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Abstract 

In coastal lagoons, eutrophication is a significant 
ecological and environmental problem. The majority of 
the pollution and deterioration problems that coastal 
zones and their ecosystems face are due to human 
influence through urbanization and industrialization. In 
this research, evaluations of water quality were made 
throughout a few lagoons in India during both the wet and 
dry seasons to establish their suitability for harboring 
aquatic life and the impact of seasonality on their quality. 
In order to reduce the effect of environmental influences 
on sensor based on nanoparticle sensitive film, an 
enhanced deep Back Propagation (BP) neural system was 
developed. The incompatibility between high 
performance and low calculation time was typically found 
in today’s modern sensor compensation techniques. 
Moreover, higher recognition errors were always the 
outcome of weak self-learning abilities. To solve these 
problems, a 16-layer deep BP neural network model was 
developed after hyper parameter searching. In Addition, 
the stochastic gradient descent (SGD) method and the 
mini-batch method were employed to achieve a proper 
balance between model performance and training time 
difficulties. The enhanced deep BP neural network was a 
great compensation solution for the sensor used in 
complicated environments due to its self-learning and 

self-adaptability. The proposed method is named as 
Imp_BPNN_SGD is analyzed in terms of various 
parameters and found that it achieves 35.6% of RMSE, 
21.6% of MAE, 19.6% of RAE and 97.2% of D2   

Keywords: Water quality, smart environment, neural 
network, coastal lagoons, Eutrophication, backpropaga-
tion 

1. Introduction  

Ecotones called lagoons form where coastal, terrestrial, 
and marine environments converge. Lagoon systems 
make for 13% of the planet's shoreline globally (Fang et 
al., 2018). Fresh and salt water combining creates coastal 
lagoons (Holon et al., 2018). They are dynamic, 
heterogeneous systems that incorporate fresh water as 
discharges from streams or other waterways and also 
sporadic or continual waves of seawater which slip 
through sandy barriers (Katsuki et al., 2019). The 
groundwater affects the water's ionic concentration in 
certain lagoons.  Each of these coastal regions is a special, 
delicate environment that is very important as a natural 
habitat for many different living types. In terms of 
prospects for agriculture, aquaculture, tourism, and 
leisure activities, lagoons are also crucial to the 
socioeconomic framework (Basatnia et al., 2015). 
However, if the aforementioned socioeconomic benefits 
are not carefully regulated and supervised, they could 
become harmful to the ecological environment. Lagoons 
are vulnerable to anthropogenic pollution and have 
restricted water circulation to account for fluctuations in 
water quality (Zhu et al., 2022). In coastal lagoons, 
monitoring water quality is crucial for maintaining 
ecological characteristics. Freshwater body water quality 
is a complicated topic that involves many factors, 
including physically, chemically, and biological processes 
(Wu et al., 2021). Recently, a variety of tools, such as 
numerical analysis, optimization techniques, and hybrid 
decision support methods, are invented to assist with 
water quality management (Hassan and Mateo, 2021). 
Quality of water indices are developed and utilized 
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globally in addition to the expanding use of these 
advanced tools due to their simplicity, versatility, and 
user-friendliness. In order to monitor the water quality in 
coastal lagoons experiencing environmental issues such 
eutrophication, organic pollution, and growing stress on 
aquatic biota, a back propagation deep neural network 
method is developed. 

The research contributions are as follows: 

To analyze the hourly high efficiency variation and provide 
long-term simulations of pore water levels, an enhanced 
deep back propagation neural network is developed. 

Results from stochastic gradient optimization are 
achieved by using only experimental data for the affecting 
external factors, rainfall and evapotranspiration as inputs 
and the past forecasted values of pore water heads as 
recursive inputs. 

The organization of this paper is: water quality monitoring 
using various neural network is discussed in section 2. The 
suggested feature extractor and predictor with optimizer 
are elaborated in section 3. The performance analysis of 
proposed method is examined with comparison of existing 
methods in section 4.  Section 5 concludes the overall 
analysis of proposed method. 

2. Literature Survey 

In (Aslan et al., 2022) the author provides a thorough 
examination of recurrent cell and network models in 
order to enhance eutrophication procedures in the Venice 
lagoon. Additionally, the trained models' potential for 
transferability was examined.  Based on empirical analysis, 
recurrent neural network models reduce the 
computational difficulties and also have better accuracy 
for predicting eutrophication. In (Du et al., 2021) the 
author presented a water quality analyzing technique 
based on a novel geographically neural network weighted 
regression. This method achieves high accurate and water 
quality depends on the significant index of Water Quality 
Classification Standards Benchmark 

In García del Toro et al. (2022) the article objective is to 
forecast the dissolved oxygen (DO) in the water dumped 
into this lagoon. Additonally, a multiple linear regression 
(MLR) based back-propagation neural network (BPNN) 
methods are used for theoretical analysis. Finally, the 
accuracy of the predictions provided by the neural 
network and the other theoretical models were evaluated 
using the parameters of coefficient of determination (R2), 
the root mean square errors (RMSE), and the mean 
absolute error (MAE). In Taormina et al. (2012) the author 
developed a feed forward neural networks (FFNs) to 
provide extend period simulations of hourly pore water 
levels, in a coastal unrestrained aquifer placed in the 
Lagoon of Venice. The results reveal that the constructed 
FNN can accurately recreate shallow aquifer pore water 
depths over several months. In Basatnia et al. (2018) to 
calculate the total organic matter (TOM) content of 
sediments, the author investigated a number of statistical 
techniques, including cluster analysis (CA), principal 
component analysis (PCA), partial least squares (PLS), 

principal component regression (PCR), and ordinary least 
squares regression (OLS). The TOM can calculated by the 
parameters like temperature, dissolved oxygen (DO), 
nitrite (NO2), pH value, electrical conductivity (EC). The 
most important factors in the lagoon's water quality 
variability, according to the findings, were the nutrient 
concentration and the DO gradient.  

In Krapivin et al. (2017) the author developed a unique 
cost efficiency method depends on the geo-ecological 
information-modeling system (GIMS) to analyze the 
problems in water quality monitoring of a coastal lagoon. 
Furthermore, predicted values from the simulation 
experiments and the real value gathered from field 
observations are combined to perform this proposed 
method. This makes it possible to optimize the monitoring 
system and record lagoon water quality with reliability. 
Elman neural network (ENN) model was utilised by Liu et 
al. (Liu et al., 2014) to forecast DO for quick assessment of 
Singapore coastal waters. Seven to eight hidden layer 
nodes made up the network architecture that was 
planned for this investigation, and positive DO outcomes 
were attained. 

In Melesse et al. (2008) the author developed a multilayer 
perceptron-back propagation (MLP-BP) based  artificial 
neural network (ANN) method to identify the level of 
eutrophication presence in the water. The parameter 
used for this experiments from Florida Bay water quality 
monitoring stations (FLAB03 and FLAB14). The monitoring 
and forecasting of algal blooms can be done using the 
MLP-BP technique, which is important for coastal lagoons. 
In Taner et al. (2011) WQIs employ a statistical evaluation 
based on pre-established threshold values established by 
organizational bodies. A parameter set, relative weights, 
normalization slopes, and aggregation techniques serve as 
the foundation for subjective WQIs. Machine learning 
techniques were used by Jimeno-Saez et al. (2020) to 
calculate the chlorophyll in saltwater from the Mar Menor 
coastal lagoon. Support Vector Regressions (SVRs) were 
the techniques employed; the SVRs produced good 
validating results for the forecasting of chlorophyll 
concentration. 

Water quantity (such as flow and rainfall-runoff) 
prediction has received greater attention in prior reviews 
about ANNs than water quality prediction. (for instance, 
suspended solids [SS]), and river systems were the main 
scenarios they looked at. In addition, prior assessments 
have focused on the model's evolution while ignoring the 
output strategies between the inputs and outputs in a 
certain prediction tactic. In order to overcome the 
limitations above, this research focuses on the use of new 
neural network methods for water quality prediction, with 
more water quality variables 

3. System model 

The depth node, current metre node, water stream node, 
and full node are the four main types of sensor nodes 
considered by the network. The water stream node is a 
GPRS node, whereas the other nodes in the WSN are 
ZEDs. Depth nodes collect data on water level and 
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temperature through pressure sensors via temperature 
sensors situated at the sea's bottom, rspectively. Current 
speed and direction are measured by current metre 
nodes. Full nodes use temperature and salinity probes 
through the buoy's line to evaluate temperature, salinity, 
sea level, and current profiles. In addition to the 
fundamental physical parameters are temperature, 
pressure, and salinity, the waterstream node also 
monitors turbidity, dissolved oxygen, chlorophyll, and 
nitrates. The final node concludes the WSN's 
hydrodynamic analysis of the three inputs, as displayed in 
Figure 1. 

 

Figure 1. data collection from coastal lagoons using sensor nodes 

4. Case study 

On the eastern coast of India, Pulicat is the second-largest 
transitional water environment after Chilika. Its soils are 
coastal alluvium and it is part of the hot sub-humid to 
semi-arid ecozone. The lagoon is typically between one 
and two metres deep and covers an area of about 450 
km2. It's been reported that the lagoons has gotten 
shallower over time. The system's narrow (200–500 m) 
southern entrance, which connects it to the Bay of Bengal 
on its eastern side, is where water primarily moves 
between the lagoon and the sea, with the exception of 
occasions when it is completely closed. The exchange 
through a smaller entry (between 50 and 150 metres) 
towards the north, which lacks a direct link to the lagoon, 
is very constrained. As a result, we do not consider this 
characteristic to be a substantial influencer of salinity 
dynamics. Two rivers—the Araniar and the Kalangi, which 
are situated in its southern and northern halves, 
respectively—bring in freshwater along its western bank 
during the monsoon season (October to December), with 
little or very little flow throughout the dry seasons. At the 
point where the Kalangi and lagoon confluence, the 
annual average flow of the stream is about 92 Million 
Cubic Meters (MCM), whereas the latter is about 100 
MCM. The National Jal Jeevan Mission and the Indian 
Council of Medical Research collaborated to perform 
water analyses. Electrometric probes were used to 
measure temperature, pH, and electrical conductivity on-
site using internal techniques based on the appropriate 
Standard Methods such as SM2550-B, SM 4500 H, SM 
2510-B and SM 4500-O-G,correspondingly. In contrast, ex 
situ parameters like nitrates, chlorides, sulphates, and 
phosphates were measured using an internal process 
based on UNE EN-ISO 14911 and Ion Chromatography.  

5. Preprocessing of data using Spearman’s Rank 
correlation 

Spearman's rho is equivalent to Pearson's correlation in 
that it can be used to assess how well two variables are 
related. This rank correlation measurement is 
nonparametric. The ability of Spearman correlation to 
analyse monotonic relationships distinguishes this from 
Pearson correlation.  Assume we have the xi and Yi series. 
By using the following equation, one can determine the 
Spearman's rank correlation coefficient: 

= −
−


26

1
( 1)

i

s

d
τ

n n  
(1) 

where xi is the difference between ranks for each xi , Yi is 
data pair and also the quantity of data pairs. A perfect 
Spearman correlation takes place when there aren't any 
repeated data and each variable is a pure monotone 
function of the others. Spearman correlation will 
approach +1 if the data have a comparable rank. On the 
other hand, data with a different rank will decrease to a 
value of 1. Additionally, it will approach 0 if the two series 
are unrelated. 

6. Improved deep Back Propagation neural network 
(IDBP) 

A subset of neural networks that learn using back 
propagation is known as BP neural networks. Input, 
implicit, and output layers make up its three levels of 
structure. Figure 2 illustrates how BPNN gradually 
modifies the input weights between layers using the 
training error. Additionally, a Stochastic gradient descent 
algorithm is used in this adjustment process. 

 

Figure 2. Architecture of IDBP with 16-layers 

The network will continuously compute through 
backpropagation if the output error of the sample does 
not meet the predetermined convergence error. The 
connected layers' parameter values are altered by the 
iterative process, which lowers the error. When the error 
is brought down to the desired value, the iteration is 
complete.  

https://www.sciencedirect.com/topics/engineering/backpropagation
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The exact computational output equation for this model 
is: 
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=

 
= + 

 


'

1

P

j i ij j
I

y S b
 

(2) 

where bi is the activation values for the i-th input to the j-
th output; ωij is Connecting weighting coefficients initially 
involves a small, random amount.; ϒj is the output layer 
unit threshold; S is the sigmoid function that is 
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by its dimensions, i.e., n1
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Convolution of the input with a filter yields layer m's 
output, which is calculated as 
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W(m,l) and b(m,l) are the parameters where the lth filter in 
layer m is defined. The size of the filters (i.e., the values of 
W(m,l)) that are non-zero and the areas where the filters 
are evaluated (i.e., the values of i, j, k for which Ii,j,k

(m,l)  is 
determined) are factors of the network model.  Hence, we 
employ a hyperbolic tangent activation function. with 
ftanh(a)=tanh(a)f. ReLu layers maintain the inputs' spatial 
structure and, as even more number of layers are added, 
provide progressively more complicated conceptions of 
the input. A fully connected network layer is then created 
using the output of the previous layers as its input. This is 
accomplished by treating the layer's output as a single 
vector while ignoring the spatial and channel structure. A 
vector I(m) with a dimension that is a network architectural 
parameter is the result of a fully connected system. In m 
layer the output neuron I is provided as 

( ) −= +
,( ) ( 1) ( , )( )m im m m i

i ReLu j j
j

I f b I W  
(3) 

where,  w(m,i)  andb(m,i)are the parameters of neuron I in 
layer m and the summation over j represents an 
accumulation of all input dimensions. The activation 
function fReLu(.)is selected as a Rectified Linear Unit (ReLU) 
with fReLu(a)=max(0,a). The sparsity it causes in the outputs 
is thought to be mainly useful in classification tasks since 
it assists in the segregation of classes during training.  The 
output layer receives its input from the last fully 
connected layer. The specific task determines the output 
layer's format and structure. Here, two distinct output 
function types are considered. The softmax function is a 
typical output function in K-class classification problems: 
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where, N denotes the final fully connected layer, b(o,i) and 
W(o,i are ith output unit parameter and fiϵ[0,1] is the class I 
output, which is in range of that class given the inputs. In 
addition, we analyse a variant of the logistic output 
function: 

This produces a continuous output f with parameters b(o) 

and W(o) that must be within the range (a, b). This is 
referred to as the scaled logistic output function. The BP 
neural network's satisfaction is greatly impacted by the 
transfer function of every layer. Usually, experimental 
analysis is used to calculate these transfer functions. 
When the input layer and first hidden layer in the BP 
neural network have a "tansig" transfer function, a 
"tansig" transfer function exists between the first hidden 
layer and next hidden layer, and a "purelin" transfer 
function exists between the next hidden layer and output 
layer. 
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(8) 

Following a review of the sequential data for any findings 
that did not correspond to the expected time intervals, 
observations with inconsistent time intervals were 
eliminated, and missing values were determined by 
interpolation. 

7. Stochastic Gradient Descent process 

In machine learning (ML) applications, stochastic gradient 
descent (SGD) is an optimization process used to identify 
model parameters that are consistent with the best 
predicted-actual output. When integrated with 
backpropagation, it is a potent method that is frequently 
applied in neural network training applications. For 
memory-related uses, it must have a single training record 
that is processed by the entire network. The processing of 
a single record also makes it run more efficiently. It can 
operate more quickly when dealing with larger datasets 
since it updates the parameters more frequently. The SGD 
optimization is presented as the following equation: 


=* argmin ( )

x X
x f x  

(9) 

The goal of this function is to minimise the target score 
that is used as the validation score; x* is a set of 

https://www.sciencedirect.com/topics/engineering/gradient-descent
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hyperparameters that provide the lowest score, and x can 
take any value from the X field. The issue with optimising 
hyperparameters  is quite expensive to test the objective 
role to discover the solution. Then, while experimenting 
with different parameters, we must estimate the 
validation metrics after training the model on training 
data and forecasting validation data. The weights wi that 
linked the input and hidden layers, as well as the biases bi, 
were to be initialised and modified in each iteration of the 
stochastic gradient descent-based learning strategy. 
Because of this, the training procedure was frequently 
time-consuming, and the training model occasionally 
failed to achieve global minima. However, IDBP did not 
tune those factors; instead, it employed minimal norm 
least-squares. IDBP with fixed wi and bi was similar for 
predicting the least square solution during the training 

process in equation 6 ̂  of Hβ=T 
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with the minimum value  =ˆ †H T . where, H† was 

matrix H's generalised Moore-Penrose inverse. This 
solution's primary distinguishing characteristics include 
lower training error, a unique solution, and the smallest 
weight norms. 

8. Performance analysis 

To demonstrate the effectiveness of the suggested Imp 
BPNN SGD model for predicting water quality, the hourly 
temperature (T) of water, pH, dissolved oxygen (DO), 
electrical conductivity (EC), and turbidity (NTU) data, 
which together total 39,025 features, are taken from the 
water quality sequence data of Pulicat. These features are 
listed in Table 1  

 

Table 1. dataset features with their statistical analysis values 

Feature Min Max Mean Standard deviation median 

Temperature 20 degree Celsius 98 degree Celsius 7.684 1.578 7.459 

pH 0.223 0.457 2.3 1.78 7.98 

Dissolved Oxygen 34.67 87.94 7.459 0.787 6.548 

Electrical Conductance 51.6 68.45 6.35 1.578 7.347 

Turbidity 1.5 2.89 1.6798 2.74 6.689 

Table 2. indicates details about layers in proposed network 

Layer value 

Number of parameters 59 

Number of hidden units 6 

Number of inputs 16 

Conv+ReLU 4 

Max-pooling 7 

 

9. Experimental setup 

In this work, an experimental environment with the 
following environmental factors is built using the deep 
learning framework TensorFlow: CPU, Intel i7-6700 
3.4GHz; GPU, Nvidia GTX 1060 graphics card; 8GB of PC 
memory; Windows 10 64-bit operating system; Python 
3.6. More data features are present in datasets, and these 
features have differing degrees of impact on the 
anticipated value of dissolved oxygen. The most pertinent 
data that can aid in the model's ability to make correct 
predictions is selected using feature extraction and 
recognition in order to show the influence of input 
features on the model for predicting water quality. The 
proposed network layers listed in Table 2.  The degree to 
which features influence one another is now determined 
using Spearman's Rank correlation analysis. 

10. Result and discussion 

The proposed Improved Back Propagation Neural Network 
with Stochastic Gradient Descent (Imp BPNN SGD) is 
evaluated using metrics such as Root Mean Square Error 
(RMSE), Relative Absolute Error (RAE), Mean Absolute 
Error (MAE), and Decision Coefficient (D2)These metrics 

are used to evaluate three baseline techniques, including 
Recurrent Neural Network (RNN), Deep Long Short Term 
Memory (DeepLSTM) and Artificial Neural Network (ANN). 
Where D2 refers for fit optimization, representing the 
correlation between the two random variables, and RMSE 
and MAE may be used to calculate the error between the 
model's predicted value and the actual value; the 
minimum number, the more precise the results, as seen in 
the given description. 
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Where yi indicates the forecast value, qi indicates the real 
value,n is the number of test sample, and q’i indicates 
average value of the actual sequence. 

The analysis of RMSE values of proposed methods and 
existing methods are shown in Table 3.  

 

Table 3. analysis of RMSE 

Number of days DeepLSTM RNN ANN Imp_BPNN_SGD 

10 57.9 46.6 67.3 31.3 

20 58 48 68 30 

30 54.3 49.3 65.9 33.2 

40 53.5 47 65 32 

50 55 45.5 67.9 31.8 

Table 4. analysis of MAE 

Number of days DeepLSTM RNN ANN Imp_BPNN_SGD 

10 52 48 64 29 

20 59 42 62 32 

30 53 46 67 36 

40 49 41 68 28 

50 45 39 65 26 

 

 

 

Figure 3. comparison of RMSE 

Figure 3 shows the RMSE evaluation, where ,the 
suggested Imp_BPNN_SGD approach obtains 35.6% of 
RMSE, which is 23.9% lesser than the DeepLSTM method, 
13.3% lesser than RNN and 32.6% lesser than ANN. The 
analysis of MAE values of proposed methods and existing 
methods are shown in Table 4.  

 

Figure 4. comparison of MAE 

Figure 4 shows the MAE evaluation, where, the suggested 
Imp_BPNN_SGD approach obtains 21.6% of MAE, which is 
26.2% lesser than the DeepLSTM method, 46.3% lesser 
than RNN and 33.3% lesser than ANN. The analysis of RAE 
values of proposed methods and existing methods are 
shown in Table 5.  

 

Table 5. analysis of RAE 

Number of days DeepLSTM RNN ANN Imp_BPNN_SGD 

10 55 46 62 24 

20 57 45 65 33 

30 51 49 64 31 

40 47 40 63 25 

50 43 37 61 28 

Table 6. analysis of D2 

Number of days DeepLSTM RNN ANN Imp_BPNN_SGD 

10 65 82 73 97.5 

20 68 80 76 95.7 

30 62 78 71 96 

40 59 79 82 96.9 

50 72 85 86 94 
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Figure 5. comparison of RAE 

Figure 5 shows the RAE evaluation, where, the suggested 
Imp_BPNN_SGD approach obtains 19.6% of RAE, which is 
37.8% lesser than the DeepLSTM method, 36.8% lesser 
than RNN and 42.2% lesser than ANN. The analysis of D2 
values of proposed methods and existing methods are 
shown in Table 6.  

 

Figure 6. comparison of D2 

Figure 6 shows the D2 evaluation, where, the suggested 
Imp_BPNN_SGD approach obtains 97.2% of D2, which is 
20.6% lesser than the DeepLSTM method, 16.2% lesser 
than RNN and 21.2% lesser than ANN. 

 

Figure 7. analysis of pH level in water using Imp_BPNN_SGD 

In Figures 7 and 8, the Imp BPNN SGD model's strong 
prediction abilities are further demonstrated by the five 
water quality parameters whose predicted values closely 
matched their measured values.  

The outcome demonstrated that Imp BPNN SGD's 
prediction accuracy for measured data on coastal lagoon 
water was still high, demonstrating that Imp BPNN SGD's 
prediction performance was outstanding for application to 
actual prediction. The Imp BPNN SGD prediction will be 
helpful for aquaculture system monitoring and prognosis 
as well. Additionally, short-term forecasting is advised for 
improving forecast outcomes. The below Table 7 shows 
the overall performance analysis for proposed method 
with existing methods. 

 

Figure 8. analysis of pH level in water using Imp_BPNN_SGD 

Table 7. Comparison Overall performance Analysis 

Parameters DeepLSTM RNN ANN Imp_BPNN_SGD 

RMSE (%) 59.5 48.9 67.8 35.6 

MAE (%) 47.8 67.9 54.9 21.6 

RAE (%) 57.4 56.4 61.8 19.6 

D2 (%) 67.8 81.4 76.5 97.2 

11. Conclusion 

In this assessment, hourly groundwater levels observed at 
a coastal unrestrained aquifer in the Lagoon of Pulkit, 
India, are extended and simulated using an Improved Back 
Propagation Neural Network with Stochastic Gradient 
Descent (Imp BPNN SGD). First, utilising historical 
observed pore water data combined with external inputs, 
the constructed Imp BPNN SGD was trained to make one-
step ahead predictions. After training, simulations were 
created by substituting run-time results from the Imp 
BPNN SGD with previously recorded data. In this method, 
the research evaluated Imp BPNN SGD's capacity to 
provide precise groundwater level simulations over an 
extended period of time. Additionally, it is observed that 
the constructed network provides effective performance 
than the baseline model which was used for comparison. 
In reality we can apply this research in all coastal regions. 
In a subsequent work, we plan to compare the Imp BPNN 
SGD results with a currently under construction numerical 
model of the aquifer system. 
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