Consequently, there will be a clear 
necessity for performing a prior prediction of the in-vehicle 
AQ which tends to alert the occupants before the AQ turn 
out to be worst and affects the health situation of drivers 
while they are driving.  

Many earlier studies had mainly concentrated on 
categorizing hazardous gas without having the capability to 
forecast the upcoming condition (De Vito et al., 2020). 
Additionally, many research works are limited to some 
hazardous gasses namely carbon dioxide (CO2). In this 
context, there exist many techniques like regression 
algorithms, machine learning (ML), and artificial neural 
networks (ANN) that can be enforced for AQ forecasts 
(Ferrer-Cid et al., 2021). Additionally, as the current 
reading of the AQ data relies upon previous data, a time-
series supervised learning AQ data is utilized as the input 
structure. With the rapid growth of Internet-of-Things (IoT) 
technology, the AQ is sensed and the respective data is 
transferred to the servers via wireless networks like the 
wireless sensor networks (WSNs) (Lai et al., 2022). IoT 
gadgets have embedded the capacity of ML and artificial 
intelligence (AI). The association, which is indulged in 
monitoring the AQ is access to the cloud via the data 
accumulated from numerous sensors.  

This paper leverages IoT devices for sustainable air 
pollution monitoring. The presented model derives an 
improved red fox optimizer with a deep learning-based air 
pollution monitoring system (IRFODL-APMS) using IoT 
devices. The presented IRFODL-APMS technique makes use 
of different IoT devices to collect data. Besides, the IRFODL-
APMS model performs a prediction process using DL-based 
long short-term memory (LSTM). At last, the IRFO 
algorithm is exploited as a hyperparameter tuning process 
of the LSTM model to accomplish enhanced prediction 
performance. The presented IRFODL-APMS model is 
simulated under distinct measures and the results reported 
the enhanced predictive outcomes of the IRFODL-APMS 
technique over other existing models.  

The rest of the paper is organized as follows. Section 2 
offers the related works and section 3 introduces the 
proposed model. Next, section 4 provides experimental 
validation and section 5 concludes. 

2. Literature review 
In Sigamani and Venkatesan (2022), developed a multi-
variant regressive function as a multiple linear regressive 

(MLR) method to forecast air quality index (AQI) by using 
the correlation of two-time series–dependent parameters 
for meteorological and air pollutant variables. The MLR 
method provides high efficiency in AQI predictive model 
while comparing the present algorithm. The AQI is hosted 
on social media for initiating awareness in people and the 
welfare of the nation about the degradation of AQ and its 
related health problems. Asha et al. (Asha et al., 2022) 
designed an IoT-assisted Environmental Toxicology for Air 
Pollution Monitoring using Artificial Intelligence 
technology (ETAPM-AIT) to enhance human health. For 
determining AQ and the classification of air pollutants, 
Artificial Algae Algorithm (AAA) based Elman Neural 
Network (ENN) system was employed as a classification 
that forecasts the AQ in the upcoming time stamp. The 
presented method has been employed as a parameter-
tuning model for determining the parameter value of the 
ENN method. 

Rahi et al. (Rahi et al., 2022) developed a smart e-health AQ 
monitoring scheme that employs a meta-heuristic FA and a 
CSO technique for powerfully optimizing the selected 
feature for giving improved outcomes in the feature 
selection technique. Furthermore, the feature is 
categorized based on SVM which predicts the index level of 
AQ and provides improved recall and precision. Pushpam 
and Kavitha (Pushpam and Kavitha, 2019) propose an 
alternate route for the user based on the distance of all the 
routes and pollution status that results in a pollution-free 
route. By using a time series sample, the predictive analysis 
can be performed for PM with NN-MLP and SVM regression 
(SVMR) learning model. Jo and Khan (Jo and Khan, 2018) 
present a cost-effective, reliable, and efficient IoT scheme 
for monitoring AQ with the recently added feature of 
pollutant and assessment prediction. This scheme is 
encompassed transmission protocol, base station, and 
sensor modules, running Azure ML (AML) Studio over it.  

Ferrer-Cid et al. (Ferrer-Cid et al., 2022) developed a graph-
based data reconstructed model to perform post-
processing application that arises in real-time lower cost 
sensor deployment for monitoring air pollution. This data 
reconstructed model initially defines the relationship 
among the dissimilar network sensors through a graph 
learned in the measured dataset, later a signal 
reconstruction method is employed for reconstructing the 
sensor dataset. Molinara et al. (Molinara et al., 2020) 
developed an IoT-ready solution to classify and detect 
pollutants. It can be depending on a compact and low-
power combined method involving processing and sensing 
abilities. The sensing is comprised of a sensor array where 
electrical impedance measurement is accomplished using a 
microchip, termed SENSIPLUS, whereas the processing 
stage is based mostly on ML technique, embedded in 
resource and low-power microcontroller units, for 
classification purposes.  

3. The proposed model 

This paper has established a novel IRFODL-APMS technique 
for sustainable air pollution monitoring using IoT devices. 
The presented IRFODL-APMS technique makes use of 
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different IoT devices to collect data. Besides, the IRFODL-
APMS model performs a prediction process using the LSTM 
model. At last, the IRFO system was exploited as a 
hyperparameter tuning process of the LSTM approach. 
Figure 1 represents the overall process of the IRFODL-
APMS system. 

3.1.  IoT-based Data Collection 

The IoT-based sensor begins by sensing the air pollutant 
and transfers the information to the cloud server's 
thorough examination during the data collection model. A 
collection of sensors employed for gathering the 
information connected to pollutant levels that occur from 
the air are determined as follows. 

• Grove Multi-channel Gas Sensor: This sensor 
sense different gases together with Nitrogen 
Dioxide, Ammonia, CO, and Methane. 

• MH-Z19: It is a kind of infrared gas sensor which is 
widely utilized to detect and measure the 
concentration of carbon dioxide (CO2) in air. The 
sensor utilizes a non-dispersive infrared (NDIR) 
measurement principle for detecting CO2 and has 
a measurement range of 400 to 5000 parts per 
million (ppm). It has a built-in temperature sensor 
for temperature compensation and an interface 
for communication with a microcontroller or 
other control unit. 

• DHT11: This is a sensor usually accessible 
dependent upon the thermistor and humidity 
sensor resistive components. It can be exploited 
to monitor ambient temperature as well as 
humidity. 

• HM3301 Laser PM2.5 Sensor: It applies the 
diffusion of laser light to compute PM2.5. 

3.2.  Z-score normalization 

Z‐score normalization is a normalization technique used for 
normalizing parameters through the standard deviation 

(σ)  and mean (μ)  values given below: 





−
=

( )x
Z score‐

 
(1) 

3.3. Air Pollution Prediction Model 

The LSTM model is exploited in this study for AQ prediction. 
The DNN method is a kind of feedforward NN algorithm 
that is a basic method for DL. DNN comprises three levels 
of nodes, and they follow a non-linear function, except the 
input nodes [18]. The study presents a backpropagation 
supervised learning model. This method involves the 
following functions and parameters: bias (b), input (x), 
output (y), weight (w), calculation function ( α ), and 

activation function f(α) . All the neurons in the DNN make 

use of subsequent formulas [18]. 

 = + :  .sum w x b
 

(2) 

( ) ( ) =  +:y f f w x b
 

(3) 

Recurrent neural network (RNN) is a kind of DL technique 
used in a variety of fields namely natural language 
processing, computer vision, medical image diagnosis, and 
pattern recognition. The most prominent RNN algorithm 
utilized for predicting time sequence data is the LSTM 
approach. Figure 2 depicts the infrastructure of LSTM. 

 

Figure 1. Overall process of IRFODL-APMS system 

The LSTM and DL algorithms are better suited to estimate 
the time‐series information when there exists a 
randomized-sized time step. The activating function 
utilized in LSTM is a logistic sigmoid. Given that input, the 
gate was closed and the forget gate is opened, the memory 
cell keep reminding of the foremost entries and thereby 
resolving the standard RNN problem (Aldhyani et al., 2020): 

( )= + tan t i t x th h W h w x
 

(4) 

=t y ty w w
 

(5) 

Now ht represent the hidden layer of NN to input trained 
dataset(xt). The output layer is denoted as yt. But Wt and 
Wy indicate the weighted of neural cells and matrix, 
correspondingly. The RNN is utilized to construct the LSTM 
for the computing method. The LSTM comprises3 
considerable variables such as output, input, and forget 
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gates are formulated in the subsequent equation (Aldhyani 
et al., 2020): 

 ( )  −= +1   : , t i t t iInputgate i W h x b  
(6) 

 ( ) −= + 1   :  , t f t t fForgetgate f w h x b  
(7) 

 ( ) −=  +0 1 0   : 0 , t t tOutputgate W h x b  
(8) 

 ( )−=  +1     :   tan  ,t c t t cNewmemorycell c h W h x b  
(9) 

−=  + 1     :  t t t t tFinalmemorycell C f C i c  
(10) 

( )= 0  tan t t th h C
 

(11) 

Where: it,ft, and Ot: input, forget, and output gates, 
correspondingly. ht: count of hidden units.  : the logistic 

sigmoid function was utilized to transmit the trained 

dataset in the hidden unit to the output gate. wt tw : the 

weight NN. c : internal memory cell was utilized to 

calculate in hidden unit. Ct: the internal memory. ht: the 
resultant hidden units are utilized for deriving a novel 
memory. I,f, and O: are subscripts that represent input, 
forget, and output gates, correspondingly. xt: input trained 
dataset. wf,wowc: weight vector of NN. bfand bo: bias vector 
from NN. 

 
Figure 2. Framework of LSTM 

3.4.  Hyperparameter Tuning Model 

Finally, the IRFO system was exploited as a hyperparameter 
tuning process of the LSTM technique. The RFO algorithm 
is stimulated by the behavior of red deer (PugalPriya et al., 
2022). Every individual (red fox) is denoted as a pixel on 

location 
1 2( ,  )x x , where 

1 0,x w   and 
2 0,x h  . 

The inspiration for the selective heuristic was depending on 
the behaviors of a herd of red foxes. The primary stage is 
selective of the count of each fox from the herd and it can 
be represented as P, then the initial population was 
generated, and localized was randomly chosen because of 
the environment size and it is evaluated as follows 
(PugalPriya et al., 2022): 

( ) ( ) = 1 2,

 255{ ,then 0 I x x

elseF x  
(12) 

where =(x1,x2), and   represent a threshold value. 

Afterwards the assessment of each fox, the herd is 
arranged based on the assessed values and the one with 
the maximum value is chosen as the better one xbest. Next, 
every individual is moved based on the global and local 
movements for searching for the best location as follows 
(PugalPriya et al., 2022): 

= x x  (13) 

In Eq. (13), the sign   is depending on the capability to go 
away from the image range as follows 

( )( ) = 0,  ,  bestrand d x x
 

(14) 

A distance metric d() is determined by using Euclidean one 
for two points x and y: 

( )
=

= −
2

2

1

, ( )i i
i

d x y x y
 

(15) 

Local movement depends on the decision of whether a fox 
needs for moving close to the possible victim or stop 
moving and rest. It can be modelled using the arbitrary 

selective of variable 0,1 [19] : 






= 



0.75 move closer,

0.75        
x

stay inthecurrent position  
(16) 

In such cases, if the fox decided to move, the position 
change can be defined by using Eq. (17) 



 

   =
= 

   +   =

0 0

0 1 1

( ),

( ) ( ),  

x a r cos ifx x
x

x a r sin a r cos if x x  
(17) 

In Eq. (17), the coefficients 
0 1 0 2 5 5  − , , , ,ψ ψ π r  

are random numbers. The r  variable is an observation 
angle, and these values are adapted because of the great 
probability of changing the location of the individual. 
Assume that the solution space is continuous, hence a 
smaller variation in value leads to novel solutions. This 
operation is repetitive using a maximal amount of 
iterations T. 

During this case, LOBL was employed for updating the 
candidate solutions in the exploration step, enlarging the 
search range, and supporting this technique for escaping in 
the local optimal (Wang et al., 2022). Different models on 
LOBL were demonstrated mathematically as follows. 

Lens imaging is a physical optics occurrence that represents 
the detail that but an object was placed at two or more 
basic focal lengths apart from the convex lens, a lesser and 
inverted image was created on the opposing side of the 
lens. To take the 1D searching space in illustration, it can 
be observed a convex lens with focal length f fixed at the 
base point O (the midpoint of the searching range in 
[lb,ub]). Also, an object p with height h was located on the 
coordinate axis, and their prediction is GX (candidate 
solution). The distance between the object to lens u is 
superior to twice f. With the lens image function, an 
inverted image P of heights h* is achieved which is 
presented as GX* (the reverse solution) on thex‐axis. 
According to the rules of lens imaging and identical 
triangle, the geometrical connection attained is written as: 

+ −
=

− +* *

( ) / 2

( ) / 2

lb ub GX h

GX lb ub h  
(18) 

At this point, assume that the scale factor n=h/h*, the 
reverse solution GX was computed by transmitting as [20]: 
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+ +
= + −*

2 2

lb ub lb ub GX
GX

n n  

(19) 

 
It can be clear that if n=1, is simplified as the common 
equation of the OBL approach: 

= + −*GX lb ub GX  
(20) 

Therefore, it is assumed the OBL approach is a peculiar case 
of LOBL. Concerning OBL, the latter permits obtaining 
dynamic reverse solutions and a wider searching range by 
tuning the scale factor n 

Usually, it is extended to D‐dimensional space: 

+ +
= + −*

2 2

j j j j j

j

lb ub lb ub GX
GX

n n  
(21) 

whereas lbj and ubj define the lower as well as upper limits 
of jth dimensional correspondingly, j=1,2,…D,GX*

j stands for 
the inverse solution of GXj from the jth dimensional. 

If a novel inverse solution was created, there is no 
assurance that it can be continuously superior to the 
present candidate solution as during the gorilla place. Thus, 
it can be needed to estimate the fitness value of inverse as 
well as candidate solutions, afterwards, the fitter one is 
chosen for continuing participation during the succeeding 
exploitation stage is explained as follows [20]: 

 
= 


* *,  ( ) ( )

,
next

GX ifF GX F GX
GX

GX otherwise  
(22) 

whereas GX* implies the reverse solution, GX stands for the 
present candidate solutions, GXext refers to the selective 
gorilla for continuing the succeeding position upgrade, and 
F determines the fitness function of problems.  

Based on mean square error (MSE) the IRFO technique 
derives an objective function and it is utilized for predicting 
the testing output of LSTM in the following. 

−
=


2
ˆ

i

i iN
y y

MSE
N  

(23) 

In Eq. (23),y represents the number of rounds, yi indicates 
the experimental value, ŷi shows the predicted values 
correspondingly. 

4. Results and Discussion 

The proposed model is simulated using Python 3.6.5 tool 
on PC i5-8600k, GeForce 1050Ti 4GB, 16GB RAM, 250GB 
SSD, and 1TB HDD. The parameter settings are given as 
follows: learning rate: 0.01, dropout: 0.5, batch size: 5, 
epoch count: 50, and activation: ReLU. In this section, the 
air pollution monitoring outcomes of the IRFODL-APMS 
model are inspected briefly. 

Table 1 provides an overall prediction result of the IRFODL-
APMS model on every 5 mts interval. The results indicated 
that the IRFODL-APMS model has reached improved 
prediction outcomes. For instance, on CO2, the IRFODL-

APMS model has provided RMSE of 0.0854, MAE of 0.0523, 
and MSE of 0.0073, respectively. Moreover, on NO2, the 
IRFODL-APMS approach has to provide an RMS of 0.0245, 
MSE of 0.0006, and MAE of 0.0166correspondingly. 
Furthermore, on Humidity, the IRFODL-APMS system has 
offered me 0.0104, RMSE of 0.1020, and MAE of 
0.0627correspondingly. 

Table 1. Prediction outcome analysis of IRFODL-APMS system 

under each 5 mts 

Pollutant MAE MSE RMSE 

CO2 0.0523 0.0073 0.0854 

CO 0.0204 0.0013 0.0361 

NO2 0.0166 0.0006 0.0245 

PM2.5 0.0683 0.0126 0.1122 

Temperature 0.0650 0.0111 0.1054 

Humidity 0.0627 0.0104 0.1020 

Table 2 demonstrates the overall prediction outcomes of 
the IRFODL-APMS approach every 15 mts interval. The 
outcomes referred that the IRFODL-APMS system has 
reached higher prediction outcomes. For samples, on CO2, 
the IRFODL-APMS technique has offered MAE of 0.0548. In 
addition, on NO2, the IRFODL-APMS model has provided 
MAE of 0.0241. Lastly, on Humidity, the IRFODL-APMS 
model has an obtainable MAE of 0.0617. 

Table 2. Prediction result analysis of IRFODL-APMS algorithm 

under each 15 mts 

Pollutant MAE MSE RMSE 

CO2 0.0548 0.0080 0.0894 

CO 0.0227 0.0027 0.0520 

NO2 0.0241 0.0014 0.0374 

PM2.5 0.0715 0.0138 0.1175 

Temperature 0.0636 0.0106 0.1030 

Humidity 0.0617 0.0102 0.1010 

Table 3 provides an overall prediction result of the IRFODL-
APMS system every 30 mts interval. The results indicated 
that the IRFODL-APMS technique has gained superior 
prediction outcomes. For samples, on CO2 sensors, the 
IRFODL-APMS system has provided MAE of 0.0681, MSE of 
0.0123, and RMSE of 0.1109 correspondingly. Also, on 
NO2-Sensors, the IRFODL-APMS model has offered an MAE 
of 0.0224, MSE of 0.0014, and RMSE of 0.0374 
correspondingly. Moreover, on Humidity, the IRFODL-
APMS system has provided MAE of 0.0552, MSE of 0.0081, 
and RMSE of 0.0900 respectively. 

Table 3. Prediction outcome analysis of IRFODL-APMS approach 

under each 30 mts 

Pollutant MAE MSE RMSE 

CO2 0.0681 0.0123 0.1109 

CO 0.0320 0.0039 0.0624 

NO2 0.0224 0.0014 0.0374 

PM2.5 0.0712 0.0135 0.1162 

Temperature 0.0643 0.0108 0.1039 

Humidity 0.0552 0.0081 0.0900 
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Table 4. Prediction result analysis of IRFODL-APMS system under 

each 60 mts 

Pollutant MAE MSE RMSE 

CO2 0.0722 0.0140 0.1183 

CO 0.0368 0.0080 0.0894 

NO2 0.1071 0.0309 0.1758 

PM2.5 0.0765 0.0156 0.1249 

Temperature 0.0550 0.0079 0.0889 

Humidity 0.0529 0.0073 0.0854 

Table 4 depictsthe overall prediction results of the IRFODL-
APMS algorithm on every 60 mts interval. The results 
stated that the IRFODL-APMS approach has gained 
enhanced prediction outcomes. For instance, on CO2, the 

IRFODL-APMS system has offered an MAE of 0.0722, MSE 
of 0.0140, and RMSE of 0.1183 correspondingly. Along with 
that, on NO2, the IRFODL-APMS technique has provided an 
MAE of 0.1071, MSE of 0.0309, and RMSE of 0.1758 
respectively. In addition, on Humidity, the IRFODL-APMS 
approach has provided an MAE of 0.0529, MSE of 0.0073, 
and RMSE of 0.0854 correspondingly. 

Figure 3 demonstrates the MAE examination of the 
IRFODL-APMS system with existing models. The Figure 
represented that the IRFODL-APMS approach has attained 
reduced values of MAE under all aspects and thereby 
affirms the enhanced prediction outcomes. 

 

Table 5. Average analysis of IRFODL-APMS approach with existing algorithms  

Avg. MAE 

Pollutant IRFODL-APMS ETAPMAIT ENN Bi-LSTM 

CO2 0.06184 0.06468 0.07418 0.08778 

CO 0.02796 0.03170 0.04290 0.05370 

NO2 0.04257 0.05270 0.06460 0.07670 

PM2.5 0.07190 0.11335 0.12745 0.13725 

Temperature 0.06197 0.07398 0.08548 0.09818 

Humidity 0.05811 0.07173 0.08113 0.09343 

Avg. MSE 

Pollutant IRFODL-APMS ETAPMAIT ENN Bi-LSTM 

CO2 0.01040 0.01198 0.02248 0.03288 

CO 0.00398 0.00560 0.01990 0.03220 

NO2 0.00858 0.00983 0.02323 0.03533 

PM2.5 0.01388 0.01528 0.02858 0.03878 

Temperature 0.01010 0.01185 0.02405 0.03585 

Humidity 0.00900 0.01108 0.02478 0.03648 

Avg. RMSE 

Pollutant IRFODL-APMS ETAPMAIT ENN Bi-LSTM 

CO2 0.10103 0.10945 0.14993 0.18133 

CO 0.05998 0.07483 0.14107 0.17944 

NO2 0.06878 0.09915 0.15241 0.18796 

PM2.5 0.11770 0.12361 0.16906 0.19693 

Temperature 0.10028 0.10886 0.15508 0.18934 

Humidity 0.09460 0.10526 0.15742 0.19100 

 

Figure 4 showcases the MSE inspection of the IRFODL-
APMS algorithm with existing methodologies. The figure 
stated that the IRFODL-APMS technique has achieved 
lower values of MSE under all aspects and so supports the 
higher prediction outcomes. 

Figure 5 illustrates the RMSE investigation of the IRFODL-
APMS methodology with existing approaches. The figure 
stated that the IRFODL-APMS method has achieved 
decreased values of RMSE under all aspects and thus 
supports improved prediction outcomes. 

Table 5 provides an overall average prediction outcome of 
the IRFODL-APMS model [12].  

Figure 6 illustrates an average MAE inspection of the 
IRFODL-APMS model with recent systems. The Figure 
inferred the enhancements of the IRFODL-APMS approach 
under all aspects with minimal average MAE values. For the 
sample, on CO2, the IRFODL-APMS technique has reached 

the least average MAE of 0.06184 while the ETAPMAIT, 
ENN, and Bi-LSTM models have reached superior average 
MAE of 0.06468, 0.07418, and 0.08778 correspondingly. 
Meanwhile, on NO2, the IRFODL-APMS system has reached 
a minimum average MAE of 0.04257 whereas the 
ETAPMAIT, ENN, and Bi-LSTMtechniques have reached 
maximal average MAE of 0.05270, 0.06460, and 0.07670 
correspondingly. 

Figure 7 demonstrates an average MSE investigation of the 
IRFODL-APMS algorithm with recent models. The Figure 
stated the enhancements of the IRFODL-APMS system 
under all aspects with reduced average MSE values. For 
sample, on CO2, the IRFODL-APMS approach has reached a 
minimal average MSE of 0.01040 whereas the ETAPMAIT, 
ENN, and Bi-LSTM models have gained improved average 
MSE of 0.01198, 0.02248, and 0.03288 correspondingly. In 
the meantime, on NO2, the IRFODL-APMS system has 
obtained least average MSE of 0.00858 whereas the 
ETAPMAIT, ENN, and Bi-LSTMtechniques have reached 



178  RAMACHANDRAN et al. 

higher average MSE of 0.00983, 0.02323, and 0.03533 
correspondingly. 

 

Figure 3. MAE analysis of IRFODL-APMS approach (a) 5 mts, (b) 

15 mts, (c) 30 mts, and (d) 60 mts 

 

 

Figure 4. MSE analysis of IRFODL-APMS approach (a) 5 mts, (b) 

15 mts, (c) 30 mts, and (d) 60 mts 

 

Figure 8 portrays an average RMSE examination of the 
IRFODL-APMS approach with recent models. The Figure 
revealed the enhancements of the IRFODL-APMS algorithm 
under all aspects with decreased average RMSE values. For 
instance, on CO2, the IRFODL-APMS model has achieved 
decreased average RMSE of 0.10103 whereas the 
ETAPMAIT, ENN, and Bi-LSTMapproaches have reached 
maximum average RMSE of 0.10945, 0.14993, and 0.18133 
correspondingly. Followed by, on NO2, the IRFODL-APMS 
system has attained a minimum average RMSE of 0.06878 
while the ETAPMAIT, ENN, and Bi-LSTMsystems have 
reached maximum average RMSE of 0.09915, 0.15241, and 
0.18796 correspondingly. These results ensured the 

improved outcomes of the IRFODL-APMS model over other 
models. 

 

Figure 5. RMSE analysis of IRFODL-APMS approach (a) 5mts, (b) 

15mts, (c) 30mts, and (d) 60mts 

 

Figure 6. Avg. MAE of IRFODL-APMS approach with recent 

systems  

 

Figure 7. Avg. MSE of IRFODL-APMS algorithm with recent 

systems  
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Figure 8. Avg. RMSE of IRFODL-APMS algorithm with recent 

systems 

5. Conclusion  

This paper has developed a novel IRFODL-APMS technique 
for sustainable air pollution monitoring using IoT devices. 
The presented IRFODL-APMS technique makes use of 
different IoT devices to collect data. Besides, the IRFODL-
APMS model performs a prediction process using the LSTM 
model. At last, the IRFO technique was exploited as a 
hyperparameter tuning process of the LSTM system to 
accomplish enhanced AQ prediction performance. The 
presented IRFODL-APMS model is simulated under distinct 
measures and the results reported the improved predictive 
results of the IRFODL-APMS technique over other existing 
models. Thus, the IRFODL-APMS model appeared as an 
effective tool for real-time air pollution monitoring 
systems. In future, a hybrid DL model can be used to 
enhance the prediction outcomes of the IRFODL-APMS 
model. 
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