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Abstract 

Due to the development of open access medium-high 
resolution remote sensing data like multispectral remote 
sensing images, crop classification becomes a hot research 
topic to be realized on large scale using machine learning 
(ML) models. At the same time, chlorophyll content is a 
critical index used for defining crop growth conditions, 
photosynthetic ability, and physiological position. It has an 
adaptive characteristic which finds useful to monitor crop 
growth conditions and understand the procedure of 
material and energy exchange among crops and the 
environment. Recently, several research works have been 
carried out to estimate chlorophyll content on 
multispectral remote sensing images. The recent advances 
in deep learning models enable us to effectively classify 
different crop types and estimate chlorophyll content on 
multispectral remote sensing images. In this view, this 
paper presents a new remora optimization with deep 
learning driven crop classification and chlorophyll content 
estimation (RODLD-C4E) model using multispectral remote 
sensing images. The proposed RODLD-C4E model intends 
to properly identify the crop type and chlorophyll content. 

For accomplishing this, the proposed RODLD-C4E model 
initially derives a RO algorithm with NASNetLargemodel for 
feature extraction process. The utilization of RO algorithm 
enables to effectually adjust the hyperparameters of the 
NasNetLarge model. Besides, cascaded gated recurrent 
unit (CGRU) model is employed for crop type classification. 
Finally, deep belief network (DBN) model is applied to 
estimate the chlorophyll content exist in the crop. To 
demonstrate the better performance of RODLD-C4E model, 
a wide-ranging experimental analysis wasimplemented on 
benchmark dataset. The comparative analysis pointed out 
the better outcomes of the RODLD-C4E model under 
several aspects. 

Keywords: Multispectral remote sensing images, 
agriculture, crop classification, chlorophyll content 
estimation, deep learning, parameter tuning 

1. Introduction 

Agriculture is the science or process of manufacturing and 
harvesting crops systematically. Growth in agricultural 
crops nowadays becomes essential because of restrictions 
in the development of land and continuously rising demand 
for food (Senthilnath et al., 2016). Agricultural production 
is termed as the product of crop yield and planting region 
and therefore production valuation contains yield 
estimation and area prediction. Thus, there exists a 
vigorous demand for making the maximum utilization of 
existing sources for cultivation process (Townsend et al., 
2001). The utilization of remote sensing contains numerous 
benefits and applications, and major application among 
them is crop classification; i.e., distinguishing amongst 
distinct types of crops (Rußwurm et al., 2017). Satellite 
images could also be considered feasible sources for 
examining the temporary variations in the agricultural 
actions of a specific region (Garnot et al., 2019). The 
development of crops from sowing to harvesting could be 
observed by such satellite images. The georeferenced and 
orthorectified satellite images could be utilized for finding 
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problematical zones and the size of the zone affected 
(Moriarty et al., 2019). 

Monitoring the usage of agricultural land is of critical 
significance for ensuring the continued health of food 
production, biodiversity, and forest ecosystems. A 
combination of factors, including a warming climate, 
shifting eating patterns, and an expanding global 
population, are putting pressure on land that has not yet 
been farmed while simultaneously driving up production 
levels in places that are already farmed. The spread of 
cropland and the intense use of agricultural land are often 
linked to negative ecological consequences such as the 
destruction of forests and the loss of biodiversity, as well 
as the deterioration of ecosystem services such as the 
quality of ground and surface water. As a result, thorough 
and accurate monitoring of agricultural lands is an 
absolutely necessary component in the achievement of 
optimum and sustainable management of these areas. The 
knowledge of agricultural regions and particular land uses 
is essential for many political initiatives that try to lessen 
and relieve the negative effects that intensive agriculture 
has on the surrounding environment. Incentives that are 
driven by policy, for instance, encourage a specified 
percentage of a farm area to remain intensively utilised 
grassland in order to preserve biodiversity. Similarly, 
subsidies are given to encourage a particular crop mix to be 
rotated in a farm's cycle of crops. The collection of data has 
historically relied on the self-reporting of farmers and the 
spot monitoring of their operations by authorities in the 
field. This method of data collection is arduous, expensive, 
and prone to inaccuracies. Combining the most up-to-date 
machine learning techniques with satellite data that is 
freely accessible to the public opens up a world of new 
opportunities for accurate, spatially dense monitoring of 
agricultural areas that is also characterised by high 
temporal resolution and cheap cost. Researchers are 
presently relying on approaches that use deep learning in 
order to do crop categorization. 

Multi-spectral satellite images enable classification and 
recognition of crops, it takes into account the variations in 
reflectance as a function of the specific yield types (Li et al., 
2019). Crop classification discovers applications in checking 
and planning efficient crop cultivation, soil and water 
quality studies, and land usage. But owing to the variations 
in cultivation of crops inside a geographic region, the 
procedure of classification becomes a significant problem 
(Thyagharajan et al., 2019). Primary productivityand 
respiration are closely linked to the biochemical and 
biophysical variables of the vegetation. Amongst these 
variables, chlorophyll is a critical antenna pigment that is 
accountable for absorbing light and transferring it in 
photosynthesis. Variations in the leaf chlorophyll content 
(LCC) therefore straight forwardly influence biochemical 
functions namely primary production and photosynthesis 
(Moody et al., 2017). Thus, quantitative examination of LCC 
has important consequences, not for sensing the 
procedure of material and energy exchange amongst the 
environment and plants, as well as for observing, 
nutritional status, stress conditions, and crop growth in 
agricultural applications. 

In recent times, deep learning (DL) was broadly utilized and 
is considered mainstream in artificial intelligence and 
machine learning (ML) (Kumar et al., 2021). DL is 
representation learning methodology which mechanically 
studies internal characteristics representation with various 
levels from novel images instead of empirical feature 
models, and has proved to be more proficient in image 
classification and object identification (Yang et al., 2021). 
By contrast, vegetation indexes namely NDVI utilize various 
bands and might result in low outcomes in hard 
circumstances, e.g., crop classification where the 
geometry, periods, spectrums, and the interaction of 
several kinds of crops must be assumed. While novel 
temporary images utilized as feature input could comprise 
noises or unfavourable data which diminish the outcome of 
a classifier. 

This paper presents a new remora optimization with deep 
learning driven crop classification and chlorophyll content 
estimation (RODLD-C4E) model using multispectral remote 
sensing images. The proposed RODLD-C4E model derives a 
RO algorithm with NASNetLarge model for feature 
extraction process. The use of RO algorithm allows for 
effectively changing the hyperparameters of the 
NasNetLarge model. Also, cascaded gated recurrent unit 
(CGRU) model is employed for crop type classification. 
Lastly, deep belief network (DBN) model is applied to 
estimate the chlorophyll content that exists in the crop. To 
demonstrate the better performance of RODLD-C4E model, 
a wide-ranging experimental analysis is performed on 
benchmark dataset. 

2. Related works 

Denis et al. (2020) measured how spatial remote sensing 
might assist the process of organic crop certification by 
rising a methodology that allows certification body target 
to priority in situ control crop field stated as organic 
however that display on satellite images a closer 
appearance to traditional fields. Therefore, the capability 
of multi-spectral satellite images to distinguish among 
conventional maize and organic fields was evaluated by 
using four groups of satellite images of spectral and spatial 
resolutions attained at various development stages of crop 
over a considerable amount of maize field. Singhal et al. 
(2019) attempt has been made to estimate the leaf 
chlorophyll concentration of standing maize plants in 
higher resolution (5 cm) multispectral Unmanned Aerial 
Vehicle (UAV) imagery. Then, estimated ML algorithm is 
integrated with spectral dataset and ground truth 
chlorophyll for modelling the chlorophyll estimations.  

Brewer et al. (2022) estimated the efficacy of multi-spectral 
UAV images with the random forest machine learning 
technique for estimating the chlorophyll content of maize 
via different development stages. The result shows that the 
red-edge and near-infrared wavelength bands and 
vegetation indices derived from the wavelength are 
needed to estimate chlorophyll content under the maize 
phenotyping (Singhal et al., 2019). estimated the ML 
approach kernel ridge regression integrated with spectral 
dataset and ground-truth chlorophyll dataset for modelling 
the chlorophyll estimates. Also, the multivariate analysis 
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was employed on spectroradiometer and UAV dataset that 
suggested red band for predicting chlorophyll content with 
R2 value larger than 0.6. Wang et al. (2022) enable the 
transfer of classification models over years and regions for 
Gaofen PMS (2-m resolution) and Sentinel-2A (10-m 
resolution) images. The feature selection (FS) based 
prediction using UNet++ framework and up-sampling of 
minor class demonstrates the abilities of DL generalization 
to classify complicated ground objects that provide better 
results. Zhou et al. (2018) the classification method of CNN 
and SVM is compared to extract the spatial distribution of 
crop planting region in Sentineal-2A multispectral remote 
sensing images in China. 

Ma et al. (2021) examined the classifier potential of multi-
spectral classifier method to farmland with planting 
infrastructures of several complexities. UAV-RS technology 
are utilized for obtaining multi-spectral image of 3 analysis 
regions with low-, medium-, and high-complexity planting 
infrastructures comprising 3, 5, and 8 kinds of crops 
correspondingly. Recursive feature elimination was used to 
choose feature subsets for three analysis zones (RFE). The 
three areas of analysis have now been incorporated into 
OB-RF and OB-SVM classifier algorithms. By deleting 
satellite data at the pixel level, analyzing every available 
band, and dispersing its data across time, Siesto et al. 
(2021) introduced an innovative approach that creates 
synthetic images. Images from Sentinel-2 were used to 
create a deep convolutional network model that can 
distinguish between different crops a year after being 
trained on data from prior years. According to Qi et al. 
(2021) two peanut types, Yanghua 1 and Yueyou 45 are 
planted at varied densities, with 8 vegetation indices 
calculated using multi-spectral drone imagery. For the 1D 
linear regression techniques of NDVI and GNDVI (Green 
NDVI), as well as the MLR methodology, a far higher degree 
of set-up and precision was necessary than for the other 
indices. When testing for chlorophyll concentration in 
peanuts, BPNN is a better option than the RF approach for 
ensuring optimal fit and accuracy. It was determined by 
Denis et al. (2021) that satellite remote sensing might help 
the certification process for organic crop fields that look to 
be more traditional on satellite images but are certified as 
organic by the certification agency. Therefore, the 
capability of multi-spectral satellite images to distinguish 
among conventional maize and organic fields was 
evaluated by using four groups of satellite images of 
spectral and spatial resolutions attained at various 
development stages of crop over a considerable amount of 
maize field. 

3. The proposed model 

In this study, a new RODLD-C4E model has been developed 
to properly identify the crop type and chlorophyll content. 
The proposed RODLD-C4E model initially derives a RO 
algorithm with NASNetLarge model for feature extraction 
process. In addition, the CGRU model is employed for crop 
type classification. At last, the DBN model is applied to 
estimate the chlorophyll content that exists in the crop. 
Figure 1 demonstrates the overall process of RODLD-C4E 
technique. 

 

Figure 1. Overall process of RODLD-C4E technique 

3.1. Feature extraction 

The initial stage of crop classification is to produce a useful 
set of features by the NASNetLarge model. Neural 
architecture search (NAS) is the search technique that 
needs to be deployed. Child networks with different 
frameworks is sampled by a controller RNN in NAS. Child 
network is taught to accomplish some accuracy on a 
validation set i.e., held out for convergence. The resultant 
accuracy value is utilized for upgrading the controller that 
sequentially generates accurate architecture over time. 
The policy gradient is utilized for upgrading the controller 
weight. According to the realization that architecture 
engineered with CNN generally uncover recurrent pattern 
that includes the combination of convolution filter bank 
and nonlinearity along with a careful selection of 
connection, the NasNet searching space has been made 
(for instance, the repeated module in the ResNet and 
inception modules) (Ünal et al., 2022). The finding suggests 
that the controller RNN might be capable of predicting a 
generic convolution cell. For accommodating input of 
spatial dimension and depth of filtering, this cell can be 
stacked sequentially. In this technique, the convolution net 
overall design is manually predefined. They are composed 
of convolution cell that has similar shape as the original 
however they are differently weighted. Two kinds of 
convolution cells are utilized for rapidly developing scalable 
architecture for images of any size: (1) convolution cell 
returns a feature map with a two-fold reduction in width 
and height, and (2) convolution cell produces a feature map 
with equal dimensions. 

In this work, the RO algorithm enables to effectually adjust 
the hyperparameters of the NasNetLarge model. The 
position updating process of RO algorithm is modelled on 
the basis of the algorithm elite notion, given in the 
following. 
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t t
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(1) 

Now, 
t
randR  denotes a random location. To estimate 

whether or not it is essential to replace the host, they 
should frequently take modest steps around the host, 
similar to the knowledge development. The equation for 
modelling the abovementioned principle is given below: 
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( )= − −     t t
aii i i preR R R R randn  (2) 

Here preR  indicates the location of the preceding iteration, 

and attR  represent a tentative step. The estimation of the 

fitness function (FF) of the attempted solution ( )attf R  and 

the existing solution ( )tif R  is defined by the decision of 

this step. For instance, while resolving the problems, when 
the FF value generated by the presented solution is lesser 
when compared to the existing solution, 

( ) ( )t
i attf R f R  (3) 

Remora selects various methodologies for local optimal, as 
follows. Its return to host selecting when the FF value of 
attempted solutions is higher than the current solution. 

( ) ( )t
i attf R f R  (4) 

The position upgrade equation of Remora related to the 
whale was recovered by the original WOA method, as 
follows: 

( )1 2+ =   +α
i iR D e cos πα R  (5) 

 

( )1 1=  − +α rand a  (6) 
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The location is regarded as the same once a Remora is on a 
whale in the broader solution space. D indicates the space 

amongst the hunter and prey  represents an arbitrary 
number within [−1,1], and a indicates a value that 
exponentially reduces from [−2,−1]. Further, the 
exploitation process is divided into host feeding (Jia et al., 
2021). Now, the optimum solution is condensed to the host 
location. The mathematical expression of the 
abovementioned process is given below: 
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3.2. Crop classification module 

For crop classification process, the CGRU model has been 
employed to it. A GRU is a new memory cell that has proved 
efficient performance in different applications. It is 

considered to be an improvement and simplification of 
LSTM and comparative performance to LSTM (Xu et al., 
2018). To clearly define a GRU, we concisely present LSTM. 
In RNN, the hidden unit is the main element since it is 
accountable for forgetting or remembering certain data. 
The LSTM is being implemented properly and has better 
variant.  
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(13) 

Here, x indicates the input vector, C denotes the cell state 

and h represents the output vector.  denotes a sigmoid 

function, implies the Hadamard product and W signifies 

undefined parameter. t signifies the present time and t − 1 
represents the last time. Where i represents the input gate 
that decides what data need to be saved in the cell state. 
frepresent the forget gate that decides what data need to 
be eliminated from the cell state. 0 indicates the output 
gate that decides what data to output. In contrast to LSTM, 
a GRU comprises certain simplification.  
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(14) 

Therefore, the GRU has fewer parameters and is very 
simple when compared to the LSTM architecture providing 
greater benefits interms of convergence and performance. 
In succeeding experiments, GRU shows an enormous 
benefit. In CGRU model, a set of GRU units is cascaded 
together to enhance results. 

3.3. Chlorophyll Content Estimation Module 

Finally, the DBN model is applied to estimate the 
chlorophyll content that exists in the crop. A typical DBN is 
stacked by using RBM that is special form of Markov 
random field (Li et al., 2019). It comprises of single visible 
layer, that is defined by 

1 2 0 1=   { ,  ,  ,  ,  ,  } ( { ,T
i n iv v v v v v  single hidden layer is 

defined by  ( )1 2 0 1=   { ,  ,  ,  ,  ,  } ,T
i n ih h h h h h . The 

visible layer is connected to the hidden layer via weight 
connection, and neuron of every layer isn’t linked together: 

( )
1 1 1 1= = = =

= − − −  ,  |
n m n m

i ij j i i j j
i j i j

E v h θ vw h av b h  
(15) 

Whereas = { , }, ,θ wa b n  and m indicate the count of 

visible and hidden neurons, correspondingly. i and j 
indicate the ith and jth neurons, vi and hj represents the ith 
visible neural and the jth hidden neurons, ai and bj 
represent the bias of ith visible neural and the jth hidden 
neural, and wij signifies the weight among ith visible neuron 
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and jth hidden neuron. Figure 2 depicts the framework of 
DBN. 

 

Figure 2. Structure of DBN 

The joint possibility of visible neurons and the hidden 
neuron is shown in the following equation: 

( )
( )

( )( )
1

= −,  |  exp  ,  |P v h θ E v h θ
Z θ

 
(16) 

that is Gibbs distribution of the RBM. ( )Z θ indicates the 

partition function and is described in the following: 

= −( )  exp ( ( , | ))
v h

Z θ E v h θ  (17) 

The two edge possibilities of visible and hidden neurons are 
determined by: 
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The conditional probability of the visible and hidden 
neurons is shown as follows: 

( ) ( )=| |i
i

P v h P v h  (20) 

 

( ) ( )=| |j
j

P h v P h v  (21) 

The visible and hidden neurons are independent, hence the 
distribution of the conditional probability is described by: 
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The visible layer vi signifies the input dataset, viz., mapped 
to the hidden state based on the probability in Eq. (23). 
Subsequently, this constitutes the first RBM. At the same 
time, it is the input dataset of the next RBM. Repeat this 
procedure for updating the parameter, to form a feature 
depiction i.e., more abstract and representability when 
compared to the lower layer. The weight is upgraded as: 

( )=  − ' '
ij i j i jw η v h v h  (24) 

Whereas 0 1( , )η  indicates the learning rate,    

represents the mean over the training dataset. 

4. Performance validation 
The experimental validation of the RODLD-C4E model is 
tested using two benchmark datasets namely Indian Pines 
dataset and Salinas dataset. A few sample images are 
demonstrated in Figure 3. Table 1 depicts the described 
dataset details. 

4.1. Simulation parameters 

The performance of the proposed method was evaluated 
using the most modern methodologies available. The 
experimental operations were carried out with the 
assistance of Google co-laboratory and MATLAB R 2018b 
programming language. The study was carried out using a 
personal computer that had an Intel(R) Core(TM) i5-6500 
processor operating at 3.20 ghz range and 8 GB of random 
access memory (RAM). 

 

Figure 3. a) Remote Sensing Image b) Ground Truth Image 

Table 1. Dataset details 

Class Names 
Number of Samples in Dataset 

Indian Pine Dataset Salinas Dataset 

Category-01 36 1485 

Category-02 1083 2793 

Category-03 611 1462 

Category-04 73 1051 

Category-05 350 2007 

Category-06 542 2982 

Category-07 21 2649 

Category-08 363 8445 

Category-09 12 4667 

Category-10 729 2465 

Category-11 1829 805 

Category-12 457 1434 

Category-13 159 705 

Category-14 954 832 

Category-15 301 5462 

Category-16 67 1354 

Total No. of 

Samples 

7587 40598 

 
Figure 4 demonstrates the confusion matrix produced by 
the RODLD-C4E model on 30% of testing (TS) data on Indian 
Pines dataset. The figure indicated that the RODLD-C4E 
model has proficiently recognized 16 classes.  



DEEP LEARNING DRIVEN CROP CLASSIFICATION AND CHLOROPHYLL CONTENT ESTIMATION  169 

 

Figure 4. Confusion matrix of RODLD-C4E technique on 30% of 

TS data on Indian Pines dataset 

Table 2 and Figure 5 offer a detailed discussion of the crop 
classification outcomes reported by the RODLD-C4E model 
on Indian Pines dataset. The experimental values indicated 
that the RODLD-C4E model has proficiently recognized all 
the class labels. For instance, with category 1, the RODLD-
C4E model has provided accuy, precn, recal, specy, and Fscore 
of 99.74%, 100%, 33.33%, 100%, and 50% respectively. At 
the same time, with category 10, the RODLD-C4E model has 
provided accuy, precn, recal, specy, and Fscore of 98.95%, 
93.56%, 96.04%, 99.27%, and 94.78% respectively.  In line 
with, with category 16, the RODLD-C4E model has provided 
accuy, precn, recal, specy, and Fscore of 99.21%, 62.50%, 25%, 
99.87%, and 35.71% respectively. 

 

Table 2. Result analysis of RODLD-C4E technique with several measures on Indian Pines dataset 

Class Label Accuracy Precision Recall Specificity F-Score 

Category-01 99.74 100.00 33.33 100.00 50.00 

Category-02 98.86 94.51 97.48 99.08 95.98 

Category-03 98.33 88.94 91.71 98.94 90.31 

Category-04 98.81 25.00 8.70 99.73 12.90 

Category-05 98.99 90.10 87.50 99.54 88.78 

Category-06 98.90 92.90 91.14 99.48 92.01 

Category-07 99.78 0.00 0.00 100.00 0.00 

Category-08 99.21 93.20 89.72 99.68 91.43 

Category-09 99.78 0.00 0.00 100.00 0.00 

Category-10 98.95 93.56 96.04 99.27 94.78 

Category-11 97.98 94.19 97.87 98.02 95.99 

Category-12 98.38 80.85 91.94 98.75 86.04 

Category-13 98.90 78.26 70.59 99.55 74.23 

Category-14 98.64 95.00 93.99 99.30 94.49 

Category-15 98.95 86.21 86.21 99.45 86.21 

Category-16 99.21 62.50 25.00 99.87 35.71 

Average 98.96 73.45 66.33 99.42 68.05 

 

 

Figure 5. Result analysis of RODLD-C4E technique on Indian Pines 

dataset 

The training accuracy (TA) and validation accuracy (VA) 
attained by the RODLD-C4E model on Indian Pines dataset 
is demonstrated in Figure 6. The experimental outcome 
implied that the RODLD-C4E model has gained maximum 
values of TA and VA. In specific, the VA seemed to be higher 
than TA. 

 

 

Figure 6. TA and VA analysis of RODLD-C4E technique on Indian 

Pines dataset 

The training loss (TL) and validation loss (VL) achieved by 
the RODLD-C4E model on Indian Pines datasetare 
established in Figure 7. The experimental outcome inferred 
that the RODLD-C4E model has been able least values of TL 
and VL. In specific, the VL seemed to be lower than TL. 
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Figure 7. TL and VL analysis of RODLD-C4E technique on Indian 

Pines dataset 

 

Figure 8. Precision-recall curve analysis of RODLD-C4E technique 

on Indian Pines dataset 

A brief precision-recall examination of the RODLD-C4E 
model on Indian Pines dataset is portrayed in Figure 8. By 
observing the figure, it is noticed that the RODLD-C4E 
model has accomplished maximum precision-recall 
performance under all classes. 

Figure 9 offers a detailed discussion of the comparative 
crop classification outcomes reported by the RODLD-C4E 
model on Indian Pines dataset (Li et al., 2018; Zhou et al., 
2020). The experimental values indicated that the RODLD-
C4E model has proficiently recognized all the class labels 
compared to other existing methods with maximum 
accuracy and kappa of 98.96% and 90.45% respectively. 

Figure 10 illustrates the confusion matrix produced by the 
RODLD-C4E technique on 30% of TS data on Salinas 
dataset. The figure indicated that the RODLD-C4E approach 
has proficiently recognized 16 classes.  

 

 

Figure 9. Comparative analysis of RODLD-C4E technique on 

Indian Pines dataset 

 

Figure 10. Confusion matrix of RODLD-C4E technique on 30% of 

TS data on Salinas dataset 

 

Table 3. Result analysis of RODLD-C4E technique with several of measures on Salinas dataset 

Class Label Accuracy Precision Recall Specificity F-Score Kappa Score 

Category-01 99.73 96.18 96.40 99.86 96.29 - 

Category-02 99.69 97.15 98.32 99.79 97.73 - 

Category-03 99.75 96.14 97.02 99.86 96.58 - 

Category-04 99.79 95.41 96.89 99.87 96.15 - 

Category-05 99.65 95.95 97.05 99.78 96.50 - 

Category-06 99.69 98.66 97.14 99.89 97.90 - 

Category-07 99.73 97.60 98.22 99.83 97.91 - 

Category-08 99.62 99.44 98.72 99.86 99.08 - 

Category-09 99.68 98.62 98.68 99.81 98.65 - 

Category-10 99.65 96.68 97.81 99.77 97.24 - 

Category-11 99.76 94.09 92.83 99.89 93.45 - 

Category-12 99.77 96.61 97.05 99.87 96.83 - 

Category-13 99.71 95.05 88.48 99.92 91.65 - 

Category-14 99.68 93.13 90.42 99.87 91.75 - 

Category-15 99.71 98.57 99.25 99.78 98.91 - 

Category-16 99.80 96.77 97.26 99.89 97.01 - 

Average 99.71 96.63 96.35 99.85 96.48 97.45 



DEEP LEARNING DRIVEN CROP CLASSIFICATION AND CHLOROPHYLL CONTENT ESTIMATION  171 

 

Table 3 and Figure 11 give a detailed discussion of the crop 
classification outcomes reported by the RODLD-C4E model 
on Salinas dataset. The experimental values referred that 
the RODLD-C4E model has proficiently recognized all the 
class labels. For instance, with category 1, the RODLD-C4E 
model has provided accuy, precn, recal, specy, and Fscore of 
99.73%, 96.18%, 96.40%, 99.86%, and 96.29% 
correspondingly. Also, with category 10, the RODLD-C4E 
technique has obtainableaccuy, precn, recal, specy, and Fscore 
of 99.65%, 96.68%, 97.81%, 99.77%, and 97.24% 
correspondingly.  At last, with category 16, the RODLD-C4E 
algorithm has provided accuy, precn, recal, specy, and Fscore 
of 99.80%, 96.77%, 97.26%, 99.89%, and 97.01% 
correspondingly. 

 

Figure 11. Result analysis of RODLD-C4E technique on Salinas 

dataset 

The TA and VA attained by the RODLD-C4E model in Salinas 
datasetare portrayed in Figure 12. The experimental 
outcomes implied that the RODLD-C4E model has gained 
maximum values of TA and VA. In specific, the VA has 
appeared that superior to TA. 

 

Figure 12. TA and VA analysis of RODLD-C4E technique in Salinas 

dataset 

 

Figure 13. TL and VL analysis of RODLD-C4E technique on Salinas 

dataset 

The TL and VL reached by the RODLD-C4E approach on 
Salinas datasetare recognized in Figure 13. The 

experimental outcomes inferred that the RODLD-C4E 
model has accomplished least values of TL and VL. In 
specific, the VL is looked to be lesser than TL. 

A brief precision-recall examination of the RODLD-C4E 
model on Salinas dataset is portrayed in Figure 14. By 
observing the figure, it can be noticed that the RODLD-C4E 
model has accomplished maximum precision-recall 
performance under all classes. 

Figure 15 provides a detailed discussion of the comparative 
crop classification outcomes reported by the RODLD-C4E 
method on Salinas dataset. The experimental values 
exposed that the RODLD-C4E model has proficiently 
recognized all the class labels compared to other existing 
methods with maximal accuracy and kappa of 99.71% and 
97.45% respectively. 

 

Figure 14. Precision-recall curve analysis of RODLD-C4E 

technique on Salinas dataset 

 

Figure 15. Comparative analysis of RODLD-C4E technique on 

Salinas dataset 

Figure 16 reports the RMSE outcomes of the RODLD-C4E 
model with existing models on cross-validation and ground 
validation. The figure indicated that the RODLD-C4E model 
has accomplished lower values of RMSE under every 
aspect. For instance, with CV data, the RODLD-C4E model 
has offered reduced RMSE of 12.27 µg·cm−2 whereas the 
GPR-CBD, GPR-ABD, GPR-PAL, GPR-RSAL, and GPR models 
have obtained increased RMSE of 13.83, 15.19, 14.73, 
14.75, and 16.93 µg·cm−2 respectively. At the same time, 
with GV data, the RODLD-C4E system has offered 
decreased RMSE of 12.36 µg·cm−2 whereas the GPR-CBD, 
GPR-ABD, GPR-PAL, GPR-RSAL, and GPR systems have 
obtained enhanced RMSE of 14.53, 16.44, 14.13,13.17, and 
31.98 µg·cm−2 correspondingly. 

Figure 17 demonstrates the RRMSE outcomes of the 
RODLD-C4E method with existing models on cross-
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validation and ground validation. The figure exposed that 
the RODLD-C4E model has accomplished lower values of 
RRMSE under every aspect. For instance, with CV data, the 
RODLD-C4E algorithm has accessible reduced RRMSE of 
21.57% whereas the GPR-CBD, GPR-ABD, GPR-PAL, GPR-
RSAL, and GPR approaches have reached enhanced RRMSE 
of 24.60%, 26.92%, 26.12%, 26.15%, and 30% 
correspondingly. Concurrently, with GV data, the RODLD-
C4E model has obtainable reduced RRMSE of 12.69% 
whereas the GPR-CBD, GPR-ABD, GPR-PAL, GPR-RSAL, and 
GPR algorithms have obtained enhanced RRMSE of 25.44%, 
28.78%, 24.74%, 23.06%, and 56% correspondingly. 

 

Figure 16. RMSE analysis of RODLD-C4E technique with existing 

algorithms 

 

Figure 17. RRMSE analysis of RODLD-C4E technique with existing 

algorithms 

From the detailed results and discussion, it is obvious that 
the RODLD-C4E model has resulted in enhanced outcomes 
over other models. 

5. Conclusion 

In this study, a new RODLD-C4E model wasestablished to 
properly identify the crop type and chlorophyll content. 
The proposed RODLD-C4E model initially derives a RO 
algorithm with NASNetLarge model for feature extraction 
process. The utilization of RO algorithm enables to 
effectually adjust the hyperparameters of the NasNetLarge 
model. In addition, the CGRU model is employed for crop 

type classification. At last, the DBN model is applied to 
estimate the chlorophyll content exists in the crop. To 
demonstrate the better performance of RODLD-C4E model, 
a wide-ranging experimental analysis wasimplemented on 
benchmark dataset. The comparative analysis pointed out 
the better outcomes of the RODLD-C4E model under 
several aspects. Thus, the RODLD-C4E model can be 
exploited for effective crop classification and chlorophyll 
content estimation. In future, fusion of DL techniques can 
be employed to improve the classification performance.  
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