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Abstract 

For decades, climate models have been used to understand 
the present and historical climates, especially global 
climate models (GCMs). They are used to understand the 
interaction between climate system processes and forecast 
future climates. However, the issue of low resolution and 
accuracy often lead to inadequacy in capturing the 
variations in climate variables related to impact 
assessment. In order to capture the local climate changes 
in Hyogo Prefecture of Western Japan, a local climate 
modelling based on Second Generation Canadian Earth 
System Model (CanESM2) was applied using the statistical 
downscaling technique. Representative Concentration 
Pathway (RCP) 4.5 and 8.5 scenario were used in 
generating future climate models. The reliability of models 
was tested with linear regression, Pearson correlation, and 
Cronbach Alpha. Moderate relationship between rainfall 
data and both RCP scenarios was found in all chosen 
stations. Spatial analysis outcome showed that there is a 
possibility of increase in annual rainfall in Hyogo 
prefecture, where the increase is significant in Northern 
region. There is a possibility of increase in maximum and 
minimum temperature in four selected stations due to the 
increase of greenhouse gas emissions. 

Keywords: CanESM2, statistical downscaled, local climate 
model, Hyogo Prefecture, Japan 

1. Introduction 

Climate change can be seen from the rise in global annual 
temperature and the increase in extreme event occurring 
frequency worldwide throughout the years. The global 
averaged temperature in 2020 was reported to be 1.02 ℃ 
higher than the baseline period of the year 1951 – 1980 and 
tied with 2016 as the hottest year ever recorded (NASA, 
2021). According to Pidcock and McSweeney (2021), 79% 
of extreme weather event cases were found to have their 
likelihood or severity altered due to human-caused climate 
change, where 70% were made more likely or severe, and 
9% were made less likely or severe. As the increased 
severity of extreme weather events caused by human 
actions is higher in proportion, more focus should be given 
to the human activities that are more controllable 
compared to natural causes. 
The main factor causing climate change is the greenhouse 
effect, where greenhouse gas (GHG) traps solar heat and 
prevents it from escaping into the space, thus leading to 
global warming. There are two types of greenhouse gas 
emission sources, which are natural processes and 
anthropogenic activities. However, climate change due to 
human activities has become the most serious of all 
environmental concerns (Mikhaylov et al., 2020). Human 
activities such as deforestation and burning fossil fuels for 
electric generation emit carbon dioxide, leading to global 
warming and climate change. 

The climate model could be understood as a more 
comprehensive weather model. It predicts over an 
extended period of time and forecasts how conditions in a 
region will alter over the following decades. Climate 
modelling is used in understanding the future trend of 
climate systems, and it allows scientists to test hypotheses 
and predict future climates. Also, model output helps 
scientists comprehend how human activity influences 
Earth’s climate. General climate models (GCMs) are 
sophisticated mathematical descriptions of key 
components of climate systems, such as atmosphere, 
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ocean, land surface and sea ice, and the interactions 
between them. However, the resolution and accuracy of 
GCMs, which are low, are often inadequate to record the 
climate variable variations, especially in impact 
assessments. Raw data from GCMs is difficult to be applied 
at local scales without downscaling due to its coarse 
resolution. Downscaling allows identification and analysis 
of extreme events, which are significant components of 
urban climate study (Domínguez et al., 2013). Regional 
climate models (RCMs) are the products of downscaling, 

which have improved spatial and temporal resolution of 
the parent global models. Besides, lack of scientific studies 
was conducted to assess the performance of RCMs in 
Hyogo Prefecture, Japan based on two potential emission 
scenarios - Representative Concentration Pathways (RCPs) 
4.5 and 8.5. Hence, the findings of this study will benefit 
society as future climate conditions are able to be 
predicted through the statistical downscaling method. 

 

Table 1. Population growth of selected cities and towns in 1995 – 2020  

City/Town Land Area (km2) Growth Rate (%) 1995-2020* Population Density 2020* (/km²) 

Toyooka City 697.55 -17.41 111.13 

Taka Town 185.19 -24.20 104.13 

Sanda City 210.32 13.55 519.80 

Kobe City 557.01 7.25 2741.46 

Tatsuno City 210.87 -10.88 352.61 

Yabu City 422.91 -29.25 52.34 

Fukusaki Town 45.79 -2.41 423.15 

Kamigoori Town 150.26 -26.26 92.48 

Total (Hyogo) 8,400.94 - - 

*Growth rate and population density in 2020 were calculated from the obtained data. 

Table 2. Selected rainfall stations during 1980 – 2020 

City/Town Station name Latitude Longitude Period 

Toyooka City Tsuji 35.5194 N 134.7528 E 1980 - 2020 

Taka Town Sugihara 35.1375 N 134.9214 E 1980 - 2020 

Sanda City Sanda 34.8950 N 135.2117 E 1980 - 2020 

Kobe City Rokkousabou 34.7158 N 135.2650 E 1980 - 2020 

Fukusaki Town Fukusaki 34.9500 N 134.7483 E 1980 - 2020 

Tatsuno City Nishikurisu 34.9567 N 134.4658 E 1980 - 2020 

Yabu City Deai 35.3636 N 134.5947 E 1980 - 2020 

 

2. Materials and methods 

2.1. Study area 

Hyogo Prefecture is located in Kansai Region in Japan, 
having Kobe as the capital. There are 29 cities (shi) and 12 
towns (cho) in Hyogo prefecture. It has a total land area of 
8,400.95 km2 and a total population of 5,466,000 as of 
2019. Kobe is the largest city located in Hyogo Prefecture 
and has Port of Kobe as one of the chief ports in Japan. Port 
of Kobe was established in the first year of the Meiji era, 
1868, and eventually became an international trading hub 
to Asia countries.  

The populations in several cities and towns in Hyogo 
Prefecture were obtained from Hyogo Prefectural 
Government and Statistics Bureau of Japan 
(https://web.pref.hyogo.lg.jp/ and www.stat.go.jp), and 
the population growth was then calculated. It could be 
observed from Table 1 that the population in cities/towns, 
except Sanda City and Kobe City, decreased over 25 years, 
with the highest negative growth rate value of -24.20%. 
Kobe City had the highest population density in 2020, 
which was 2741.46 /km2.  

2.2. Data collection 

Seven rainfall stations in Hyogo Prefecture were selected 
which covered different regions of Hyogo Prefecture. Total 

41 years of daily rainfall (1980 – 2020) were downloaded 
from Water Information System and Japan Meteorological 
Agency online portal ( http://www1.river.go.jp/ and 
https://www.jma.go.jp/jma/ 
indexe.html ). The detail and the location of stations were 
shown in Figure 1 and Table 2. 

To develop temperature local climate model, the daily 
minimum temperature (Tmin) and maximum temperature 
(Tmax.)  data from selected four stations (1980- 2020) were 
used in this study, which covered the northern, south-
eastern, southern and south-western regions of Hyogo 
Prefectures. The stations were shown in Table 3 and Figure 
2. The data set were used for model calibration and 
validation using Statistically Downscaling Model (SDSM) 
ver. 4.6. Theoretically, 30-year observation data was 
suggested to calibrate the model, while total 41 years data 
(1980-2020) were used in this study to obtain higher 
accuracy in calibration. Then, the reliability analysis period 
of observed daily rainfall, Tmin and Tmax. which was set as 
2006 – 2020, from the same stations were obtained and 
used to determine the suitable local climate models.  

The second-generation Canadian Earth System Model 
(CanESM2) was used to develop the local climate models. 
It was developed by Canadian Centre for Climate Modelling 
and Analysis (CCCma) and recognised as fourth generation 
of CGCM, which contributes to the IPCC AR5 and takes part 
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in CMIP5. The main components of Earth System Model 
include an atmospheric, an oceanic, a sea-ice and two land 
surface models, namely Atmospheric General Circulation 
Model (AGCM4), Ocean GCM4, CanSim1, CTEM1 and 
Canadian Land Surface Scheme (CLASS2.7). The GCM 
CanESM2 was downloaded from online portal 
(https://climate-scenarios.canada.ca/?page=pred-
canesm2). The downloaded CanESM2 dataset consisted 
the predictors (1961_2005), historical model (1961 – 2005) 
and climate projection period (2006 – 2100) based on 
RCP4.5 and 8.5 scenario. Hyogo Prefecture is located at grid 
cell BOX_49X_45Y defined by CanESM2 as shown in Figure 
3. The 26 predictors and their codes are listed in Table 4. 
The RCP4.5 and RCP8.5 were utilised in this study to 
generate future scenarios of anthropogenic forcing under 
intermediate and high emission levels. Besides, the rainfall 
intensity of historical flood events that occurred in Toyooka 
City, Kobe City, Taka Town and Tatsuno City were collected. 
The data were arranged and plotted accordingly with the 
moving average. 

 

Figure 1. Selected rainfall stations plotted in map. 

Table 3. Selected stations for minimum temperature and 

maximum temperature for year 1980 – 2020  

Station 
name 

Latitude Longitude Time Period 

Toyooka 35.5350 N 134.8217 E 1980 - 2020 

Sanda 34.8950 N 135.2117 E 1980 - 2020 

Fukusaki 34.9500 N 134.7483 E 1980 - 2020 

Kamigoori 34.8583 N 134.3733 E 1980 - 2020 

 

Figure 2. Selected stations for minimum and maximum 

temperatures plotted in map 

 

Figure 3. Grid cell (box) covering Hyogo Prefecture (Government 

of Canada, n.d.) 

Table 4. The 26 predictors from NCEP 

 

2.3. Downscaling procedure 

Quality control was first performed to identify the missing 
data, where missing daily precipitation amount, minimum 
and maximum temperature data were treated by getting 
the data from nearest station available. It is important to 
undergo quality control step, as missing data leads to 
reduction in statistical power, which means it will decrease 
the probability that the null hypothesis of the test will be 
rejected when it is false (Kang, 2013). Besides, it has the 
potential to decrease sample representativeness. Absence 
of data also causes biasness in the parameter estimation. 
Thus, it is important to treat the data before undergoing 
further steps. 

After obtaining observed rainfall, minimum (Tmin.) and 
maximum temperature (Tmax.) data of the stations, the 
predictors were screened. Screening is the process of 
selecting variables that favourably includes or eliminates 
certain characteristics of the predictor-predictand 
relationship (Delsole and Shukla, 2009). Predictands, which 

No File name Predictor Name No File Name Predictor Name

1 P*mslpgl.dat Mean sea level pressure 14 P*p5zhgl.dat
500 hPa Divergence of true 

wind

2 P*p1_fgl.dat 1000 hPa Wind speed 15 P*p850gl.dat 850 hPa Geopotential

3 P*p1_ugl.dat
1000 hPa Zonal wind 

component
16 P*p8_fgl.dat 850 hPa Wind speed

4 P*p1_vgl.dat
1000 hPa Meridional wind 

component
17 P*p8_ugl.dat

850 hPa Zonal wind 

component

5 P*p1_zgl.dat
1000 hPa Relative vorticity 

of true wind
18 P*p8_vgl.dat

850 hPa Meridional wind 

component

6 P*p1thgl.dat 1000 hPa Wind direction 19 P*p8_zgl.dat
850 hPa Relative vorticity of 

true wind

7 P*p1zhgl.dat
1000 hPa Divergence of true 

wind
20 P*p8thgl.dat 850 hPa Wind direction

8 P*p500gl.dat 500 hPa Geopotential 21 P*p8zhgl.dat
850 hPa Divergence of true 

wind

9 P*p5_fgl.dat 500 hPa Wind speed 22 P*prcpgl.dat Total precipitation

10 P*p5_ugl.dat
500 hPa Zonal wind 

component
23 P*s500gl.dat 500 hPa Specific humidity

11 P*p5_vgl.dat
500 hPa Meridional wind 

component
24 P*s850gl.dat 850 hPa Specific humidity

12 P*p5_zgl.dat
500 hPa Relative vorticity of 

true wind
25 P*shumgl.dat 1000 hPa Specific humidity

13 P*p5thgl.dat 500 hPa Wind direction 26 P*tempgl.dat Air temperature at 2 m

https://climate-scenarios.canada.ca/?page=pred-canesm2
https://climate-scenarios.canada.ca/?page=pred-canesm2
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are the observed historical readings, were screened with all 
26 predictors. Predictors with significance level lower than 
0.05 and R-squared value close to 1 were chosen. The 
primary null hypothesis of multiple regression is “there is 
no relationship between the independent (X) variables and 
the dependent (Y) variables” (McDonald, 2014). Thus, 
when the significance level is lower than 0.05 (5%), the null 
hypothesis is rejected, meaning there is lower than 5% 
probability that there is no relationship between the 
independent and dependence variables. Whereas the R-
squared (R2) value defines how well the regression line fits 
into the data, ranging from 0 to 1. When the R2 is 1, it 
means 100% of the variation in dependent variable could 
be explained by the independent variable. The sets of 
predictor variables that are most appropriate were 
selected. 

After predictor screening, model calibration was 
performed using Statistical DownScaling Model (SDSM) 
ver. 4.6. The observed data of 1980 – 2005 were used as 
predictand and the predictor datasets obtained in 
predictor screening were used for model calibration. The 
1980 – 2005 period was selected due to the availability of 
station data and the past climate conditions available for 
historical simulated model from CanESM2. The projection 
period was determined based on the RCP scenarios, which 
are 2006 – 2100. The stochastic weather generator was 
used to produce the ensembled models which were 
historical model (1980-2020). The historical model was 
validated by comparing observation data (1980 – 2005) 
using the summary statistics – monthly maximum, 
minimum and average value of rainfall, Tmax. and Tmin. 

The local climate models (RCP4.5 and 8.5) were bias 
corrected using delta method. Although there is significant 
variance spatially and temporally in different bias 
correction approaches, the delta method outperforms the 
other two methods on average in minimizing the median 
absolute error between debiased simulation and empirical 
data for precipitation and temperature (Beyer, Krapp and 
Manica, 2019). Therefore, delta method was performed to 
the simulated rainfall data. Several assumptions must be 
made in this method, whereby the biases between 
simulated data and present observation remain unchanged 
over time, and the bias is specific to the location (Maraun 
and Widmann, 2018). Multiplicative bias correction for 
precipitation is more suitable rather than additive when 
using delta method (Maraun and Widmann, 2018). Thus, 
the equation for debiased precipitation used is as follows: 

( ) ( )
( )
( )

( )
( )
( )

' 0
0

0 0
obs sim

sim sim obs

sim sim

P P t
P t P t P

P P
=  =   

 

2.4. Statistical analysis 

The Pearson correlation (r), linear regression (R2), 
Cronbach’s Alpha were applied to assess the reliability of 
the local climate models. Pearson correlation analysis was 
first applied to determine the connection strength 
between two variables, where its degree of association 
could be determined by correlation coefficient “r”, also 
known as Pearson’s correlation coefficient. In other words, 

it is the measure of linear correlation strength and 
direction between two data sets. 

Pearson correlation coefficient ranges between -1 to +1, 
where +1 indicates that the independent and dependent 
variables are positively and linearly related; while -1 
indicates that they are perfectly related in positive and 
linear manner (Gogtay and Thatte, 2017). The zero-
coefficient value indicated the absence of linear 
relationship between the independent and dependent 
variable. The relationships between observation and model 
were assumed to be linear and are independent of each 
other. Hence, the correlation coefficient was set as r > 0.5 
which indicated the acceptable correlation. 

Linear regression line is represented in the form Y=a+bX, 
where X - independent variable, Y - dependent variable, b - 
slope of line and a - y-intercept. This regression measures 
the goodness of fit between two (independent and 
dependent) variables linearly. The R-squared (R2) 
coefficient ranged between 0 – 1.00. Thus, the higher the 
value of R-squared, the better the observations could be 
fitted by the regression model (Frost, 2021).  In this study. 
the R2 coefficient was set as ≥ 0.4, which indicated 
acceptable level between model and observation data 
points the acceptable level. In linear regression models, 
there assumptions were made in this study. Firstly, the 
relationship between independent variable (X) and the 
mean of dependent variable (Y) must be linear. Secondly, 
the models generated were homoscedastic, which the 
error variance was independent of predictor’s values. 
Lastly, the dependent variable was assumed to be normally 
distributed for any fixed value of independent variable.  

The Cronbach’s Alpha enabled the estimation of internal 
consistency of a specific test, in other words, the degree to 
which a group of items are closely related. It is also 
regarded as an indicator for scale reliability. The 
Cronbach’s Alpha can be calculated using the following 
formula: 

( )1
Nc

v N c
 =

+ −  
 

Where, N represents the number of items, c  is the 

covariance between elements on an average basis and v  

represents the averaged variance (UC Regents, 2021). The 
Cronbach’s Alpha was used to determine the fraction of 
variance in the set of test results. It ranged between 0.00 
to 1.00 (Brown, 2002). The    value was set as 0.6-0.7 

indicated acceptable level of reliability.  

2.5. Spatial analysis 

Spatial analysis is defined as the manipulation of existing 
available spatial data in order to elicit new information and 
meaning. It is normally done using Geographic Information 
System (GIS), which is a tool used to compute feature 
statistics and undergo geoprocessing operations, such as 
data interpolation. Spatial interpolation, which was used in 
this study, is a technique of estimating the values at other 
unknown sites by utilizing points with known values. 
Specifically, Inverse Distance Weighted (IDW) interpolation 
approach weighs the sample points so that the effect of the 
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point on the other decreases with distance from the 
specific unknown point of interest. (Yang, et al., 2015) 
stated that, in terms of efficiency in computation and 
relative errors, IDW interpolation method showed better 
performance as compared to others, such as Kriging and 
Spline interpolation methods. Thus, IDW interpolation 
method was used in this study (Figure 4). 

 

Figure 4. Inverse Distance Weighted (IDW) interpolation (Mitas 

and Mitasova, 1999) 

The observed and rainfall models were averaged in 20 
years period from 1980 to 2100. The data set were 
imported as Comma Separated Value (CSV) files for both 
RCP4.5 and RCP8.5. The study area was then traced into a 
polygon layer to be used as the mask layer. The IDW 
interpolation was done to the 20-year annual average 
rainfall intensity, and the intensities of unknown locations 
away from the stations were interpolated with the use of 
weighting coefficient.  

3. Results and discussion 

3.1. Rainfall 

3.1.1. Model validation 

Historical models (1980 to 2005) of rainfall were simulated 
using selected predictors, as shown in Error! Reference 
source not found. and validated by comparing the same 
period of observed rainfall data. Two predictors, 1000 hPa 
divergence of true wind and total precipitation, were used 
for simulation of local climate models for the stations 
except for Tsuji station. The mean and maximum value of 
both sets of data were compared and analyzed. As shown 
in Figures 5 and 6, the mean monthly rainfall shows there 
is minor difference between observed and simulated value 
for all stations. The simulated historical model consistently 
overestimated the average monthly rainfall by 20.4%. 
However, the average maximum monthly rainfall shows 
major differences between observed and historical models 
especially in the period of May – September, consistent 
underestimation is observed in all selected stations. This 
may be caused by extreme weather events, for instance, El 
Nino and La Nina, and Typhoon. Thus, the analysis of local 
climate models should include the factor of extreme 
weather occurrence which may cause the major outlier 
(Table 5). 

Table 5. The predictors used for simulation of local climate 

models 

Station Predictors 

Tsuji 1000 hPa Relative vorticity of true 
wind 

1000 hPa Divergence of true wind 

850 hPa Divergence of true wind 

Total precipitation 

500 hPa Specific humidity 

Sugihara 1000 hPa Divergence of true wind 

Total precipitation 

Sanda 1000 hPa Divergence of true wind 

Total precipitation 

Fukusaki 1000 hPa Divergence of true wind 

Total precipitation 

Nishikurisu 1000 hPa Divergence of true wind 

Total precipitation 

500 hPa Specific humidity 

Rokkousabou 1000 hPa Divergence of true wind 

Total precipitation 

Deai 1000 hPa Divergence of true wind 

Total precipitation 

 

Figure 5. Comparison of observation and historical model (1980-

2005) for average and maximum monthly rainfall in Tsuji, 

Sugihara, Sanda and Fukusaki Stations 

3.1.2. Reliability assessment of local climate models 
(rainfall) 

The reliability assessments, R-squared test, Pearson 
correlation test and Cronbach’s Alpha were applied to 
determine the reliability of simulated climate models, and 
the results are shown in Table 6. The local climate models 
based on RCP4.5 and RCP8.5 scenario met the minimum 
predefined criteria and indicated reliable in which are 
observed from Fukusaki and Nishikurisu stations that were 
shaded. Besides, other stations show R-squared, Person 
correlation and Cronbach’s Alpha that are above the 
acceptable values for RCP4.5 and RCP8.5. As stated in IPCC 
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(2021), all RCPs scenarios, except for RCP 2.6, projected 
that the warming will persist beyond 2100. Thus, local 
climate models based on RCP4.5 and RCP8.5 were 
discussed and analysed in this study because both 
scenarios represented the local climate condition.  

Additionally, this study also compared the observed and 
local climate models using probability density function 
(PDF) to verify the variations between observation and 
local climate model.  The local climate model of rainfall 
based on RCP4.5 and RCP8.5 showed similar curve and 
positions below the observed precipitation data curve for 

all rainfall stations (as Figure 7). The similar medians were 
obtained in all stations, except for the Tsuji Station (Table 
7). However, the underestimation issue was also found 
based on PDF analysis outcome.  Thus, the current local 
rainfall pattern may moderately follow RCP 4.5 and 8.5 
Scenario.  The associated climate change magnitudes and 
rates based on medium to high emission scenarios (RCP4.5, 
RCP6.5 and RCP8.5) would likely cause the high risk and 
irreversible regional changes in terms of structure, 
composition and function of ecosystems (IPCC, 2021).  

 

Table 6: Reliability assessment outcome of the rainfall stations 

Station RCPs R2 (R2 ≥ 0.4) Pearson Correlation (r ≥ 0.5) Cronbach’s Alpha (α ≥ 0.4) 

Tsuji 4.5 0.046 0.227 0.366 

8.5 0.058 0.241 0.384 

Sugihara 4.5 0.365 0.605* 0.695* 

8.5 0.358 0.599* 0.699* 

Sanda 4.5 0.338 0.581* 0.679* 

8.5 0.348 0.590 0.685* 

Rokkousabou 4.5 0.324 0.569 0.673* 

8.5 0.328 0.573* 0.675* 

Fukusaki 4.5 0.452* 0.672* 0.769* 

8.5 0.437* 0.661* 0.760* 

Nishikurisu 4.5 0.471* 0.686* 0.784* 

8.5 0.448* 0.669* 0.771* 

Deai 4.5 0.229 0.479 0.572* 

8.5 0.258 0.508* 0.384 

* Indicated the significant value 

Table 7. Median of rainfall for observed, RCP4.5 and RCP8.5 model based on PDF curves 

RCP Scenario Station 
Rainfall (mm) 

Observed RCP4.5 RCP8.5 

Tsuji 178.16 194.33 195.13 

Sugihara 165.26 165.26 165.26 

Sanda 112.63 112.63 112.63 

Fukusaki 127.79 127.79 127.79 

Nishikurisu 121.35 121.35 121.35 

Rokkousabou 105.93 105.93 105.93 

Deai 196.89 196.89 196.89 

 

 

Figure 6. Comparison of observation and historical model (1980-

2005) for average and maximum monthly rainfall in Nishikurisu, 

Rokkousabou and Deai Stations 

 

Figure 7. Probability Density Function (PDF) for observed rainfall 

and local climate models for different stations 
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3.1.3. Spatial analysis of rainfall pattern 

The observed annual rainfall of Hyogo Prefecture was 
averaged from 1980 – 1999 and 2000 – 2020; whereas the 
simulated rainfall based on RCP4.5 and RCP8.5 scenarios 
were averaged for 2021 – 2040, 2041 – 2060, 2061 – 2080, 
and 2081 – 2100. These averaged annual rainfall (1980 – 
2100) were analysed spatially using QGIS and the rainfall 
data of unknown points located within the Hyogo 
Prefecture were interpolated using IDW interpolation. 

The Figure 8 illustrates the rainfall patterns of Hyogo 
Prefecture based on 41 years data (1980 to 2020). The 
rainfall intensity in Northern region increased from 1980 to 
2020; however, the rainfall intensity in South-western and 
South-eastern region decreased in same period.  

 

Figure 8. Annual rainfall pattern in Hyogo Prefecture based on 

1980-1999 and 2000-2020 period 

As shown in Figure 9, the local climate model of rainfall 
(2021 to 2100) based on RCP4.5 scenario for the Northern 
region is projected to have increase significantly. The 
Southern part of the study area is predicted to experience 
increase in rainfall in the period of 2021 – 2040 based on 
RCP4.5 scenario. There is minor part of Southern region is 
projected to experience significant fluctuation of rainfall 
intensity for 2021 – 2100 period. 

 

Figure 9. Simulated annual rainfall pattern in Hyogo Prefecture 

based on RCP4.5 (2021-2040, 2041-2060, 2061-2080 and 2081-

2100) 

Based on the local climate model RCP8.5 scenario (Figure 
10), it indicates that greater increase in rainfall intensity as 
compared to RCP4.5 scenario especially the Northern 
region of the Hyogo Prefecture is projected to have 
significant increase in second quarter of 21st century (2050-
2100). Besides, the Southwestern and Southeastern region 
of Hyogo Prefecture might experience an increase of 
rainfall intensity in the 2021- 2040 period, which is 

projected having slightly fluctuations toward to end of this 
century.  

 

Figure 10.  Simulated annual rainfall pattern in Hyogo Prefecture 

based on RCP8.5 in 2021-2040, 2041-2060, 2061-2080 and 2081-

2100 

Table 8. Predictors used for simulation of maximum and minimum 

temperature climate models 

Stations Predictors 

Toyooka Mean sea level pressure 

500 hPa Geopotential 

500 hPa Wind speed 

500 hPa Zonal wind component 

500 hPa Specific humidity 

850 hPa Specific humidity 

Air temperature at 2 m 

Sanda Mean sea level pressure 

500 hPa Geopotential 

500 hPa Wind speed 

500 hPa Zonal wind component 

500 hPa Specific humidity 

850 hPa Specific humidity 

Air temperature at 2 m 

Fukusaki Mean sea level pressure 

500 hPa Geopotential 

500 hPa Wind speed 

500 hPa Zonal wind component 

500 hPa Specific humidity 

850 hPa Specific humidity 

Air temperature at 2 m 

Kamigoori Mean sea level pressure 

500 hPa Geopotential 

500 hPa Wind speed 

500 hPa Zonal wind component 

500 hPa Specific humidity 

850 hPa Specific humidity 

Air temperature at 2 m 

3.2. Temperature 

3.2.1. Model validation 

The historical models (1980 – 2005) of maximum (Tmax.) 
and minimum temperature (Tmin.) were simulated using 
the selected predictors, which are listed in Table 8. The 
similar predictors  were loaded for all stations as mean sea 
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level pressure, the geopotential, wind speed, zonal wind 
component, specific humidity at 500 hPa pressure level, 
specific humidity at 850 hPa pressure level and the air 
temperature at 2 m. The historical models were then 
validated against the observed Tmax. and Tmin.. The 
means of both simulated model and observation were 
compared and analysed in this study. 

 

 

Figure 11. Comparison of observation and historical model 

(1980-2005) for maximum (Tmax.) and minimum temperature 

(Tmin.) in Fukusaki, Kamigoori, Sanda and Toyooka Stations. 

Figure 11 shows the average of Tmax. and Tmin.. Similar 
mean of Tmax. are obtained for observation and historical 
models throughout the year. For Tmin., there are slightly 
underestimation for all stations in the October based on 
1980-2005 period.  

3.2.2. Reliability assessment of local climate models 
(temperature) 

Based on the reliability assessment results (Tables 9 and 
10), all stations that meet the minimum criteria and show 
strong reliability for both scenarios, with high R-squared, 
Pearson correlation and Cronbach’s Alpha coefficient. 
Thus, both scenarios (RCP4.5 and RCP8.5) are discussed 
and analysed in this study. The average Tmax. and Tmin. in 
Toyooka station were illustrated in Figures 12 and 13. The 
underestimation issue is observed for Tmax. based on 
observed, RCP4.5 and RCP8.5 local climate model, which 
the highest deviation recorded as 1.1 °C.  The average 
annual Tmin. in Toyooka for observed and local climate 
models (RCP4.5 and RCP8.5). Similarly, underestimation 
issue was found which highest deviation of 1.0 °C was 
observed in this study. Based on the Figures 12 and 13, 
increasing trends were found in the models (RCP4.5 and 
8.5), however from 2066 onwards, the local climate model 
simulated based on RCP8.5 shows a higher Tmin. (0.4 – 1.0 
oC) compared to RCP4.5.   

 

Figure 12. The observed, local climate models based on RCP4.5 

and 8.5 for average maximum temperature (Tmax.) observed in 

Toyooka station (2006-2100) 

 

Figure 13. The observed, local climate models based on RCP4.5 

and 8.5 for average minimum temperature (Tmin.) in Toyooka 

station (2006-2100) 

The average Tmax. and Tmin. for Sanda (2006 - 2100) were 
determined as shown in Figures 14 and 15. The observed 
Tmax. recorded in Sanda station (2006 – 2020) ranges from 
18.7 °C to 20.6 °C; whereas the local climate models 
simulated based on RCP4.5 and RCP8.5 range from 18.8 °C 
to 19.9 °C and 18.9 °C and 20.5 °C respectively. By 
comparing with the observed Tmax. recorded in Sanda 
station (2006 – 2020), the underestimation issue was 
identified with the highest deviation recorded as 1.5 °C.  

In contrast, overestimate issue was identified (as Figure 15) 
in local climate models (Tmin.) with the highest deviation 
recorded as 0.9 °C. The observed Tmin. (2006 – 2020) 
ranges from 8.5 °C to 9.6 °C, where the local climate models 
simulated based on RCP4.5 and RCP8.5 range from 9.2 °C 
to 10.2 °C and from 9.3 °C to 11.0 °C respectively. However, 
the RCP8.5 model has shown the higher average Tmin. as 
compared to RCP4.5 model. The increase trends for Tmax. 
and Tmin. were observed in local climate model based on 
RCP4.5 and RCP8.5. Obviously, the local climate model 
(RCP8.5) for Tmax. show a significant increase in the third 
quarter of the 21st century. 

Moving forward to Southern region of Hyogo Prefecture, 
the average Tmax. and Tmin. in Fukusaki were determined 
in this study. Based on Figure 16, the underestimation issue 
found in the simulated models based on RCP4.5 and RCP8.5 
scenario with a largest deviation of 1.5 °C. The ran range of 
observed average Tmax. recorded as 20.3 °C to 21.5 °C; 
whereas the local climate model based on RCP4.5 and 
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RCP8.5 scenario were simulated as 19.8 °C to 20.6 °C and 
19.8 °C to 21.3 °C respectively.  Increase trends were also 
observed in the local climate models based on RCP4.5 and 
RCP8.5, however the RCP8.5 model shows the significant 
increase starting from 2058 onwards. 

The simulated climate model (Tmin.) based on RCP4.5 and 
RCP8.5 scenario show slightly difference compared to the 
observed Tmin. (2006 to 2020) (Figure 17). The observed 
Tmin. (2006 – 2020) in Fukusaki station recorded the 
average Tmin. ranges from 10.2 °C to 11.3 °C; whereas the 
range of RCP4.5 and 8.5 scenario local model range from 
10.4 °C to 11.3 °C and 10.4 °C to 12.0 °C. Nevertheless, the 
increase trend is also identified in the local climate model 
based on RCP4.5 and 8.5 scenario, however the Tmin. 
based on RCP8.5 scenario shows a significant increase 
starting from 2066 onwards.  

 

Figure 14. The observed, local climate models based on RCP4.5 

and 8.5 for average maximum temperature (Tmax.) in Sanda 

Station (2006-2100) 

 

Figure 15. The observed, local climate models based on RCP4.5 

and 8.5 for average minimum temperature (Tmin.) in Sanda 

Station (2006-2100) 

Similar trend was found in South-eastern region (Kamigoori 
station) as shown in Figures 18 and 19. Based on the 
results, the range of observed Tmax. Starting from 19.9 °C 
to 21.0 °C. The local climate models based on RCP4.5 and 
8.5 scenario show the Tmax. range from 19.8 °C to 20.7 °C, 
and 19.8°C - 21.3 °C respectively. The uptrend is simulated 
in the RCP 8.5 scenario after 2066.  Similar simulation was 
recorded for Tmin. (Figure 19). This is due to higher 
emission scenario with GHGs reduction policy are not 
available in most of the countries 
after 2050.   

 

Figure 16. The observed, local climate models based on RCP4.5 

and 8.5 for average maximum temperature (Tmax.) in Fukusaki 

Station (2006-2100) 

 

Figure 17. The observed, local climate models based on RCP4.5 

and 8.5 for average annual minimum temperature (Tmin.) in 

Fukusaki Station (2006-2100) 

 

Figure 18. The observed, local climate models based on RCP4.5 

and 8.5 for average maximum temperature (Tmax.) in Kamigoori 

Station (2006-2100) 

 

Figure 19. The observed, local climate models based on RCP4.5 

and 8.5 for average annual minimum temperature of Kamigoori 

Station (2006-2100) 
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Table 9. Reliability assessment of maximum temperature models 

Reliability test RCP  R2 (R2 ≥ 0.4) Pearson Correlation  (r ≥ 0.6) Cronbach’s Alpha (α ≥ 0.4) 

Toyooka (Northern) 4.5 0.965* 0.982* 0.991* 

8.5 0.967* 0.983* 0.992* 

Sanda(South-western) 4.5 0.971* 0.985* 0.993* 

8.5 0.972* 0.986* 0.993* 

Fukusaki (Southern) 4.5 0.970* 0.985* 0.993* 

8.5 0.973* 0.986* 0.994* 

Kamigoori (South-

eastern) 

4.5 0.968* 0.984* 0.993* 

8.5 0.971* 0.985* 0.994* 

*indicates strong reliability. 

Table 10. Reliability assessment of minimum temperature models 

Reliability test RCP R2 (R2 ≥ 0.4) Pearson Correlation (r ≥ 0.6) Cronbach’s Alpha (α ≥ 0.4) 

Toyooka (Northern) 4.5 0.973* 0.986* 0.993* 

8.5 0.973* 0.986* 0.993* 

Sanda (South-western) 4.5 0.972* 0.986* 0.993* 

8.5 0.972* 0.986* 0.993* 

Fukusaki (Southern) 4.5 0.974* 0.987* 0.992* 

8.5 0.976* 0.976* 0.993* 

Kamigoori (South-eastern) 4.5 0.973* 0.987* 0.992* 

8.5 0.974* 0.987* 0.993* 

*indicates strong reliability. 

 

There is a critical point which is the underestimation issues 
occur frequently in the selected stations. It might be due to 
the inability of SDSM to estimate extreme events which 
might result in lower temperature. Previous research has 
indicated that downscaling precipitation using the SDSM 
may not perform well since it may underestimate or 
exaggerate by omitting some extreme precipitation 
occurrences (Akhter, Shamseldin and Melville, 2019; Chin, 
Tan and Akihiko, 2021). Increasing trends are observed in 
all of the stations, where the increase of maximum values 
range between 0.3 °C to 1.3 °C.  Based on the result, the 
increasing trends found in Tmax. and Tmin. model starting 
2066 onwards for RCP8.5 scenario which is tallied in 
accordance to IPCC Sixth Assessment Report (AR6). This is 
due to higher emission scenario with GHGs reduction policy 
are not available in most of the countries after 2050.  
However, interested parties and government agencies 
from Japan should take the consideration that 
underestimation issue occurs in the simulated local climate 
models for temperature.  

4. Conclusion 

Local climate models based on RCP4.5 and RCP8.5 
scenarios are successfully developed, and the reliability of 
models were assessed using linear regression, Pearson 
correlation and Cronbach alpha. Moderate relationships 
were obtained from the reliability assessments, where 
both local climate models simulated based on RCP4.5 and 
RCP8.5 scenarios showed similar valid and reliable results. 
Underestimation issues were found in all stations during 
Autumn seasons, which might be due to the failure of 
SDSM to project extreme rainfall intensity. 

The simulated rainfall pattern in different regions of Hyogo 
Prefecture shows there is increased rainfall from 2021 – 

2100 based on both RCP scenarios especially the local 
climate model for northern region of Hyogo shows 
significant increase of rainfall intensity. Besides, the 
southern region is expected to experience increase in 
rainfall (2021 – 2040), but the rainfall pattern is estimated 
to have slight fluctuations from 2041 – 2100. Both regions 
show different trends as they are in different climatic 
regions. However, local climate models based on RCP4.5 
showed less significant increase in overall as compared to 
RCP8.5 scenario.  Strong relationships were found between 
observed and simulated maximum and minimum 
temperature for RCP4.5 and RCP8.5 scenarios. Steady 
increase of average maximum and minimum temperature 
was observed from the simulated local climate models 
within the range of 0.3 °C to 1.3 °C. The range falls between 
the projected change in the average surface temperature 
by IPCC Sixth Assessment Report (AR6).  

Locally, we suggested that relevant government agencies 
and interested parties should take initiative to develop the 
disaster risk reduction plan with integration of climate 
uncertainty.  Besides, measures to reduce in greenhouse 
gas emissions such as afforestation and building design to 
reduce heat island effect shall be taken to stabilize the 
surface temperatures. However, continual climate 
modelling and improvement are suggested to monitor and 
project the changes in rainfall intensity and surface 
temperature. 
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