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Graphical Abstract 

 

Abstract 

Due to the development of open access medium-high resolution remote sensing data like 

multispectral remote sensing images, crop classification becomes a hot research topic to be 

realized on large scale using machine learning (ML) models. At the same time, chlorophyll 
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content is a critical index used for defining crop growth conditions, photosynthetic ability, 

and physiological position. It has an adaptive characteristic which finds useful to monitor 

crop growth conditions and understand the procedure of material and energy exchange among 

crops and the environment. Recently, several research works have been carried out to 

estimate chlorophyll content on multispectral remote sensing images. The recent advances in 

deep learning models enable us to effectively classify different crop types and estimate 

chlorophyll content on multispectral remote sensing images. In this view, this paper presents 

a new remora optimization with deep learning driven crop classification and chlorophyll 

content estimation (RODLD-C4E) model using multispectral remote sensing images. The 

proposed RODLD-C4E model intends to properly identify the crop type and chlorophyll 

content. For accomplishing this, the proposed RODLD-C4E model initially derives a RO 

algorithm with NASNetLargemodel for feature extraction process. The utilization of RO 

algorithm enables to effectually adjust the hyperparameters of the NasNetLarge model. 

Besides, cascaded gated recurrent unit (CGRU) model is employed for crop type 

classification. Finally, deep belief network (DBN) model is applied to estimate the 

chlorophyll content exist in the crop. To demonstrate the better performance of RODLD-C4E 

model, a wide ranging experimental analysis wasimplemented on benchmark dataset. The 

comparative analysis pointed out the better outcomes of the RODLD-C4E model under 

several aspects. 

Keywords: Multispectral remote sensing images, Agriculture, Crop classification, 

Chlorophyll content estimation, Deep learning, Parameter tuning 

1. Introduction 

Agriculture is the science or process of manufacturing and harvesting crops systematically. 

Growth in agricultural crops nowadays becomes essential because of restrictions in the 

development of land and continuously rising demand for food [1]. Agricultural production is 

termed as the product of crop yield and planting region and therefore production valuation 

contains yield estimation and area prediction. Thus, there exists a vigorous demand for 

making the maximum utilization of existing sources for cultivation process [2]. The 

utilization of remote sensing contains numerous benefits and applications, and major 

application among them is crop classification; i.e., distinguishing amongst distinct types of 

crops [3]. Satellite images could also be considered feasible sources for examining the 

temporary variations in the agricultural actions of a specific region [4]. The development of 



 

 

crops from sowing to harvesting could be observed by such satellite images. The 

georeferenced and orthorectified satellite images could be utilized for finding problematical 

zones and the size of the zone affected [5]. 

Monitoring the usage of agricultural land is of critical significance for ensuring the continued 

health of food production, biodiversity, and forest ecosystems. A combination of factors, 

including a warming climate, shifting eating patterns, and an expanding global population, 

are putting pressure on land that has not yet been farmed while simultaneously driving up 

production levels in places that are already farmed. The spread of cropland and the intense 

use of agricultural land are often linked to negative ecological consequences such as the 

destruction of forests and the loss of biodiversity, as well as the deterioration of ecosystem 

services such as the quality of ground and surface water. As a result, thorough and accurate 

monitoring of agricultural lands is an absolutely necessary component in the achievement of 

optimum and sustainable management of these areas. The knowledge of agricultural regions 

and particular land uses is essential for many political initiatives that try to lessen and relieve 

the negative effects that intensive agriculture has on the surrounding environment. Incentives 

that are driven by policy, for instance, encourage a specified percentage of a farm area to 

remain intensively utilised grassland in order to preserve biodiversity. Similarly, subsidies are 

given to encourage a particular crop mix to be rotated in a farm's cycle of crops. The 

collection of data has historically relied on the self-reporting of farmers and the spot 

monitoring of their operations by authorities in the field. This method of data collection is 

arduous, expensive, and prone to inaccuracies. Combining the most up-to-date machine 

learning techniques with satellite data that is freely accessible to the public opens up a world 

of new opportunities for accurate, spatially dense monitoring of agricultural areas that is also 

characterised by high temporal resolution and cheap cost. Researchers are presently relying 

on approaches that use deep learning in order to do crop categorization. 

Multi-spectral satellite images enable classification and recognition of crops, it takes into 

account the variations in reflectance as a function of the specific yield types [6]. Crop 

classification discovers applications in checking and planning efficient crop cultivation, soil 

and water quality studies, and land usage. But owing to the variations in cultivation of crops 

inside a geographic region, the procedure of classification becomes a significant problem [7]. 

Primary productivityand respiration are closely linked to the biochemical and biophysical 

variables of the vegetation. Amongst these variables, chlorophyll is a critical antenna pigment 

that is accountable for absorbing light and transferring it in photosynthesis. Variations in the 



 

 

leaf chlorophyll content (LCC) therefore straight forwardly influence biochemical functions 

namely primary production and photosynthesis [8]. Thus, quantitative examination of LCC 

has important consequences, not for sensing the procedure of material and energy exchange 

amongst the environment and plants, as well as for observing, nutritional status, stress 

conditions, and crop growth in agricultural applications. 

In recent times, deep learning (DL) was broadly utilized and is considered mainstream in 

artificial intelligence and machine learning (ML)[9]. DL is representation learning 

methodology which mechanically studies internal characteristics representation with various 

levels from novel images instead of empirical feature models, and has proved to be more 

proficient in image classification and object identification [10]. By contrast, vegetation 

indexes namely NDVI utilize various bands and might result in low outcomes in hard 

circumstances, e.g., crop classification where the geometry, periods, spectrums, and the 

interaction of several kinds of crops must be assumed. While novel temporary images utilized 

as feature input could comprise noises or unfavourable data which diminish the outcome of a 

classifier. 

This paper presents a new remora optimization with deep learning driven crop classification 

and chlorophyll content estimation (RODLD-C4E) model using multispectral remote sensing 

images. The proposed RODLD-C4E model derives a RO algorithm with NASNetLarge 

model for feature extraction process. The use of RO algorithm allows for effectively 

changing the hyperparameters of the NasNetLarge model. Also, cascaded gated recurrent unit 

(CGRU) model is employed for crop type classification. Lastly, deep belief network (DBN) 

model is applied to estimate the chlorophyll content that exists in the crop. To demonstrate 

the better performance of RODLD-C4E model, a wide ranging experimental analysis is 

performed on benchmark dataset.  

2. Related works 

Denis et al. [11] measured how spatial remote sensing might assist the process of organic 

crop certification by rising a methodology that allows certification body target to priority in 

situ control crop field stated as organic however that display on satellite images a 

closer appearance to traditional fields. Therefore, the capability of multi-spectral satellite 

images to distinguish among conventional maize and organic fields was evaluated by using 

four groups of satellite images of spectral and spatial resolutions attained at various 

development stages of crop over a considerable amount of maize field. Singhal et al. [12] 



 

 

attempt has been made to estimate the leaf chlorophyll concentration of standing maize plants 

in higher resolution (5 cm) multispectral Unmanned Aerial Vehicle (UAV) imagery. Then, 

estimated ML algorithm is integrated with spectral dataset and ground truth chlorophyll for 

modelling the chlorophyll estimations.  

Brewer et al. [13] estimated the efficacy of multi-spectral UAV images with the random 

forest machine learning technique for estimating the chlorophyll content of maize via 

different development stages. The result shows that the red-edge and near-infrared 

wavelength bands and vegetation indices derived from the wavelength are needed to estimate 

chlorophyll content under the maize phenotyping. Singhal et al. [14] estimated the ML 

approach kernel ridge regression integrated with spectral dataset and ground-truth chlorophyll 

dataset for modelling the chlorophyll estimates. Also, the multivariate analysis was employed 

on spectroradiometer and UAV dataset that suggested red band for predicting chlorophyll 

content with R2 value larger than 0.6. Wang et al. [15] enable the transfer of classification 

models over years and regions for Gaofen PMS (2-m resolution) and Sentinel-2A (10-m 

resolution) images. The feature selection (FS) based prediction using UNet++ framework and 

up-sampling of minor class demonstrates the abilities of DL generalization to classify 

complicated ground objects that provide better results. Zhou et al. [16] the classification 

method of CNN and SVM is compared to extract the spatial distribution of crop planting 

region in Sentineal-2A multispectral remote sensing images in China.  

Ma et al. [23] examined the classifier potential of multi-spectral classifier method to farmland 

with planting infrastructures of several complexities. UAV-RS technology are utilized for 

obtaining multi-spectral image of 3 analysis regions with low-, medium-, and high-

complexity planting infrastructures comprising 3, 5, and 8 kinds of crops correspondingly. 

Recursive feature elimination was used to choose feature subsets for three analysis zones 

(RFE). The three areas of analysis have now been incorporated into OB-RF and OB-SVM 

classifier algorithms. By deleting satellite data at the pixel level, analyzing every available 

band, and dispersing its data across time, Siesto et al. [24] introduced an innovative approach 

that creates synthetic images. Images from Sentinel-2 were used to create a deep 

convolutional network model that can distinguish between different crops a year after being 

trained on data from prior years. According to Qi et al. [25], two peanut types, Yanghua 1 

and Yueyou 45 are planted at varied densities, with 8 vegetation indices calculated using 

multi-spectral drone imagery. For the 1D linear regression techniques of NDVI and GNDVI 

(Green NDVI), as well as the MLR methodology, a far higher degree of set-up and precision 



 

 

was necessary than for the other indices. When testing for chlorophyll concentration in 

peanuts, BPNN is a better option than the RF approach for ensuring optimal fit and accuracy. 

It was determined by Denis et al. [26] that satellite remote sensing might help the certification 

process for organic crop fields that look to be more traditional on satellite images but are 

certified as organic by the certification agency. Therefore, the capability of multi-spectral 

satellite images to distinguish among conventional maize and organic fields was evaluated by 

using four groups of satellite images of spectral and spatial resolutions attained at various 

development stages of crop over a considerable amount of maize field. 

3. The Proposed Model 

In this study, a new RODLD-C4E model has been developed to properly identify the crop 

type and chlorophyll content. The proposed RODLD-C4E model initially derives a RO 

algorithm with NASNetLarge model for feature extraction process. In addition, the CGRU 

model is employed for crop type classification. At last, the DBN model is applied to estimate 

the chlorophyll content that exists in the crop. Fig. 1 demonstrates the overall process of 

RODLD-C4E technique. 

 

Fig. 1. Overall process of RODLD-C4E technique  

3.1. Feature Extraction 



 

 

The initial stage of crop classification is to produce a useful set of features by the 

NASNetLarge model. Neural architecture search (NAS) is the search technique that needs to 

be deployed. Child networks with different frameworks is sampled by a controller RNN in 

NAS. Child network is taught to accomplish some accuracy on a validation set i.e., held out 

for convergence. The resultant accuracy value is utilized for upgrading the controller that 

sequentially generates accurate architecture over time. The policy gradient is utilized for 

upgrading the controller weight. According to the realization that architecture engineered 

with CNN generally uncover recurrent pattern that includes the combination of convolution 

filter bank and nonlinearity along with a careful selection of connection, the NasNet 

searching space has been made (for instance, the repeated module in the ResNet and 

inception modules) [17]. The finding suggests that the controller RNN might be capable of 

predicting a generic convolution cell. For accommodating input of spatial dimension and 

depth of filtering, this cell can be stacked sequentially. In this technique, the convolution net 

overall design is manually predefined. They are composed of convolution cell that has similar 

shape as the original however they are differently weighted. Two kinds of convolution cells 

are utilized for rapidly developing scalable architecture for images of any size: (1) 

convolution cell returns a feature map with a two-fold reduction in width and height, and (2) 

convolution cell produces a feature map with equal dimensions. 

In this work, the RO algorithm enables to effectually adjust the hyperparameters of the 

NasNetLarge model. The position updating process of RO algorithm is modelled on the basis 

of the algorithm elite notion, given in the following. 

𝑅𝑖
𝑡+1 = 𝑅𝑏𝑒𝑠𝑡

𝑡 − (𝑟𝑎𝑛𝑑 × (
𝑅𝑏𝑒𝑠𝑡
𝑡 − 𝑅𝑟𝑎𝑛𝑑

𝑡

2
) − 𝑅𝑟𝑎𝑛𝑑

𝑡 )                     (1) 

Now, 𝑅𝑟𝑎𝑛𝑑
𝑡  denotes a random location. To estimate whether or not it is essential to replace 

the host, they should frequently take modest steps around the host, similar to the knowledge 

development. The equation for modelling the abovementioned principle is given below: 

𝑅𝑎𝑖𝑖 = 𝑅𝑖
𝑡 − (𝑅𝑖

𝑡 − 𝑅𝑝𝑟𝑒) × 𝑟𝑎𝑛𝑑 𝑛                                     (2) 

Here 𝑅𝑝𝑟𝑒 indicates the location of the preceding iteration, and 𝑅𝑎𝑡𝑡 represent a tentative step. 

The estimation of the fitness function (FF) of the attempted solution 𝑓(𝑅𝑎𝑡𝑡) and the existing 

solution 𝑓(𝑅𝑖
𝑡) is defined by the decision of this step. For instance, while resolving the 



 

 

problems, when the FF value generated by the presented solution is lesser when compared to 

the existing solution, 

𝑓(𝑅𝑖
𝑡) > 𝑓(𝑅𝑎𝑡𝑡)                                            (3) 

Remora selects various methodologies for local optimal, as follows. Its return to host 

selecting when the FF value of attempted solutions is higher than the current solution. 

𝑓(𝑅𝑖
𝑡) < 𝑓(𝑅𝑎𝑡𝑡)                                        (4) 

The position upgrade equation of Remora related to the whale was recovered by the original 

WOA method, as follows: 

𝑅𝑖+1 = 𝐷 × 𝑒
𝛼 × 𝑐𝑜𝑠(2𝜋𝛼) + 𝑅𝑖                             (5) 

𝛼 = 𝑟𝑎𝑛𝑑 × (𝑎 − 1) + 1                                   (6) 

𝑎 = −(1 +
𝑡

𝑇
)                                               (7) 

𝐷 = |𝑅𝑏𝑒𝑠𝑖 − 𝑅𝑖|                                           (8) 

The location is regarded as the same once a Remora is on a whale in the broader solution 

space. 𝐷indicates the space amongst the hunter and prey 𝛼 represents an arbitrary number 

within [−1,1], and 𝑎 indicates a value that exponentially reduces from [−2,−1]. Further, The 

exploitation process is divided into host feeding [18]. Now, the optimum solution is 

condensed to the host location. The mathematical expression of the abovementioned process 

is given below: 

𝑅𝑖
𝑡 = 𝑅𝑖

𝑡 + 𝐴                                        (9) 

𝐴 = 𝐵 × (𝑅𝑖
𝑡 − 𝐶 × 𝑅𝑏𝑒𝑠𝑡)                         (10) 

𝐵 = 2 × 𝑉 × 𝑟𝑎𝑛𝑑 − 𝑉                              (11) 

𝑉 = 2 × (1 −
𝑡

𝑇
)          (12) 

3.2. Crop Classification Module 

For crop classification process, the CGRU model has been employed to it. A GRU is a new 

memory cell that has proved efficient performance in different applications. It is considered 

to be an improvement and simplification of LSTM and comparative performance to LSTM 



 

 

[19]. To clearly define a GRU, we concisely present LSTM. In RNN, the hidden unit is the 

main element since it is accountable for forgetting or remembering certain data. The LSTM is 

being implemented properly and has better variant.  

{
 
 

 
 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 +𝑊ℎ𝑓ℎ𝑡−1 +𝑊𝑐𝑓𝐶𝑡−1)

𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 +𝑊ℎ𝑖ℎ𝑡−1 +𝑊𝑐𝑖𝐶𝑡−1)
𝐶𝑡 = 𝑓𝑡⊙𝐶𝑡−1 + 𝑖𝑡⊙ 𝑡𝑎𝑛ℎ(𝑊𝑥𝑐𝑥𝑡 +𝑊ℎ𝑐ℎ𝑡−1)

0𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 +𝑊ℎ𝑜ℎ𝑡−1 +𝑊𝑐𝑜𝐶𝑡−1)
ℎ𝑡 = 0𝑡⊙ 𝑡𝑎𝑛ℎ(𝐶𝑡)

                   (13) 

Here, 𝑥 indicates the input vector, 𝐶 denotes the cell state and ℎ represents the output vector. 

𝜎denotes a sigmoid function, ⊙implies the Hadamard product and 𝑊 signifies undefined 

parameter. 𝑡signifies the present time and 𝑡 − 1 represents the last time. Where 𝑖 represents 

the input gate that decides what data need to be saved in the cell state. 𝑓represent the forget 

gate that decides what data need to be eliminated from the cell state. 0indicates the output 

gate that decides what data to output. In contrast to LSTM, a GRU comprises certain 

simplification.  

{
 
 

 
 𝑟𝑡 =  𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1)

𝑧𝑡 =  𝜎(𝑊𝑧𝑥𝑡 +𝑈𝑧ℎ𝑡−1)

ℎ̃𝑡 =  𝑡𝑎𝑛ℎ(𝑊ℎ𝑥𝑡 + 𝑈(𝑟𝑡⊙ℎ𝑡−1))

ht = (1 − 𝑧𝑡)ℎ𝑡−1 + 𝑧𝑡ℎ̃𝑡

                     (14) 

Therefore, the GRU has fewer parameters and is very simple when compared to the LSTM 

architecture providing greater benefits interms of convergence and performance. In 

succeeding experiments, GRU shows an enormous benefit. In CGRU model, a set of GRU 

units is cascaded together to enhance results. 

3.3. Chlorophyll Content Estimation Module 

Finally, the DBN model is applied to estimate the chlorophyll content that exists in the crop. 

A typical DBN is stacked by using RBM that is special form of Markov random field [20]. It 

comprises of single visible layer, that is defined by 𝑣 = {𝑣1, 𝑣2, … , 𝑣𝑖 , … , 𝑣𝑛}
𝑇(𝑣𝑖 ∈ {0,1 

single hidden layer is defined by ℎ = {ℎ1, ℎ2, … , ℎ𝑖 , … , ℎ𝑛}
𝑇(ℎ𝑖 ∈ {0,1}). The visible layer is 

connected to the hidden layer via weight connection, and neuron of every layer isn’t linked 

together: 

𝐸(𝑣, ℎ|𝜃) = −∑∑𝑣𝑖

𝑚

𝑗=1

𝑛

𝑖=1

𝑤𝑖𝑗ℎ𝑗 −∑𝑎𝑖

𝑛

𝑖=1

𝑣𝑖 −∑𝑏𝑗

𝑚

𝑗=1

ℎ𝑗          (15) 



 

 

Whereas 𝜃 = {𝑤𝑎, 𝑏}, 𝑛, and 𝑚 indicate the count of visible and hidden neurons, 

correspondingly. 𝑖 and 𝑗 indicate the 𝑖𝑡ℎ and 𝑗𝑡ℎ neurons, 𝑣𝑖 and ℎ𝑗  represents the 𝑖𝑡ℎ visible 

neural and the 𝑗𝑡ℎ hidden neurons, 𝑎𝑖 and 𝑏𝑗 represent the bias of 𝑖𝑡ℎ visible neural and the 

𝑗𝑡ℎ hidden neural, and 𝑤𝑖𝑗 signifies the weight among 𝑖𝑡ℎ visible neuron and 𝑗𝑡ℎ hidden 

neuron. Fig. 2 depicts the framework of DBN. 

 

Fig. 2. Structure of DBN 

The joint possibility of visible neurons and the hidden neuron is shown in the following 

equation: 

𝑃(𝑣, ℎ|𝜃) =
1

𝑍(𝜃)
 exp (−𝐸(𝑣, ℎ|𝜃))                                (16) 

that is Gibbs distribution of the RBM. 𝑍(𝜃)indicates the partition function and is described in 

the following: 

𝑍(𝜃) =∑∑ exp 

ℎ𝑣

(−𝐸(𝑣, ℎ|𝜃))                         (17) 

The two edge possibilities of visible and hidden neurons are determined by: 

𝑃(𝑣) =
1

𝑍(𝜃)
∑ exp 

ℎ

(−𝐸(𝑣, ℎ|𝜃))                               (18) 

𝑃(ℎ) =
1

𝑍(𝜃)
∑ exp 

𝑣

(−𝐸(𝑣, ℎ|𝜃))                          (19) 

The conditional probability of the visible and hidden neurons are shown as follows: 



 

 

𝑃(𝑣|ℎ) =∏𝑃

𝑖

(𝑣𝑖|ℎ)                                              (20) 

𝑃(ℎ|𝑣) =∏𝑃

𝑗

(ℎ𝑗|𝑣)                                             (21) 

The visible and hidden neurons are independent, hence the distribution of the conditional 

probability is described by: 

𝑃(𝑣𝑖 = 1|ℎ) =
1

1 + exp(−𝑎𝑖 −∑ 𝑤𝑖𝑗
𝑚
𝑗=1 ℎ𝑗)

                        (22) 

𝑃(ℎ𝑗 = 1|𝑣) =
1

1 + exp(−𝑏𝑗 − ∑ 𝑤𝑖𝑗
𝑛
𝑖=1 𝑣𝑖)

                     (23) 

The visible layer 𝑣𝑖 signifies the input dataset, viz., mapped to the hidden state based on the 

probability in Eq. (23). Subsequently, this constitutes the first RBM. At the same time, it is 

the input dataset of the next RBM. Repeat this procedure for updating the parameter, to form 

a feature depiction i.e., more abstract and representability when compared to the lower layer. 

The weight is upgraded as: 

△𝑤𝑖𝑗 = 𝜂(< 𝑣𝑖ℎ𝑗 > −< 𝑣𝑖
′ℎ𝑗
′ >)                          (24) 

Whereas 𝜂 ∈ (0,1) indicates the learning rate, <∙> represents the mean over the training 

dataset.   

4. Performance Validation 

The experimental validation of the RODLD-C4E model is tested using two benchmark 

datasets namely Indian Pines dataset and Salinas dataset. A few sample images are 

demonstrated in Fig. 3. Table 1 depicts the described dataset details. 

4.1 Simulation Parameters 

The performance of the proposed method was evaluated using the most modern 

methodologies available. The experimental operations were carried out with the assistance of 

Google co-laboratory and MATLAB R 2018b programming language. The study was carried 

out using a personal computer that had an Intel(R) Core(TM) i5-6500 processor operating at 

3.20 ghz range and 8 GB of random access memory (RAM). 

 



 

 

Table 1 Dataset details 

Class Names 
Number of Samples in Dataset 

Indian Pine Dataset Salinas Dataset 

Category-01 36 1485 

Category-02 1083 2793 

Category-03 611 1462 

Category-04 73 1051 

Category-05 350 2007 

Category-06 542 2982 

Category-07 21 2649 

Category-08 363 8445 

Category-09 12 4667 

Category-10 729 2465 

Category-11 1829 805 

Category-12 457 1434 

Category-13 159 705 

Category-14 954 832 

Category-15 301 5462 

Category-16 67 1354 

Total No. of Samples 7587 40598 

 



 

 

 

Fig. 3. a) Remote Sensing Image b) Ground Truth Image 

Fig. 4 demonstrates the confusion matrix produced by the RODLD-C4E model on 30% of 

testing (TS) data on Indian Pines dataset. The figure indicated that the RODLD-C4E model 

has proficiently recognized 16 classes.  



 

 

 

Fig. 4. Confusion matrix of RODLD-C4E technique on 30% of TS data on Indian Pines 

dataset 

Table 2 and Fig. 5 offer a detailed discussion of the crop classification outcomes reported by 

the RODLD-C4E model on Indian Pines dataset. The experimental values indicated that the 

RODLD-C4E model has proficiently recognized all the class labels. For instance, with 

category 1, the RODLD-C4E model has provided 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, 𝑠𝑝𝑒𝑐𝑦, and 𝐹𝑠𝑐𝑜𝑟𝑒of 

99.74%, 100%, 33.33%, 100%, and 50% respectively. At the same time, with category 10, 

the RODLD-C4E model has provided 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, 𝑠𝑝𝑒𝑐𝑦, and 𝐹𝑠𝑐𝑜𝑟𝑒of 98.95%, 

93.56%, 96.04%, 99.27%, and 94.78% respectively.  In line with, with category 16, the 

RODLD-C4E model has provided 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, 𝑠𝑝𝑒𝑐𝑦, and 𝐹𝑠𝑐𝑜𝑟𝑒of 99.21%, 

62.50%, 25%, 99.87%, and 35.71% respectively. 



 

 

Table 2 Result analysis of RODLD-C4E technique with several measures on Indian Pines 

dataset 

Class Label Accuracy Precision Recall Specificity F-Score 

Category-01 99.74 100.00 33.33 100.00 50.00 

Category-02 98.86 94.51 97.48 99.08 95.98 

Category-03 98.33 88.94 91.71 98.94 90.31 

Category-04 98.81 25.00 8.70 99.73 12.90 

Category-05 98.99 90.10 87.50 99.54 88.78 

Category-06 98.90 92.90 91.14 99.48 92.01 

Category-07 99.78 0.00 0.00 100.00 0.00 

Category-08 99.21 93.20 89.72 99.68 91.43 

Category-09 99.78 0.00 0.00 100.00 0.00 

Category-10 98.95 93.56 96.04 99.27 94.78 

Category-11 97.98 94.19 97.87 98.02 95.99 

Category-12 98.38 80.85 91.94 98.75 86.04 

Category-13 98.90 78.26 70.59 99.55 74.23 

Category-14 98.64 95.00 93.99 99.30 94.49 

Category-15 98.95 86.21 86.21 99.45 86.21 

Category-16 99.21 62.50 25.00 99.87 35.71 

Average 98.96 73.45 66.33 99.42 68.05 

 

Fig. 5. Result analysis of RODLD-C4E technique on Indian Pines dataset 

 



 

 

 

Fig. 6. TA and VA analysis of RODLD-C4E technique on Indian Pines dataset 

The training accuracy (TA) and validation accuracy (VA) attained by the RODLD-C4E 

model on Indian Pines dataset is demonstrated in Fig. 6. The experimental outcome implied 

that the RODLD-C4E model has gained maximum values of TA and VA. In specific, the VA 

seemed to be higher than TA. 

The training loss (TL) and validation loss (VL) achieved by the RODLD-C4E model on 

Indian Pines datasetare established in Fig. 7. The experimental outcome inferred that the 

RODLD-C4E model has been able least values of TL and VL. In specific, the VL seemed to 

be lower than TL. 

 



 

 

 

Fig. 7. TL and VL analysis of RODLD-C4E technique on Indian Pines dataset 

 

Fig. 8. Precision-recall curve analysis of RODLD-C4E technique on Indian Pines dataset 



 

 

A brief precision-recall examination of the RODLD-C4E model on Indian Pines dataset is 

portrayed in Fig. 8. By observing the figure, it is noticed that the RODLD-C4E model has 

accomplished maximum precision-recall performance under all classes. 

Fig. 9 offers a detailed discussion of the comparative crop classification outcomes reported 

by the RODLD-C4E model on Indian Pines dataset [21, 22]. The experimental values 

indicated that the RODLD-C4E model has proficiently recognized all the class labels 

compared to other existing methods with maximum accuracy and kappa of 98.96% and 

90.45% respectively. 

 

Fig. 9. Comparative analysis of RODLD-C4E technique on Indian Pines dataset 



 

 

 

Fig. 10. Confusion matrix of RODLD-C4E technique on 30% of TS data on Salinas dataset 

Fig. 10 illustrates the confusion matrix produced by the RODLD-C4E technique on 30% of 

TS data on Salinas dataset. The figure indicated that the RODLD-C4E approach has 

proficiently recognized 16 classes.  

Table 3 and Fig. 11 give a detailed discussion of the crop classification outcomes reported by 

the RODLD-C4E model on Salinas dataset. The experimental values referred that the 

RODLD-C4E model has proficiently recognized all the class labels. For instance, with 

category 1, the RODLD-C4E model has provided 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, 𝑠𝑝𝑒𝑐𝑦, and 𝐹𝑠𝑐𝑜𝑟𝑒of 

99.73%, 96.18%, 96.40%, 99.86%, and 96.29% correspondingly. Also, with category 10, the 

RODLD-C4E technique has obtainable𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, 𝑠𝑝𝑒𝑐𝑦, and 𝐹𝑠𝑐𝑜𝑟𝑒of 99.65%, 

96.68%, 97.81%, 99.77%, and 97.24% correspondingly.  At last, with category 16, the 



 

 

RODLD-C4E algorithm has provided 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, 𝑠𝑝𝑒𝑐𝑦, and 𝐹𝑠𝑐𝑜𝑟𝑒of 99.80%, 

96.77%, 97.26%, 99.89%, and 97.01% correspondingly. 

Table 3 Result analysis of RODLD-C4E technique with several of measures on Salinas 

dataset 

Class Label Accuracy Precision Recall Specificity F-Score Kappa Score 

Category-01 99.73 96.18 96.40 99.86 96.29 - 

Category-02 99.69 97.15 98.32 99.79 97.73 - 

Category-03 99.75 96.14 97.02 99.86 96.58 - 

Category-04 99.79 95.41 96.89 99.87 96.15 - 

Category-05 99.65 95.95 97.05 99.78 96.50 - 

Category-06 99.69 98.66 97.14 99.89 97.90 - 

Category-07 99.73 97.60 98.22 99.83 97.91 - 

Category-08 99.62 99.44 98.72 99.86 99.08 - 

Category-09 99.68 98.62 98.68 99.81 98.65 - 

Category-10 99.65 96.68 97.81 99.77 97.24 - 

Category-11 99.76 94.09 92.83 99.89 93.45 - 

Category-12 99.77 96.61 97.05 99.87 96.83 - 

Category-13 99.71 95.05 88.48 99.92 91.65 - 

Category-14 99.68 93.13 90.42 99.87 91.75 - 

Category-15 99.71 98.57 99.25 99.78 98.91 - 

Category-16 99.80 96.77 97.26 99.89 97.01 - 

Average 99.71 96.63 96.35 99.85 96.48 97.45 

 

Fig. 11. Result analysis of RODLD-C4E technique on Salinas dataset 



 

 

The TA and VA attained by the RODLD-C4E model on Salinas datasetare portrayed in Fig. 

12. The experimental outcomes implied that the RODLD-C4E model has gained maximum 

values of TA and VA. In specific, the VA has appeared that superior to TA. 

 
Fig. 12. TA and VA analysis of RODLD-C4E technique on Salinas dataset 

 
Fig. 13. TL and VL analysis of RODLD-C4E technique on Salinas dataset 

 



 

 

The TL and VL reached by the RODLD-C4E approach on Salinas datasetare recognized in 

Fig. 13. The experimental outcomes inferred that the RODLD-C4E model has accomplished 

least values of TL and VL. In specific, the VL is looked to be lesser than TL. 

 

Fig. 14. Precision-recall curve analysis of RODLD-C4E technique on Salinas dataset 

A brief precision-recall examination of the RODLD-C4E model on Salinas dataset is 

portrayed in Fig. 14. By observing the figure, it can be noticed that the RODLD-C4E model 

has accomplished maximum precision-recall performance under all classes. 

Fig. 15 provides a detailed discussion of the comparative crop classification outcomes 

reported by the RODLD-C4E method on Salinas dataset. The experimental values exposed 

that the RODLD-C4E model has proficiently recognized all the class labels compared to 

other existing methods with maximal accuracy and kappa of 99.71% and 97.45% 

respectively. 

 



 

 

 

Fig. 15. Comparative analysis of RODLD-C4E technique on Salinas dataset 

Fig. 16 reports the RMSE outcomes of the RODLD-C4E model with existing models on 

cross-validation and ground validation. The figure indicated that the RODLD-C4E model has 

accomplished lower values of RMSE under every aspect. For instance, with CV data, the 

RODLD-C4E model has offered reduced RMSE of 12.27 µg·cm−2 whereas the GPR-CBD, 

GPR-ABD, GPR-PAL, GPR-RSAL, and GPR models have obtained increased RMSE of 

13.83, 15.19, 14.73, 14.75, and 16.93 µg·cm−2 respectively. At the same time, with GV data, 

the RODLD-C4E system has offered decreased RMSE of 12.36 µg·cm−2 whereas the GPR-

CBD, GPR-ABD, GPR-PAL, GPR-RSAL, and GPR systems have obtained enhanced RMSE 

of 14.53, 16.44, 14.13,13.17, and 31.98 µg·cm−2 correspondingly. 



 

 

 

Fig. 16. RMSE analysis of RODLD-C4E technique with existing algorithms 

Fig. 17 demonstrates the RRMSE outcomes of the RODLD-C4E method with existing 

models on cross-validation and ground validation. The figure exposed that the RODLD-C4E 

model has accomplished lower values of RRMSE under every aspect. For instance, with CV 

data, the RODLD-C4E algorithm has accessible reduced RRMSE of 21.57% whereas the 

GPR-CBD, GPR-ABD, GPR-PAL, GPR-RSAL, and GPR approaches have reached 

enhanced RRMSE of 24.60%, 26.92%, 26.12%, 26.15%, and 30% correspondingly. 

Concurrently, with GV data, the RODLD-C4E model has obtainable reduced RRMSE of 

12.69% whereas the GPR-CBD, GPR-ABD, GPR-PAL, GPR-RSAL, and GPR algorithms 

have obtained enhanced RRMSE of 25.44%, 28.78%, 24.74%, 23.06%, and 56% 

correspondingly. 

 



 

 

 

Fig. 17. RRMSE analysis of RODLD-C4E technique with existing algorithms 

From the detailed results and discussion, it is obvious that the RODLD-C4E model has 

resulted in enhanced outcomes over other models. 

5. Conclusion  

In this study, a new RODLD-C4E model wasestablished to properly identify the crop type 

and chlorophyll content. The proposed RODLD-C4E model initially derives a RO algorithm 

with NASNetLarge model for feature extraction process. The utilization of RO algorithm 

enables to effectually adjust the hyperparameters of the NasNetLarge model. In addition, the 

CGRU model is employed for crop type classification. At last, the DBN model is applied to 

estimate the chlorophyll content exists in the crop. To demonstrate the better performance of 

RODLD-C4E model, a wide ranging experimental analysis wasimplemented on benchmark 

dataset. The comparative analysis pointed out the better outcomes of the RODLD-C4E model 

under several aspects. Thus, the RODLD-C4E model can be exploited for effective crop 

classification and chlorophyll content estimation. In future, fusion of DL techniques can be 

employed to improve the classification performance.  
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