Effect of biochar on tungsten bioavailability and uptake grown in a soil with
artificially tungsten contaminated
Wei-Jiang Chen ^{&abc} , Bu-Chan Zhou ^{&abc} , Xiao-Jun Zheng ^{abc} , Qi Li ^{abc} , Miao-Miao Wang ^{abc} , Zhi
Ye Peng ^c ,Zhi-Peng Lai ^{abc} , Li Tian ^{abc} ,Ming Chen ^{* abc}
^a Collaborative Innovation Center for Development and Utilization of Rare Metal Resources Co
sponsored by Ministry of Education and Jiangxi Province, Ganzhou, 341000 China ; ^b Jiangxi
Province Key Laboratory of Mining and Metallurgy Environmental Pollution Control, Ganzho
341000 China; College of Resources and Environment Engineering, Jiangxi University of
Science and Technology, Ganzhou, 341000 China
&: Wei-Jiang Chen and Bu-Chan Zhou contribute equally to the article.
*:Ming Chen serves as the corresponding author.
GRAPHICALABSTRACT
To explore the migration and transformation of W-
biochar-plants

Effect of BC on plant parameters

Tungsten (W) has become an emerging pollutant due to its potential toxicity to the human body,

Effect of BC on lettuce enrichment W

17 and biochar (BC) is widely used for the remediation of heavy metals in soil. However, W—

Abstract:

14

15

16

Effects of BC on soil

18	biochar's interaction with plants remains unknown. This trial aimed to investigate the effect of
19	rice husk BC on the absorption of lettuce W. Add different levels of BC (0%, 1%, 2%, and 5%
20	w/w) to the soil and incubate for 60 days. The results show that the mechanism by which BC
21	application fixes W in soil and converts the acid extractable and reducible parts into residual
22	parts has not been studied. At the same time, BC treatment improved the stem height, root
23	length, biomass and chlorophyll content of lettuce compared with the control.Compared with
24	the control, the accumulation of W treated with 5% BC was reduced in both the aboveground
25	and roots, and the transport factor (root-to-aboveground) was the lowest. The results show that
26	the main benefit of BC is reduced W to proximal water mobilization. In addition, the
27	administration of BC can effectively fix and reduce the absorption of W by lettuce.
28	
29	Keywords: Tungsten; Bioavailability; Biochar; Stabilization
29 30	Keywords: Tungsten;Bioavailability; Biochar; Stabilization 1. Introduction
30	1. Introduction
30 31	1. IntroductionTungsten (W) is a precious rare metal that has been widely used in a wide range of applications
303132	 1. Introduction Tungsten (W) is a precious rare metal that has been widely used in a wide range of applications from everyday household necessities to high-tech industries (preliminary risk concentrations of
30313233	 1. Introduction Tungsten (W) is a precious rare metal that has been widely used in a wide range of applications from everyday household necessities to high-tech industries (preliminary risk concentrations of W in soil and drinking water, land contamination census). The cancer case report in western
 30 31 32 33 34 	 Introduction Tungsten (W) is a precious rare metal that has been widely used in a wide range of applications from everyday household necessities to high-tech industries (preliminary risk concentrations of W in soil and drinking water, land contamination census). The cancer case report in western Nevada brought W to the scientific attention of the academic community and detected a high
 30 31 32 33 34 35 	 Introduction Tungsten (W) is a precious rare metal that has been widely used in a wide range of applications from everyday household necessities to high-tech industries (preliminary risk concentrations of W in soil and drinking water, land contamination census). The cancer case report in western Nevada brought W to the scientific attention of the academic community and detected a high incidence of acute leukemia(Schell and Pardus 2009). To assess the environmental causes of
 30 31 32 33 34 35 36 	 Introduction Tungsten (W) is a precious rare metal that has been widely used in a wide range of applications from everyday household necessities to high-tech industries (preliminary risk concentrations of W in soil and drinking water, land contamination census). The cancer case report in western Nevada brought W to the scientific attention of the academic community and detected a high incidence of acute leukemia(Schell and Pardus 2009). To assess the environmental causes of leukemia clusters, several studies have been conducted. Finally, W is considered an

39	2017).Soil can be contaminated with high concentrations of W due to human activities such as
40	industrial and agricultural activities, and mining activities are also one of the main sources of W
41	in soil (Kennedy et al. 2012). Due to its complex chemistry, W behaves in soil quite differently
42	than other metals. Due to the diversity of oxidation states (-2 to +6) and coordination numbers
43	(5 to 9) of W, its chemistry is one of the most variable and complex of transition elements
44	(Koutsospyros et al. 2006).W is an essential element of some microbial enzymes, but is not
45	necessary for plants, animals and humans. In addition, W reduces germination rate, inhibits
46	rhizome growth, destroys cells, and leads to cell death. Aging soil bioassays showed that
47	cabbage growth was impaired when soil W levels were 436 mg/kg (Adamakis, Panteris, &
48	Eleftheriou 2012). W is absorbed by the root system and transported through the xylem, and
49	the accumulation of W in the root system is much higher than in the stem. The accumulation of
50	W of several plants in abandoned mines was studied, and the W content of digitalis purpurea
51	was 90.8 mg/kg (Pratas et al. 2005).
52	Stabilization technology is a widely used method for remediating metal-contaminated soil. BC
53	has been widely used for heavy metal stabilization (Lamori et al., 2017). While there have been
54	some studies that have looked at the uptake of W by plants, the effects of soil remediation
55	agents on it are unclear. Unlike many other metals, which have been well documented as
56	contaminants that can be cured by BC, existing knowledge about W stabilizers is relatively
57	limited (Zheng etal 2020). Therefore, it can be a productive topic for discussion. In addition,
58	lettuce is a common vegetable that grows rapidly and reacts to metal pollution in the soil (Kim
59	etal 2015). On this basis, lettuce was used as the research object, and the effect of BC on soil W
	3

60 and the absorption of W by lettuce were studied.

- 61 **2. Materials and methods**
- 62 **2.1.** Materials collection and characterization

63 All experimental chemicals were analytical grade and used as received. Sodium tungstate

- 64 (Na₂WO₄) was selected as the W source. The field soil was collected from garden in Jiangxi
- 65 University of Science and Technology in China. Soil properties are followed below: 19.17%
- moisture (by drying to constant weight at 105° C), 2.47% soil organic materials (by loss on
- 67 ignition at 550 °C for 4 h), pH was 5.96 (in a soil:water ratio 1:2.5). Before the experiment, the
- 68 air-dried soil was broken and pass through a 2 mm sieve for saving.
- BC was produced by pyrolysis of rice husk at 400 °C in the absence of O_2 (4 hours), and broken
- 70 to pass through a #60 sieve after oven drying. The pH of BC (1:20, w/v, weight to distilled water
- 71 ratio) were measured using pH meters(Abbas et al. 2017). Like most studies, BC was alkaline
- 72 (pH 7.81), and with many major nutrients (Table1). Thus, BC may have high reactivity to

73 cations because of its high BET (Brunauer-Emmett-Teller) surface area (89.06 m²/g) and

negative Zeta potential (-28.82 mV) (Meier et al. 2015). Conversely, it may have lower

75 reactivity to W which was existed in the soil in the form of oxyanions.

Fig. 1 depicts the functional groups of BC, which were identified by FTIR spectroscopy. At the range of 3,500 to 3,100 cm⁻¹, the absorption is assigned to the stretching vibration of N-H bonds from amines and amides (Liu et al. 2018). The peak at 1600 cm⁻¹ was related to C=O stretching attributed to the carbonyl group(Bamdad and Hawboldt 2016). The peak near at 1100 cm⁻¹

80 indicate the presence of C-N from tertiary amine. The band at 800 is due to the presence of —

81 (CH₂)_n— (n > 4), and indicate that long carbon chain was existed.

82 **2.2.** Immobilization assay

83 A group of soil was prepared individually to evaluate the effect of application dose of BC for extractable rate and observe the metal forms transformation of W during the treatment period. 84 The field soils were spiked with Na₂WO₄ solution. So the concentration of W was 60±1.24 85 mg/kg, fully mixed up and incubated for 14 days before air drying. Each plastic pot (height 20 86 cm, top and bottom diameter of 18 cm and 15 cm respectively) was filled with 3 kg of soil on 87 dry weight basis. BC was added at application rate of 0% (CK), 1.5%, 3.0%, and 5.0% w/w in 88 the soil and fully mixed and then incubated for 60 days at 25 ± 2 °C. The soils were kept 60% of 89 field capacity, which corresponds to 15-18% of soil moisture content that was monitored using a 90 digital thermo-hygrometer equipped with a sensing probe. All experiences were triplicated. 91

92 2.3. Soil analysis of immobilization assay

93 After 60 days incubation of immobilization assay, 200 g soil samples were collected for property analysis. Soil pH was measured using a pH meter at a soil/water ratio 1:2.5. The 94 ammonium acetate extraction procedure was used for cation exchange capacity (CEC) 95 96 determination(Lusiba, Odhiambo and Ogola 2016). Soil organic carbon (SOC) determained using the Walkley and Black method(Nelson and Sommers 1996). The Stuanes method was 97 98 used for exchangeable acidity determination(Stuanes, Ogner and Opem 1984). CaCl₂ extract 99 procedure was carried out to evaluated the the stabilization rate of BC on W, which method is 100 closely related with contaminant bioavailability to soil organisms (Cao et al. 2011). Meanwhile, 101 BCR sequence extract procedure was adopted to determine metal form present in soil sample

102	after BC application (Davidson et al. 1998). The concentration of W in soil leaching agent was
103	determined by ICP-MS (Agilent8800, SureCycler). The following is a list of the sequence
104	extraction procedures performed on the soil W:
105	F1 - acid extractable fraction. 1.0 g soil (through a #100 sieve) was extracted with 40 ml of 0.11
106	mol/L acetic acid with continuous shaking for 16 h at 25 °C. Then, centrifuging at 3000 r/min
107	for 2h at room temperature, filtering the supernatant fluid, and saving for the next step of the
108	experiment.
109	F2 - reducible fraction. The residual of F1 was washed with deionized water and extracted with
110	40 ml of 0.5 mol/L hydroxylamine hydrochloride, with continuous shaking for 16 h at 25 °C.
111	Then, centrifuging at 3000 r/min for 2h at room temperature, filtering the supernatant fluid, and
112	saving for the next step of the experiment.
113	F3 - oxidizable fraction. The residual of F2 was washed with deionized water and extracted with
114	10ml hydrogen peroxide with pH 2-3, continuous digesting for 1 h at room temperature and 1 h
115	at 85 °C, respectively. Add 50 ml 1 mol/L ammonium acetate for extraction with continuous
116	shaking for 16 h at 25 °C. Then, centrifuging at 3000 r/min for 2h at room temperature, filtering
117	the supernatant fluid, and saving for the next step of the experiment.
118	F4- residual fraction. The residual of F3 was washed with deionized water and digested as
119	procedure of total metal analysis.
120	2.4. Pot experiment
121	A further treatment, after 60 days incubation, a pot experiment was conducted to evaluate the
122	effect of BC application on lettuce. Before pot experiment, soil was air-dried, ground and passed

123	through a 1 mm sieve. Initially, 10 lettuce seeds were sown in each pot (height 9.6 cm, top and
124	bottom diameter of 17 cm and 12.3 cm respectively) containing 1.5 kg of soil. The seeds were
125	germinated for 7 days, then the plants were thinned to 1 per pot. And then, the lettuce was
126	cultivated for 60 days with a 16 h photoperiod at 25 ± 2 °C, and kept 60% of field capacity.
127	Both germination and cultivation were carried out in growth chamber. Therefore, in total there
128	were 12 pots, giving 4 triplicated treatments, 0% BC, 1% BC, 2% BC and 5.0% BC.
129	2.5. Plant analysis of pot experiment
130	Further, after 60 days growth, the plants were harvested, and initially washed thoroughly with
131	tap water followed by deionized water and recorded plant biomass. Then, the lettuce were
132	separated into roots and shoots lengths were measured using a measuring scale, shoot and root
133	samples were freeze-dried and ground to powder. To analyze W uptake by lettuce, 0.2 g of
134	ground shoot and root samples were digested using 15 mL of concentrated HNO3 and closed-
135	vessel microwave digestion procedure was performed (Park and Han 2019). The values of W in
136	digestate were determined using an inductively coupled plasma mass spectrometry (ICP-MS,
137	Agilent-8800).
138	3. Results
139	3.1. Immobilization assay
140	3.1.1. Effects of BC on the properties of soil
141	The application of BC significantly changed the physicochemical properties of the soil such as
142	pH, exchange acidity, organic carbon and CEC. Soil pH significantly influences the mobility of
143	W (Bednar et al. 2009). The application of BC causes a change in soil pH, which is related to
	7

144	the alkalinity of BC. Numerous studies have shown that BC can be used as an excellent acidic
145	soil additive to increase soil pH to fix heavy metals. Organic carbon content is an important
146	indicator of soil fertility and can compete with oxygen anions for retention points. Organic
147	carbons, including humic acids, organic clays, and oxides coated with organic matter, have a
148	high affinity for metals (Ghosh and Singh 2005). Therefore, the increase of SOC after BC
149	application may be one of the reasons for the change in W mobility. CEC is an important factor
150	affecting the retention and migration of metals in soil, which is related to the adsorption
151	capacity of soil to metals.
152	Soil exchange acidity decreases with the increase of BC application. The acidity of soil colloidal
153	adsorption exchangeability H+ and Al3+ is called exchangeable acidity, which represents the
154	acidification trend of the soil. Therefore, exchange acidity is an important parameter for the
155	remediation of acidic soils. The effects of different BC application rates on soil parameters were
156	observed (Table 2). Soil pH increases with the increase of BC application, which is mainly due
157	to the alkalinity of BC, which is affected by different raw materials and production processes.
158	Compared with the control group (CK), soil pH increased by 0.03, 0.08 and 0.18 units,
159	respectively, 2% BC and 5% BC (p <0.05), and 1% BC had no significant effect on soil pH (p
160	>0.05). After administration of 1%, 2%, 5%, and 10% BC, the exchange acidity decreased by
161	0.14, 0.30, and 0.81 cmol/kg, respectively, compared to the control group. In addition, BC is
162	also an organic fertilizer with high organic matter and CEC content. The administration of 1% \sim
163	5% BC can increase SOC and CEC by 15.42% \sim 82.43% and 9.11% \sim 42.02%, respectively.
164	After BC application, soil pH increased 0.03-0.18 units, and exchangeable acidity
	8

165	decreased0.14—0.81 cmol/ kg, which was attributed to the high alkalinity of the BC displaying
166	a liming effect(Rizwan et al. 2019). Carbonate contents and functional groups (such as-
167	COO—, —O—) in BC surface were increased during the BC production process, which
168	attributes to the pyrolysis of organic matter(Yuan, Xu and Zhang). Rice-husk-derived BC is rich
169	in base ions, phosphates, carbonates, and metal oxides, which reduce the exchangeable acidity
170	in the soil by adsorption to protons (Li M K and 2018). It can be concluded that the BC from
171	rice-husk could be used as soil amendments to adjust soil acidity for its alkalinity. BC
172	application significantly increased soil CEC, and the highest values of CEC were recorded at
173	5% of BC application rate. The increased CEC could be regarded as the high surface area,
174	porous structure and organic matter contents of BC(Sun and Lu 2014).
175	3.1.2. Effect of application rate of BC on W stabilization (CaCl2 extraction results)
176	The stabilization rate of W was determined by the results of the TCLP tests. The stabilization
177	rate of W was calculated according to the following formula:
178	Stabilization rate = $[(C_0 - C_1)/C_0] * 100\%$
179	Where C_0 is the extraction concentration of W in BC-untreated soil (CK), C_1 is the extraction
180	concentration of W in after different BC application. With BC-untreated, the extraction
181	concentration of W is 448.11 \pm 1.10 µg /L. The effect of the application rate of BC on the W
182	stabilization rate is shown in Fig. 2. When the BC application rate increases from 0% to 5%, the
183	stabilization rate of W was increased obviously. After 5% BC application, the extraction of W
184	concentration in the soil was reduced to 210.56±1.10, and the stabilization rate of W reached
185	53.13% after 5% BC application. It can be figured out that 5% BC application has a high
	9

186 stabilization rate.

188to BC application induced increases in soil pH. Many previous studies are shown that pH could189be the most important soil factor influencing metal mobility (Krol, Mizerna and Bozym 2019,190Sakanakura et al. 2011, Cappuyns et al. 2013). According to our previous study, the leaching191ability of W was generally increased with pH at a range of 3-12, while it's slightly decreased192with pH increased from 6 to 7 (unpublished). SOC content is known to effects metals mobility.193Its attribute to BC has influences on the negative charge of soil surface and chemical reactions194between metals species, such as As which was existed in the form of oxyanions. Lin et al.195reported that BC application could improved As adsorption ability of red soil(Lin et al. 2018). It196could be concluded that BC prompted the adsorption of W onto soil particles. Besides, increased197SOC content increased the formation of metal-organo complexes, because W is capable of
Sakanakura et al. 2011, Cappuyns et al. 2013). According to our previous study, the leaching ability of W was generally increased with pH at a range of 3-12, while it's slightly decreased with pH increased from 6 to 7 (unpublished). SOC content is known to effects metals mobility. Its attribute to BC has influences on the negative charge of soil surface and chemical reactions between metals species, such as As which was existed in the form of oxyanions. Lin et al. reported that BC application could improved As adsorption ability of red soil(Lin et al. 2018). It could be concluded that BC prompted the adsorption of W onto soil particles. Besides, increased
 ability of W was generally increased with pH at a range of 3-12, while it's slightly decreased with pH increased from 6 to 7 (unpublished). SOC content is known to effects metals mobility. Its attribute to BC has influences on the negative charge of soil surface and chemical reactions between metals species, such as As which was existed in the form of oxyanions. Lin et al. reported that BC application could improved As adsorption ability of red soil(Lin et al. 2018). It could be concluded that BC prompted the adsorption of W onto soil particles. Besides, increased
 with pH increased from 6 to 7 (unpublished). SOC content is known to effects metals mobility. Its attribute to BC has influences on the negative charge of soil surface and chemical reactions between metals species, such as As which was existed in the form of oxyanions. Lin et al. reported that BC application could improved As adsorption ability of red soil(Lin et al. 2018). It could be concluded that BC prompted the adsorption of W onto soil particles. Besides, increased
193 Its attribute to BC has influences on the negative charge of soil surface and chemical reactions 194 between metals species, such as As which was existed in the form of oxyanions. Lin et al. 195 reported that BC application could improved As adsorption ability of red soil(Lin et al. 2018). It 196 could be concluded that BC prompted the adsorption of W onto soil particles. Besides, increased
 between metals species, such as As which was existed in the form of oxyanions. Lin et al. reported that BC application could improved As adsorption ability of red soil(Lin et al. 2018). It could be concluded that BC prompted the adsorption of W onto soil particles. Besides, increased
 reported that BC application could improved As adsorption ability of red soil(Lin et al. 2018). It could be concluded that BC prompted the adsorption of W onto soil particles. Besides, increased
196 could be concluded that BC prompted the adsorption of W onto soil particles. Besides, increased
197 SOC content increased the formation of metal-organo complexes, because W is capable of
198 forming a large number of complexes with a variety of organic ligands. Recent research (Plattes
199 et al. 2007) showed that primary amines in lysine can chelate with tungstate, which figured out
200 that a strong interaction between primary amines and tungstate ions. Tong et al. reported that
201 adsorption on metals via formation of surface complexation is mainly mechanism for biochars
202 made from crop residues(Tong et al. 2011).
203 FTIR analysis indicates that the surface of BC contains primary amines, which may promote the
204 diffusion of tungstate to BC pores, and accelerate the stabilization. CEC may play an important
205 role in metal-oxyanions stabilization, especially Ca^{2+} . According to previous study, BC, load
206 with calcium, can decrease the mobility of As. In thisstudy, BC was not load, but high calcium

207	was observed, which dominated by its feedstock. Generally, immobilizing effect was controled
208	by the complexation, surface adsorption and precipitation. Simultaneously, the these processes
209	are enhanced by pore structure of biochar, its attribute to the slow water percolation (Downie,
210	Crosky and Munroe 2012).
211	The possible immobilization mechanism is as follows: BC improves the adsorption capacity of
212	W in soil particles by affecting the negative charge on the soil surface; hformation of surface
213	complexation. Surface functional groups can stabilize W by surface complexation. W exists in
214	the form of oxygen anions. W can be precipitated with mineral elements such as calcium in
215	biochar. However, its stability mechanism needs to be further studied.
216	3.1.3. Transformation of W forms after BC-treated (BCR results)
217	The percentage of each fraction of W in soil samples with different BC application rate is
218	performed (Fig. 3). In Fig. 3, "CK" shows the percentage with BC-untreated, while, "1% BC",
219	"2% BC", "5% BC" show the percentage with different BC application rate. When natural soil
220	samples were spiked with a high content of W (sodium tungstate), the largest amount of W
221	presented in the oxidizable fraction (42.67%), which is supposed to be quite environmentally
222	friendly, while, its amount was also high in the acid extractable fraction (35.80%). The
223	percentage of reducible fraction and residual fraction were 14.93% and 6.60%, respectively.
224	After 1% to 5% BC application, the residual fraction increased significantly, while the acid
225	extracted fraction decreased. Compared to the control group, 1%, 2%, and 5% BC application
226	rate increased the residual fraction to 17.40%, 31.38%, and 42.40% respectively, and acid
227	extracted fraction decreased to 18.44%, 12.10% and 9.86% respectively. Furthermore, after BC
	11

228 application, a slight decrease in the reducible state was observed. It can be figured out that most 229 acid extracted fraction was converted into residual fraction, which was deemed to be quite 230 environmental friendly like oxidizable fraction. The mobility of W is strongly controlled by Fe (III) oxide/oxyhydroxide, and it was positively 231 correlated with the content of Fe (III) oxide/oxyhydroxide (Johannesson et al. 2013). Macro, 232 micro, and nanoporous structures in biochar may provide reducing conditions for Fe and 233 Mn(Joseph et al. 2010, Lin et al. 2012). When the redox potential is negative, Fe^{3+} , Mn^{4+} is 234 reduced to Fe²⁺, Mn²⁺, the adsorption of W on Fe (III) oxide/oxyhydroxide was decreased. This 235 process could be a reasonable explanation for the slight reduction in the reducible fraction. 236 Besides, high content of dissolved organic matter (DOM) entered the soil. After that, W could 237 complex with DOM and convert to oxidizable fraction. Beesley (Beesley et al. 2013) suggested 238 239 that biochar was a source of Fe (II), which could precipitate with tungstate ion. Tungstate 240 polymerization reactions are generally favored at lower pH(Bednar et al. 2008). Control group soil sample has a lower pH (6.13) and a higher acid extractable fraction (35.80%), we can 241 regard that polytungstate has a higher mobilization in this soil sample. After BC application, the 242 243 increased pH leads to depolymerization of polytungstate, and tungstate was produced. For negative redox potential conditions, Fe^{2+} and Mn^{2+} were produced and precipitate with 244 tungstate. The reason for increases of the residual fraction was considered as follows: the 245 produced Fe²⁺ and Mn²⁺ were precipitate with tungstate, and increased SOC increased the 246 247 absorption of W on soil particles.

3.2. Pot experiment

3.2.1. Effect of BC on plant parameters

250	The growth and biomass of lettuce were significantly increased by BC application (Fig. 4). 5%
251	BC application increased lettuce fresh biomass, shoot height, and root length by 32.29%,
252	45.33%, and 61.54%, respectively, compared to the control group. The average shoot height and
253	root length were increased to 11.6 ± 0.57 cm and 10.9 ± 1.15 cm per plant compared to $7.8 \pm$
254	0.42 cm and 7.5 \pm 0.57 cm per plant in the control treatment. Also, BC application significantly
255	(p≤0.05) increased lettuce biomass, which was 8%, 15%, and 32% higher after the application
256	of 1%, 2%, and 5% BC treatments compared to the control. Compared to the control group, the
257	average chlorophyll contents of lettuce were increased to 0.75±0.14, 1.05±0.01, and 1.45±0.21
258	mg/kg with 1%, 2%, and 5% BC application.
259	The present research indicates that BC application has a positive effect on lettuce growth and
260	photosynthesis compared to the control group (Fig. 5). Some research has shown that BC could
261	increase plant growth and photosynthesis under metal-stressed species (Rizwan et al. 2016,
262	Younis et al. 2016). Unfortunately, the interaction of W-BC-plant remains unknown. In this
263	study, the shoot height, root length, biomass, chlorophyll of lettuce was increased with increased
264	BC dose; this can be regarded as the increase in the mineral nutrient of BC (Table 1), and
265	decreased W concentration in the plant (Fig. 6). W has toxic attributes to suppression of
266	seedling, reduction of root and shoot biomass, aberration of cell cycle, disruption of the
267	cytoskeleton and programmed cell death(Adamakis et al. 2012). However, the mechanism by
268	which W exerted this effect has not been studied. The elongation of root inhibited by W may
269	attributed to ultrastructural defects caused by W (Adamakis, Panteris and Eleftheriou 2011). The

270	W in soil was immobilized by BC (Fig. 2 and Fig. 3), which could reduce W availability.
271	Besides, the nutrient elements contained in BC have positive effects on plant growth(Rafique et
272	al. 2019, Kumar et al. 2019), including potassium, nitrogen and phosphorus. Inaddition, BC,
273	produced in low pyrolysis temperature, is rich in DOM. In Bian et al study, they regarded that
274	BC was exerting a more significant improvement on plant biomass, which attribute to large
275	DOM(Bian et al. 2019).
276	3.2.2. Effect of BC on lettuce enrichment W
277	BC application increased average W content in lettuce shoot and root (Fig.6). While, the effects
278	of 1% and 2% BC were not obvious, 5% BC application was significantly increased W content.
279	W concentrations in lettuce shoot and root ranged from3.72 mg/kg to 5.34 mg/kg and from
280	24.94 mg/kg to 30.45 mg/kg, respectively. Average translocation factor (W content in shoot / W
281	content in root) of W from root to shoot was 0.1791 for lettuce with 0% BC application and
282	0.1509 for lettuce with 5% BC application, showing significant difference between the two.
283	Simultaneously, 1% and 2% BC application decreased W uptake for shoot and root, but there
284	was no significant change in W translocation factor (0.1791 and 0.1795 respectively). The root
285	of lettuce is not edible portion. Thus, decrease of W translocation from root to shoot with BC
286	application indicates that BC can be used to enhance food security and enhance
287	phytoremediation of W contaminated soils. The enrichment factor (W concentration in plant /W
288	concentration in soil) of control group was 0.09 for shoot and 0.49 for root. After 5% BC
289	application, the enrichment factor of shoot and root was decreased by 0.08 and 0.48,
290	respectively.

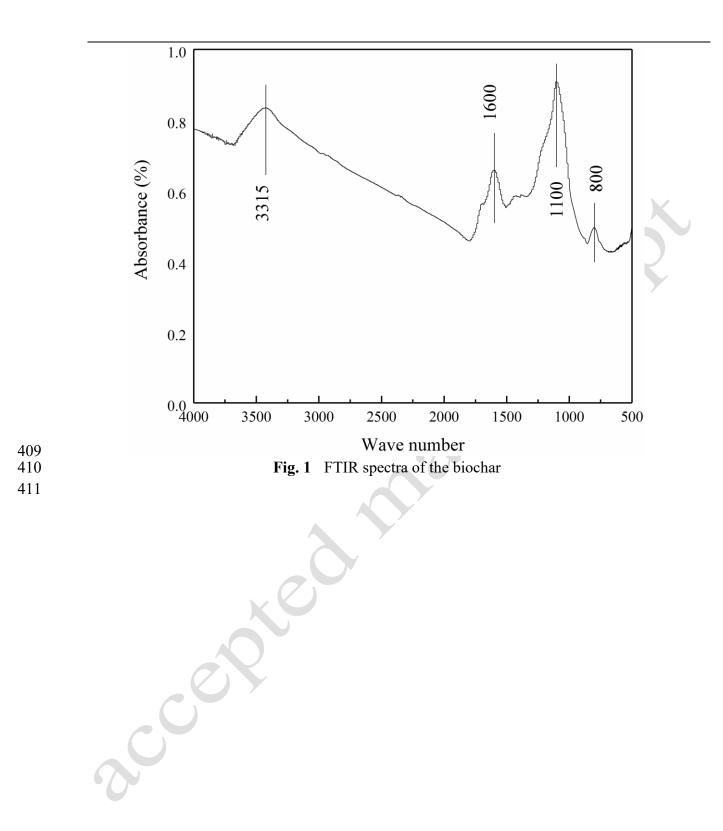
291	According to the enrichment factor of control group (0.09 for shoot and 0.49 for root). This
292	suggests that most of the W in lettuce accumulates in the roots, which is consistent with
293	previous research (Park and Han 2019). Elevated concentrations of heavy metals in the root
294	system indicate that plants may reduce transport to buds through localized metals in tissues
295	(Rizwan etal 2012).
296	4. Conclusion
297	Rice husk biochar can fix W in W contaminated soil, reduce effective W (cacl2 extractable), and
298	increase soil pH, organic matter and CEC. The highest dose of BC (5%) is most effective.
299	The application of BC promoted the growth and photosynthesis of lettuce, and increased the
300	height of bamboo shoots, root length, biomass and chlorophyll content. The results suggested
301	that the main profit of BC to reduce mobilizing of W to proximal water. In addition, the
302	application of BC was effective in W immobilization and reducing uptake to lettuce. Ethical
303	Statement
304	All authors confirm that the research meets the ethical guidelines, including adherence to the
305	legal requirements of the study country.
306	Competing interests
307	There are no Competing interests.
308	Acknowledgements
309	This work was supported by the [National Key R&D Program of China] under Grant
310	[authorization number 2019YFC1805100]; [the National Natural Science Foundation of China]
311	under Grant [No. 21767012]; and [the Ganzhou Science and Technology Innovation Talent

312 Program] under Grant [[2018] No. 50].

cooperation of the second

313	Reference
314	Schell J.D. and Pardus M.J. Preliminary risk-based concentrations for tungsten in soil and drinking water[J].
315	Land Contamination and Reclamation, 2009, 17 (1): 179. Datta S., Vero S.E. and Hettiarachchi G.M.
316	Tungsten contamination of soils and sediments: current state of science[J]. Current pollution reports, 3
317	(2017): 55-64
318	Kennedy A.J., Johnson D.R. and Seiter J.M. Tungsten toxicity, bioaccumulation, and compartmentalization
319	into organisms representing two trophic levels[J]. Environmental science & technology, 2012, 46(17):
320	9646-9652. Koutsospyros A., Braida W. and Christodoulatos C. A review of tungsten: From
321	environmental obscurity to scrutiny[J]. Journal of hazardous materials, 2006, 136 (1): 1-19. Adamakis
322	I.D.S., Panteris E. and Eleftheriou E.P. Tungsten toxicity in plants[J]. Plants, 2012, 1(2): 82-99.
323	Pratas J., Prasad M.N.V. and Freitas H. Plants growing in abandoned mines of Portugal are useful for
324	biogeochemical exploration of arsenic, antimony, tungsten and mine reclamation[J]. Journal of
325	geochemical exploration, 2005, 85 (3): 99-107.
326	Lahori A.H., Zhanyu G.U.O. and Zhang Z. Use of biochar as an amendment for remediation of heavy metal-
327	contaminated soils: prospects and challenges[J]. Pedosphere, 2017, 27 (6): 991-1014. Zheng X.J.,
328	Chen M. and Wang J.F. Assessment of zeolite, biochar, and their combination for stabilization of
329	multimetal-contaminated soil[J]. ACS omega, 2020, 5 (42): 27374-27382. Kim H.S., Kim K.R. and Kim
330	H.J. Effect of biochar on heavy metal immobilization and uptake by lettuce (Lactuca sativa L.) in
331	agricultural soil[J]. Environmental Earth Sciences, 2015, 74: 1249-1259.Abbas T., Rizwan M. and Ali S.
332	Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil
333	with aged contamination[J]. Ecotoxicology and environmental safety, 2017, 140: 37-47. Meier S.,
334	Curaqueo G. and Khan N. Chicken-manure-derived biochar reduced bioavailability of copper in a
335	contaminated soil[J]. Journal of Soils and Sediments, 2017, 17 : 741-750.
336	Liu S.J., Jiang J.Y. and Wang S. Assessment of water-soluble thiourea-formaldehyde (WTF) resin for
337	stabilization/solidification (S/S) of heavy metal contaminated soils[J]. Journal of hazardous materials,
338	2018, 346 : 167-173.
339	Bamdad H. and Hawboldt K. Comparative study between physicochemical characterization of biochar and
340	metal organic frameworks (MOFs) as gas adsorbents[J]. The Canadian Journal of Chemical
341	Engineering, 2016, 94 (11): 2114-2120. Lusiba S., Odhiambo J. and Ogola J. Effect of biochar and
342	phosphorus fertilizer application on soil fertility: soil physical and chemical properties[J]. Archives of
343	Agronomy and Soil Science, 2017, 63(4): 477-490.Nelson D.W. and Sommers L.E. Total carbon,
344	organic carbon, and organic matter[J]. Methods of soil analysis: Part 2 chemical and microbiological
345	properties, 1983, 9 : 539-579.Stuanes A.O., Ogner G. and Opem M. Ammonium nitrate as extractant for
346	soil exchangeable cations, exchangeable acidity and aluminum[J]. Communications in Soil Science and
347	Plant Analysis, 1984, 15 (7): 773-778.Cao X., Ma L., and Liang Y. Simultaneous immobilization of lead
348	and atrazine in contaminated soils using dairy-manure biochar[J]. Environmental science & technology,

349 2011, 45(11): 4884-4889. Davidson C.M., Duncan A.L. and Littlejohn D. A critical evaluation of the 350 three-stage BCR sequential extraction procedure to assess the potential mobility and toxicity of heavy 351 metals in industrially-contaminated land[J]. Analytica Chimica Acta, 1998, 363(1): 45-55. Park J.H. and 352 Han H.J. Effect of tungsten-resistant bacteria on uptake of tungsten by lettuce and tungsten speciation 353 in plants[J], Journal of hazardous materials, 2019. 379; 120825, Bednar A.J., Bovd R.E. and Jones W.T. 354 Investigations of tungsten mobility in soil using column tests[J]. Chemosphere, 2009, 75(8): 1049-355 1056.Ghosh M. and Singh S.P. A review on phytoremediation of heavy metals and utilization of it's by 356 products[J]. Asian J Energy Environ, 2005, 6(4): 18. Rizwan M., Ali S. and ur Rehman M.Z. Alleviation 357 of cadmium accumulation in maize (Zea mays L.) by foliar spray of zinc oxide nanoparticles and 358 biochar to contaminated soil[J]. Environmental Pollution, 2019, 248: 358-367. Yuan J.H., Xu R.K. and 359 Zhang H. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource technology, 2011, 102(3): 3488-3497.Li M.K., Zhou D. and Gao Z. Effect of rice husk 360 361 biochar on bioavailability of rare earth elements in polluted soil[J]. China Environmental Science, 2018, 362 38(10): 3823-3832.Sun F. and Lu S. Biochars improve aggregate stability, water retention, and pore-363 space properties of clayey soil[J]. Journal of Plant Nutrition and Soil Science, 2014, 177(1): 26-33. Król 364 A., Mizerna K. and Bożym M. An assessment of pH-dependent release and mobility of heavy metals 365 from metallurgical slag[J]. Journal of hazardous materials, 2020, **384**: 121502. Sakanakura H., Osako 366 M. and Kida A. Design optimization and standardization of an environmental availability test under 367 both acidic and alkaline conditions[J]. Journal of Material Cycles and Waste Management, 2011, 13: 368 56-67. Cappuyns V., Alian V. and Vassilieva E. pH dependent leaching behavior of Zn, Cd, Pb, Cu and 369 As from mining wastes and slags: kinetics and mineralogical control[J]. Waste and Biomass 370 Valorization, 2014, 5: 355-368.Lin L., Zhou S. and Huang Q. Capacity and mechanism of arsenic 371 adsorption on red soil supplemented with ferromanganese oxide-biochar composites[J]. Environmental 372 Science and Pollution Research, 2018, 25: 20116-20124.Plattes M., Bertrand A. and Schmitt B. 373 Removal of tungsten oxyanions from industrial wastewater by precipitation, coagulation and flocculation 374 processes[J]. Journal of Hazardous Materials, 2007, 148(3): 613-615. Tong X., Li J. and Yuan J. 375 Adsorption of Cu (II) by biochars generated from three crop straws[J]. Chemical Engineering Journal, 376 2011, 172(2-3): 828-834. Downie A. Crosky A. and Munroe P. Physical properties of 377 biochar[M]//Biochar for environmental management. Routledge, 2012: 45-64. 378 Johannesson K.H., Dave H.B. and Mohajerin T.J. Controls on tungsten concentrations in groundwater flow 379 systems: The role of adsorption, aquifer sediment Fe (III) oxide/oxyhydroxide content, and thiotungstate 380 formation[J]. Chemical Geology, 2013, 351: 76-94. Joseph S.D., Camps-Arbestain M. and Lin Y. An 381 investigation into the reactions of biochar in soil[J]. Soil Research, 2010, 48(7): 501-515. Lin Y., Munroe 382 P. and Joseph S. Nanoscale organo-mineral reactions of biochars in ferrosol: an investigation using 383 microscopy[J]. Plant and soil, 2012, 357: 369-380. Beesley L., Marmiroli M. and Pagano L. Biochar 384 addition to an arsenic contaminated soil increases arsenic concentrations in the pore water but reduces 18


- uptake to tomato plants (Solanum lycopersicum L.)[J]. Science of the Total Environment, 2013, 454:
 598-603.Bednar A.J., Jones W.T. and Boyd R.E. Geochemical parameters influencing tungsten
 mobility in soils[J]. Journal of environmental guality, 2008, 37(1): 229-233.
- Rizwan M., Meunier J.D. and Davidian J.C. Silicon alleviates Cd stress of wheat seedlings (Triticum
 turgidum L. cv. Claudio) grown in hydroponics[J]. Environmental Science and Pollution Research, 2016,
- 390 23: 1414-1427. Younis U., Malik S.A. and Rizwan M. Biochar enhances the cadmium tolerance in
 391 spinach (Spinacia oleracea) through modification of Cd uptake and physiological and biochemical
- spinach (Spinacia oleracea) through modification of Cd uptake and physiological and biochemical
 attributes[J]. Environmental Science and Pollution Research, 2016, 23: 21385-21394. Adamakis I.D.S.,
- 393 Panteris E. and Eleftheriou E.P. The fatal effect of tungsten on Pisum sativum L. root cells: indications
- 394 for endoplasmic reticulum stress-induced programmed cell death[J]. Planta, 2011, **234**: 21-34. Rafique
- 395 M., Ortas I. and Rizwan M. Effects of Rhizophagus clarus and biochar on growth, photosynthesis,
- 396 nutrients, and cadmium (Cd) concentration of maize (Zea mays) grown in Cd-spiked soil[J].
- 397 Environmental Science and Pollution Research, 2019, **26**: 20689-20700. Kumar V., Sharma P.K. and
- 398 Jatav H.S. Organic amendments application increases yield and nutrient uptake of mustard (Brassica
- 399 juncea) grown in chromium-contaminated soils[J]. Communications in Soil Science and Plant Analysis,
- 400 2020, **51**(1): 149-159.Bian R., Joseph S. and Shi W. Biochar DOM for plant promotion but not residual
- 401 biochar for metal immobilization depended on pyrolysis temperature[J]. Science of the Total

- 402 Environment, 2019, **662**: 571-580. Rizwan M., Meunier J.D. and Miche H. Effect of silicon on reducing
- 403 cadmium toxicity in durum wheat (Triticum turgidum L. cv. Claudio W.) grown in a soil with aged
 404 contamination[J]. Journal of hazardous materials, 2012, **209**: 326-334.

Characteristics of the rice h	usk derived biochar (BC)	
	usk derived biochai (DC)	
Property	BC	
pН	7.81	
Organic matter (g/kg)	485.77	
Total C (%)	45.15	
Total N (%)	1.01	
P (g/kg)	0.96	
K (g/kg)	27.10	
Ca (g/kg)	1.4	
CEC (cmol /kg)	35.32	
BET (m^2/kg)	89.06	
Fe (mg/kg)	0.98	
Zeta potential (mV)	-28.82	
BET, Brunauer-Emmett-Tell	er specific surface area	
	Organic matter (g/kg) Total C (%) Total N (%) P (g/kg) K (g/kg) Ca (g/kg) CEC (cmol /kg) BET (m ² /kg) Fe (mg/kg) Zeta potential (mV)	Organic matter (g/kg) 485.77 Total C (%) 45.15 Total N (%) 1.01 P (g/kg) 0.96 K (g/kg) 27.10 Ca (g/kg) 1.4 CEC (cmol /kg) 35.32 BET (m²/kg) 89.06 Fe (mg/kg) 0.98

Treatment				te to soil parame	
meannenn	pН	exchangeable	SOC	CEC	Bulk
		acidity	(g/kg)	(cmol /kg)	density
	(12+0.020	(cmol /kg)	2 (00 + 0 00 d	10.70 + 0.22 *	(g/cm^3)
0% BC	$6.13 \pm 0.02^{\circ}$	4.25±0.02 ^a	26.80±0.08 ^d	$10.78\pm0.32^{\circ}$	1.25±0.03ª
1% BC	$6.16\pm0.01^{\circ}$	4.11±0.01 ^b	$31.04 \pm 1.12^{\circ}$	11.22 ± 0.17 bc	1.24±0.04 ^a
2% BC	6.21 ± 0.01^{b}	$3.95\pm0.06^{\circ}$	34. 51±0.50 ^b	11.58±0.23 ^b	1.24±0.06 ^a
5% BC	6.31±0.03 ^a	3.44 ± 0.04 ^d	42.36±3.13 ^a	12.45±0.18 ª	1.22±0.04 ^a

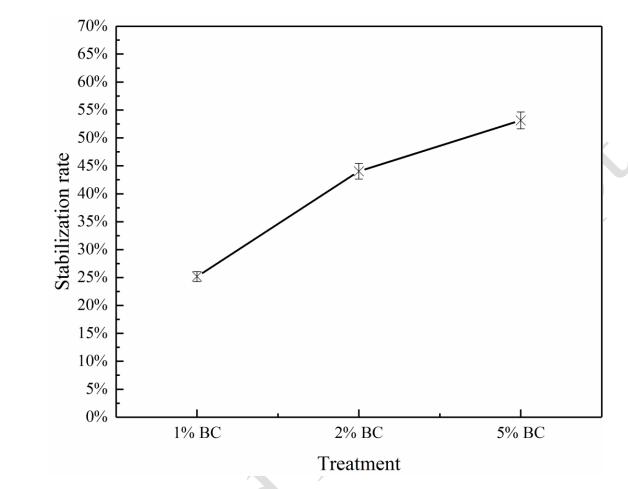


Fig. 2 Effects of BC application rate on tungsten stabilization rate

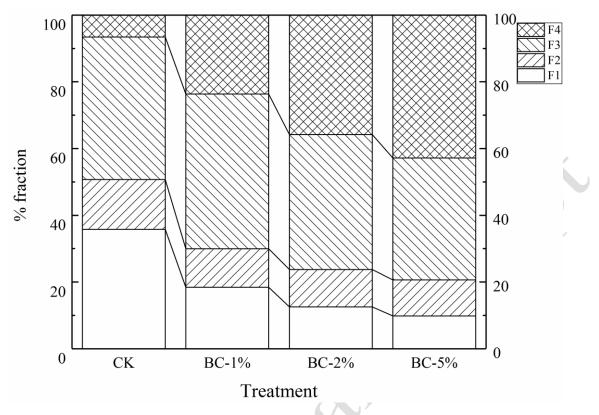
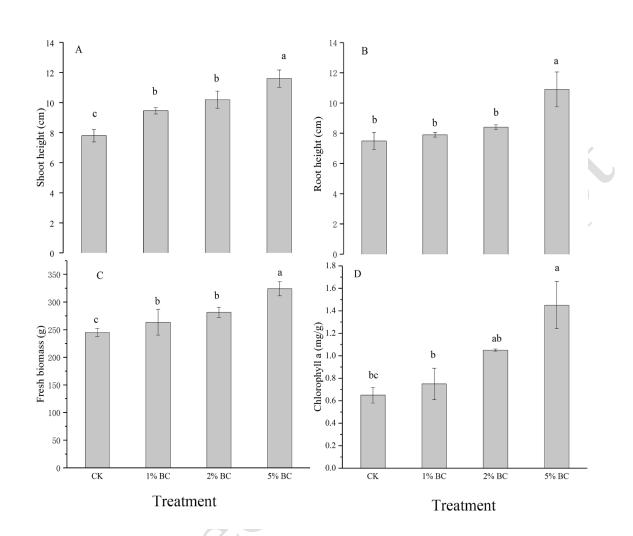
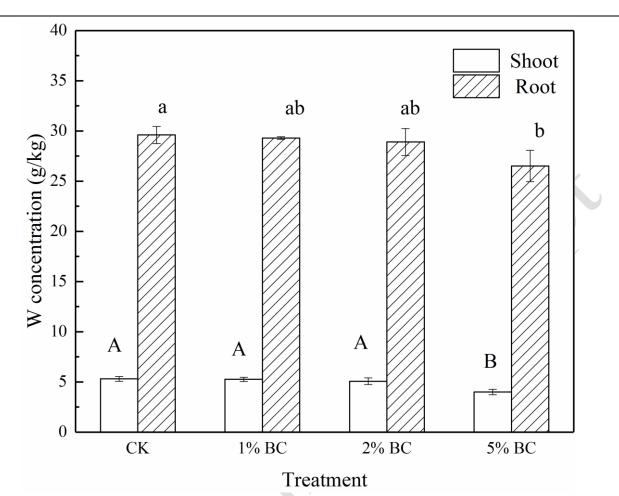
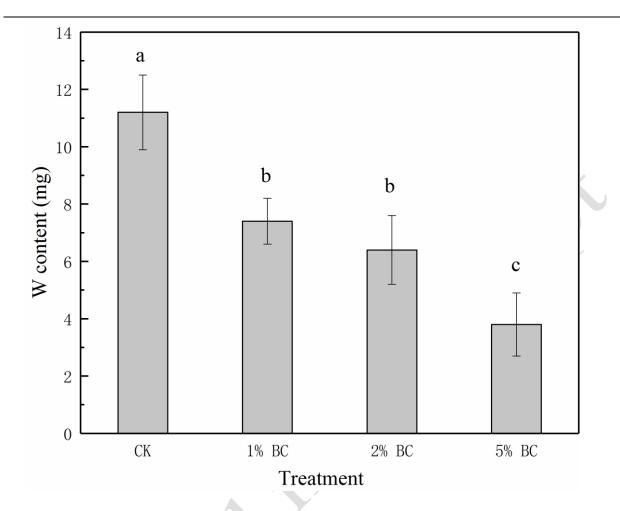
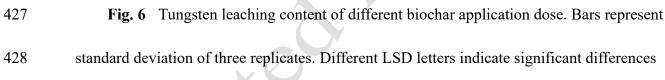




Fig. 3 The percentage of each fraction of W with different BC application rate


Fig. 4 Effect of increased biochar application on lettuce shoot height, root length and fresh 420 biomass. Bars represent standard deviation of three replicates. Different LSD letters indicate 421 significant differences among biochar application at $p \le 0.05$.



422

423 Fig. 5 Effect of biochar application on tungsten distribution in lettuce shoot and root. Bars 424 represent standard deviation of three replicates. Different LSD letters indicate significant differences 425 among BC application at $p \le 0.05$.

200°

429 among BC application at p≤0.05.