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Abstract 

For decades, climate models have been used to 
understand the present and historical climates, especially 
global climate models (GCMs). They are used to 
understand the interaction between climate system 
processes and forecast future climates. However, the 
issue of low resolution and accuracy often lead to 
inadequacy in capturing the variations in climate variables 
related to impact assessment. In order to capture the 
local climate changes in Hyogo Prefecture of Western 
Japan, a local climate modelling based on Second 
Generation Canadian Earth System Model (CanESM2) was 
applied using the statistical downscaling technique. 
Representative Concentration Pathway (RCP) 4.5 and 8.5 
scenario were used in generating future climate models. 
The reliability of models was tested with linear regression, 
Pearson correlation, and Cronbach Alpha. Moderate 
relationship between rainfall data and both RCP scenarios 
was found in all chosen stations. Spatial analysis outcome 
showed that there is a possibility of increase in annual 
rainfall in Hyogo prefecture, where the increase is 
significant in Northern region. There is a possibility of 
increase in maximum and minimum temperature in four 
selected stations due to the increase of greenhouse gas 
emissions. 

Keywords: CanESM2, statistical downscaled, local climate 
model, Hyogo Prefecture, Japan 

1. Introduction 

Climate change can be seen from the rise in global annual 
temperature and the increase in extreme event occurring 
frequency worldwide throughout the years. The global 
averaged temperature in 2020 was reported to be 1.02 ℃ 
higher than the baseline period of the year 1951 – 1980 
and tied with 2016 as the hottest year ever recorded 
(NASA, 2021). According to Pidcock and McSweeney 
(2021), 79% of extreme weather event cases were found 
to have their likelihood or severity altered due to human-
caused climate change, where 70% were made more likely 
or severe, and 9% were made less likely or severe. As the 
increased severity of extreme weather events caused by 
human actions is higher in proportion, more focus should 
be given to the human activities that are more 
controllable compared to natural causes. 
The main factor causing climate change is the greenhouse 
effect, where greenhouse gas (GHG) traps solar heat and 
prevents it from escaping into the space, thus leading to 
global warming. There are two types of greenhouse gas 
emission sources, which are natural processes and 
anthropogenic activities. However, climate change due to 
human activities has become the most serious of all 
environmental concerns (Mikhaylov et al., 2020). Human 
activities such as deforestation and burning fossil fuels for 
electric generation emit carbon dioxide, leading to global 
warming and climate change. 

The climate model could be understood as a more 
comprehensive weather model. It predicts over an 
extended period of time and forecasts how conditions in a 
region will alter over the following decades. Climate 
modelling is used in understanding the future trend of 
climate systems, and it allows scientists to test 
hypotheses and predict future climates. Also, model 
output helps scientists comprehend how human activity 
influences Earth’s climate. General climate models (GCMs) 
are sophisticated mathematical descriptions of key 
components of climate systems, such as atmosphere, 
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ocean, land surface and sea ice, and the interactions 
between them. However, the resolution and accuracy of 
GCMs, which are low, are often inadequate to record the 
climate variable variations, especially in impact 
assessments. Raw data from GCMs is difficult to be 
applied at local scales without downscaling due to its 
coarse resolution. Downscaling allows identification and 
analysis of extreme events, which are significant 
components of urban climate study (Domínguez et al., 
2013). Regional climate models (RCMs) are the products 

of downscaling, which have improved spatial and 
temporal resolution of the parent global models. Besides, 
lack of scientific studies was conducted to assess the 
performance of RCMs in Hyogo Prefecture, Japan based 
on two potential emission scenarios - Representative 
Concentration Pathways (RCPs) 4.5 and 8.5. Hence, the 
findings of this study will benefit society as future climate 
conditions are able to be predicted through the statistical 
downscaling method. 

 

Table 1. Population growth of selected cities and towns in 1995 – 2020  

City/Town Land Area (km2) Growth Rate (%) 1995-2020* Population Density 2020* (/km²) 

Toyooka City 697.55 -17.41 111.13 

Taka Town 185.19 -24.20 104.13 

Sanda City 210.32 13.55 519.80 

Kobe City 557.01 7.25 2741.46 

Tatsuno City 210.87 -10.88 352.61 

Yabu City 422.91 -29.25 52.34 

Fukusaki Town 45.79 -2.41 423.15 

Kamigoori Town 150.26 -26.26 92.48 

Total (Hyogo) 8,400.94 - - 

*Growth rate and population density in 2020 were calculated from the obtained data. 

Table 2. Selected rainfall stations during 1980 – 2020 

City/Town Station name Latitude Longitude Period 

Toyooka City Tsuji 35.5194 N 134.7528 E 1980 - 2020 

Taka Town Sugihara 35.1375 N 134.9214 E 1980 - 2020 

Sanda City Sanda 34.8950 N 135.2117 E 1980 - 2020 

Kobe City Rokkousabou 34.7158 N 135.2650 E 1980 - 2020 

Fukusaki Town Fukusaki 34.9500 N 134.7483 E 1980 - 2020 

Tatsuno City Nishikurisu 34.9567 N 134.4658 E 1980 - 2020 

Yabu City Deai 35.3636 N 134.5947 E 1980 - 2020 

 

2. Materials and methods 

2.1. Study area 

Hyogo Prefecture is located in Kansai Region in Japan, 
having Kobe as the capital. There are 29 cities (shi) and 12 
towns (cho) in Hyogo prefecture. It has a total land area of 
8,400.95 km2 and a total population of 5,466,000 as of 
2019. Kobe is the largest city located in Hyogo Prefecture 
and has Port of Kobe as one of the chief ports in Japan. 
Port of Kobe was established in the first year of the Meiji 
era, 1868, and eventually became an international trading 
hub to Asia countries.  

The populations in several cities and towns in Hyogo 
Prefecture were obtained from Hyogo Prefectural 
Government and Statistics Bureau of Japan 
(https://web.pref.hyogo.lg.jp/ and www.stat.go.jp), and 
the population growth was then calculated. It could be 
observed from Table 1 that the population in cities/towns, 
except Sanda City and Kobe City, decreased over 25 years, 
with the highest negative growth rate value of -24.20%. 
Kobe City had the highest population density in 2020, 
which was 2741.46 /km2.  

2.2. Data collection 

Seven rainfall stations in Hyogo Prefecture were selected 
which covered different regions of Hyogo Prefecture. 

Total 41 years of daily rainfall (1980 – 2020) were 
downloaded from Water Information System and Japan 
Meteorological Agency online portal ( 
http://www1.river.go.jp/ and https://www.jma.go.jp/jma/ 
indexe.html ). The detail and the location of stations were 
shown in Figure 1 and Table 2. 

To develop temperature local climate model, the daily 
minimum temperature (Tmin) and maximum temperature 
(Tmax.)  data from selected four stations (1980- 2020) were 
used in this study, which covered the northern, south-
eastern, southern and south-western regions of Hyogo 
Prefectures. The stations were shown in Table 3 and 
Figure 2. The data set were used for model calibration and 
validation using Statistically Downscaling Model (SDSM) 
ver. 4.6. Theoretically, 30-year observation data was 
suggested to calibrate the model, while total 41 years 
data (1980-2020) were used in this study to obtain higher 
accuracy in calibration. Then, the reliability analysis period 
of observed daily rainfall, Tmin and Tmax. which was set as 
2006 – 2020, from the same stations were obtained and 
used to determine the suitable local climate models.  

The second-generation Canadian Earth System Model 
(CanESM2) was used to develop the local climate models. 
It was developed by Canadian Centre for Climate 
Modelling and Analysis (CCCma) and recognised as fourth 
generation of CGCM, which contributes to the IPCC AR5 

https://web.pref.hyogo.lg.jp/
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and takes part in CMIP5. The main components of Earth 
System Model include an atmospheric, an oceanic, a sea-
ice and two land surface models, namely Atmospheric 
General Circulation Model (AGCM4), Ocean GCM4, 
CanSim1, CTEM1 and Canadian Land Surface Scheme 
(CLASS2.7). The GCM CanESM2 was downloaded from 
online portal (https://climate-
scenarios.canada.ca/?page=pred-canesm2). The 
downloaded CanESM2 dataset consisted the predictors 
(1961_2005), historical model (1961 – 2005) and climate 
projection period (2006 – 2100) based on RCP4.5 and 8.5 
scenario. Hyogo Prefecture is located at grid cell 
BOX_49X_45Y defined by CanESM2 as shown in Figure 3. 
The 26 predictors and their codes are listed in Table 4. The 
RCP4.5 and RCP8.5 were utilised in this study to generate 
future scenarios of anthropogenic forcing under 
intermediate and high emission levels. Besides, the 
rainfall intensity of historical flood events that occurred in 
Toyooka City, Kobe City, Taka Town and Tatsuno City were 
collected. The data were arranged and plotted accordingly 
with the moving average. 

 

Figure 1. Selected rainfall stations plotted in map. 

Table 3. Selected stations for minimum temperature and 

maximum temperature for year 1980 – 2020  

Station name Latitude Longitude Time Period 

Toyooka 35.5350 N 134.8217 E 1980 - 2020 

Sanda 34.8950 N 135.2117 E 1980 - 2020 

Fukusaki 34.9500 N 134.7483 E 1980 - 2020 

Kamigoori 34.8583 N 134.3733 E 1980 - 2020 

 

Figure 2. Selected stations for minimum and maximum 

temperatures plotted in map 

 

Figure 3. Grid cell (box) covering Hyogo Prefecture (Government 

of Canada, n.d.) 

Table 4. The 26 predictors from NCEP 

 

2.3. Downscaling procedure 

Quality control was first performed to identify the missing 
data, where missing daily precipitation amount, minimum 
and maximum temperature data were treated by getting 
the data from nearest station available. It is important to 
undergo quality control step, as missing data leads to 
reduction in statistical power, which means it will 
decrease the probability that the null hypothesis of the 
test will be rejected when it is false (Kang, 2013). Besides, 
it has the potential to decrease sample 
representativeness. Absence of data also causes biasness 
in the parameter estimation. Thus, it is important to treat 
the data before undergoing further steps. 

After obtaining observed rainfall, minimum (Tmin.) and 
maximum temperature (Tmax.) data of the stations, the 
predictors were screened. Screening is the process of 
selecting variables that favourably includes or eliminates 
certain characteristics of the predictor-predictand 
relationship (Delsole and Shukla, 2009). Predictands, 

No File name Predictor Name No File Name Predictor Name

1 P*mslpgl.dat Mean sea level pressure 14 P*p5zhgl.dat
500 hPa Divergence of true 

wind

2 P*p1_fgl.dat 1000 hPa Wind speed 15 P*p850gl.dat 850 hPa Geopotential

3 P*p1_ugl.dat
1000 hPa Zonal wind 

component
16 P*p8_fgl.dat 850 hPa Wind speed

4 P*p1_vgl.dat
1000 hPa Meridional wind 

component
17 P*p8_ugl.dat

850 hPa Zonal wind 

component

5 P*p1_zgl.dat
1000 hPa Relative vorticity 

of true wind
18 P*p8_vgl.dat

850 hPa Meridional wind 

component

6 P*p1thgl.dat 1000 hPa Wind direction 19 P*p8_zgl.dat
850 hPa Relative vorticity of 

true wind

7 P*p1zhgl.dat
1000 hPa Divergence of true 

wind
20 P*p8thgl.dat 850 hPa Wind direction

8 P*p500gl.dat 500 hPa Geopotential 21 P*p8zhgl.dat
850 hPa Divergence of true 

wind

9 P*p5_fgl.dat 500 hPa Wind speed 22 P*prcpgl.dat Total precipitation

10 P*p5_ugl.dat
500 hPa Zonal wind 

component
23 P*s500gl.dat 500 hPa Specific humidity

11 P*p5_vgl.dat
500 hPa Meridional wind 

component
24 P*s850gl.dat 850 hPa Specific humidity

12 P*p5_zgl.dat
500 hPa Relative vorticity of 

true wind
25 P*shumgl.dat 1000 hPa Specific humidity

13 P*p5thgl.dat 500 hPa Wind direction 26 P*tempgl.dat Air temperature at 2 m

https://climate-scenarios.canada.ca/?page=pred-canesm2
https://climate-scenarios.canada.ca/?page=pred-canesm2
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which are the observed historical readings, were screened 
with all 26 predictors. Predictors with significance level 
lower than 0.05 and R-squared value close to 1 were 
chosen. The primary null hypothesis of multiple regression 
is “there is no relationship between the independent (X) 
variables and the dependent (Y) variables” (McDonald, 
2014). Thus, when the significance level is lower than 0.05 
(5%), the null hypothesis is rejected, meaning there is 
lower than 5% probability that there is no relationship 
between the independent and dependence variables. 
Whereas the R-squared (R2) value defines how well the 
regression line fits into the data, ranging from 0 to 1. 
When the R2 is 1, it means 100% of the variation in 
dependent variable could be explained by the 
independent variable. The sets of predictor variables that 
are most appropriate were selected. 

After predictor screening, model calibration was 
performed using Statistical DownScaling Model (SDSM) 
ver. 4.6. The observed data of 1980 – 2005 were used as 
predictand and the predictor datasets obtained in 
predictor screening were used for model calibration. The 
1980 – 2005 period was selected due to the availability of 
station data and the past climate conditions available for 
historical simulated model from CanESM2. The projection 
period was determined based on the RCP scenarios, which 
are 2006 – 2100. The stochastic weather generator was 
used to produce the ensembled models which were 
historical model (1980-2020). The historical model was 
validated by comparing observation data (1980 – 2005) 
using the summary statistics – monthly maximum, 
minimum and average value of rainfall, Tmax. and Tmin. 

The local climate models (RCP4.5 and 8.5) were bias 
corrected using delta method. Although there is 
significant variance spatially and temporally in different 
bias correction approaches, the delta method 
outperforms the other two methods on average in 
minimizing the median absolute error between debiased 
simulation and empirical data for precipitation and 
temperature (Beyer, Krapp and Manica, 2019). Therefore, 
delta method was performed to the simulated rainfall 
data. Several assumptions must be made in this method, 
whereby the biases between simulated data and present 
observation remain unchanged over time, and the bias is 
specific to the location (Maraun and Widmann, 2018). 
Multiplicative bias correction for precipitation is more 
suitable rather than additive when using delta method 
(Maraun and Widmann, 2018). Thus, the equation for 
debiased precipitation used is as follows: 
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2.4. Statistical analysis 

The Pearson correlation (r), linear regression (R2), 
Cronbach’s Alpha were applied to assess the reliability of 
the local climate models. Pearson correlation analysis was 
first applied to determine the connection strength 
between two variables, where its degree of association 
could be determined by correlation coefficient “r”, also 
known as Pearson’s correlation coefficient. In other 

words, it is the measure of linear correlation strength and 
direction between two data sets. 

Pearson correlation coefficient ranges between -1 to +1, 
where +1 indicates that the independent and dependent 
variables are positively and linearly related; while -1 
indicates that they are perfectly related in positive and 
linear manner (Gogtay and Thatte, 2017). The zero-
coefficient value indicated the absence of linear 
relationship between the independent and dependent 
variable. The relationships between observation and 
model were assumed to be linear and are independent of 
each other. Hence, the correlation coefficient was set as r 
> 0.5 which indicated the acceptable correlation. 

Linear regression line is represented in the form Y=a+bX, 
where X - independent variable, Y - dependent variable, b 
- slope of line and a - y-intercept. This regression 
measures the goodness of fit between two (independent 
and dependent) variables linearly. The R-squared (R2) 
coefficient ranged between 0 – 1.00. Thus, the higher the 
value of R-squared, the better the observations could be 
fitted by the regression model (Frost, 2021).  In this study. 
the R2 coefficient was set as ≥ 0.4, which indicated 
acceptable level between model and observation data 
points the acceptable level. In linear regression models, 
there assumptions were made in this study. Firstly, the 
relationship between independent variable (X) and the 
mean of dependent variable (Y) must be linear. Secondly, 
the models generated were homoscedastic, which the 
error variance was independent of predictor’s values. 
Lastly, the dependent variable was assumed to be 
normally distributed for any fixed value of independent 
variable.  

The Cronbach’s Alpha enabled the estimation of internal 
consistency of a specific test, in other words, the degree 
to which a group of items are closely related. It is also 
regarded as an indicator for scale reliability. The 
Cronbach’s Alpha can be calculated using the following 
formula: 

 1

Nc

v N c
 

   
 

Where, N represents the number of items, c  is the 
covariance between elements on an average basis and v  

represents the averaged variance (UC Regents, 2021). The 
Cronbach’s Alpha was used to determine the fraction of 
variance in the set of test results. It ranged between 0.00 
to 1.00 (Brown, 2002). The    value was set as 0.6-0.7 
indicated acceptable level of reliability.  

2.5. Spatial analysis 

Spatial analysis is defined as the manipulation of existing 
available spatial data in order to elicit new information 
and meaning. It is normally done using Geographic 
Information System (GIS), which is a tool used to compute 
feature statistics and undergo geoprocessing operations, 
such as data interpolation. Spatial interpolation, which 
was used in this study, is a technique of estimating the 
values at other unknown sites by utilizing points with 
known values. Specifically, Inverse Distance Weighted 
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(IDW) interpolation approach weighs the sample points so 
that the effect of the point on the other decreases with 
distance from the specific unknown point of interest. 
(Yang, et al., 2015) stated that, in terms of efficiency in 
computation and relative errors, IDW interpolation 
method showed better performance as compared to 
others, such as Kriging and Spline interpolation methods. 
Thus, IDW interpolation method was used in this study 
(Figure 4). 

 

Figure 4. Inverse Distance Weighted (IDW) interpolation (Mitas 

and Mitasova, 1999) 

The observed and rainfall models were averaged in 20 
years period from 1980 to 2100. The data set were 
imported as Comma Separated Value (CSV) files for both 
RCP4.5 and RCP8.5. The study area was then traced into a 
polygon layer to be used as the mask layer. The IDW 
interpolation was done to the 20-year annual average 
rainfall intensity, and the intensities of unknown locations 
away from the stations were interpolated with the use of 
weighting coefficient.  

3. Results and discussion 

3.1. Rainfall 

3.1.1. Model validation 

Historical models (1980 to 2005) of rainfall were 
simulated using selected predictors, as shown in Error! 
Reference source not found. and validated by comparing 
the same period of observed rainfall data. Two predictors, 
1000 hPa divergence of true wind and total precipitation, 
were used for simulation of local climate models for the 
stations except for Tsuji station. The mean and maximum 
value of both sets of data were compared and analyzed. 
As shown in Figures 5 and 6, the mean monthly rainfall 
shows there is minor difference between observed and 
simulated value for all stations. The simulated historical 
model consistently overestimated the average monthly 
rainfall by 20.4%. However, the average maximum 
monthly rainfall shows major differences between 
observed and historical models especially in the period of 
May – September, consistent underestimation is observed 
in all selected stations. This may be caused by extreme 
weather events, for instance, El Nino and La Nina, and 
Typhoon. Thus, the analysis of local climate models should 

include the factor of extreme weather occurrence which 
may cause the major outlier (Table 5). 

Table 5. The predictors used for simulation of local climate 

models 

Station Predictors 

Tsuji 1000 hPa Relative vorticity of true wind 

1000 hPa Divergence of true wind 

850 hPa Divergence of true wind 

Total precipitation 

500 hPa Specific humidity 

Sugihara 1000 hPa Divergence of true wind 

Total precipitation 

Sanda 1000 hPa Divergence of true wind 

Total precipitation 

Fukusaki 1000 hPa Divergence of true wind 

Total precipitation 

Nishikurisu 1000 hPa Divergence of true wind 

Total precipitation 

500 hPa Specific humidity 

Rokkousabou 1000 hPa Divergence of true wind 

Total precipitation 

Deai 1000 hPa Divergence of true wind 

Total precipitation 

 

Figure 5. Comparison of observation and historical model (1980-

2005) for average and maximum monthly rainfall in Tsuji, 

Sugihara, Sanda and Fukusaki Stations 

3.1.2. Reliability assessment of local climate models 
(rainfall) 

The reliability assessments, R-squared test, Pearson 
correlation test and Cronbach’s Alpha were applied to 
determine the reliability of simulated climate models, and 
the results are shown in Table 6. The local climate models 
based on RCP4.5 and RCP8.5 scenario met the minimum 
predefined criteria and indicated reliable in which are 
observed from Fukusaki and Nishikurisu stations that 
were shaded. Besides, other stations show R-squared, 
Person correlation and Cronbach’s Alpha that are above 
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the acceptable values for RCP4.5 and RCP8.5. As stated in 
IPCC (2021), all RCPs scenarios, except for RCP 2.6, 
projected that the warming will persist beyond 2100. 
Thus, local climate models based on RCP4.5 and RCP8.5 
were discussed and analysed in this study because both 
scenarios represented the local climate condition.  

Additionally, this study also compared the observed and 
local climate models using probability density function 
(PDF) to verify the variations between observation and 
local climate model.  The local climate model of rainfall 
based on RCP4.5 and RCP8.5 showed similar curve and 
positions below the observed precipitation data curve for 

all rainfall stations (as Figure 7). The similar medians were 
obtained in all stations, except for the Tsuji Station (Table 
7). However, the underestimation issue was also found 
based on PDF analysis outcome.  Thus, the current local 
rainfall pattern may moderately follow RCP 4.5 and 8.5 
Scenario.  The associated climate change magnitudes and 
rates based on medium to high emission scenarios 
(RCP4.5, RCP6.5 and RCP8.5) would likely cause the high 
risk and irreversible regional changes in terms of 
structure, composition and function of ecosystems (IPCC, 
2021).  

 

Table 6: Reliability assessment outcome of the rainfall stations 

Station RCPs R2 (R2 ≥ 0.4) Pearson Correlation (r ≥ 0.5) Cronbach’s Alpha (α ≥ 0.4) 

Tsuji 4.5 0.046 0.227 0.366 

8.5 0.058 0.241 0.384 

Sugihara 4.5 0.365 0.605* 0.695* 

8.5 0.358 0.599* 0.699* 

Sanda 4.5 0.338 0.581* 0.679* 

8.5 0.348 0.590 0.685* 

Rokkousabou 4.5 0.324 0.569 0.673* 

8.5 0.328 0.573* 0.675* 

Fukusaki 4.5 0.452* 0.672* 0.769* 

8.5 0.437* 0.661* 0.760* 

Nishikurisu 4.5 0.471* 0.686* 0.784* 

8.5 0.448* 0.669* 0.771* 

Deai 4.5 0.229 0.479 0.572* 

8.5 0.258 0.508* 0.384 

* Indicated the significant value 

Table 7. Median of rainfall for observed, RCP4.5 and RCP8.5 model based on PDF curves 

RCP Scenario Station 
Rainfall (mm) 

Observed RCP4.5 RCP8.5 

Tsuji 178.16 194.33 195.13 

Sugihara 165.26 165.26 165.26 

Sanda 112.63 112.63 112.63 

Fukusaki 127.79 127.79 127.79 

Nishikurisu 121.35 121.35 121.35 

Rokkousabou 105.93 105.93 105.93 

Deai 196.89 196.89 196.89 

 

 

Figure 6. Comparison of observation and historical model (1980-

2005) for average and maximum monthly rainfall in Nishikurisu, 

Rokkousabou and Deai Stations 

 

Figure 7. Probability Density Function (PDF) for observed rainfall 

and local climate models for different stations 
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3.1.3. Spatial analysis of rainfall pattern 

The observed annual rainfall of Hyogo Prefecture was 
averaged from 1980 – 1999 and 2000 – 2020; whereas the 
simulated rainfall based on RCP4.5 and RCP8.5 scenarios 
were averaged for 2021 – 2040, 2041 – 2060, 2061 – 
2080, and 2081 – 2100. These averaged annual rainfall 
(1980 – 2100) were analysed spatially using QGIS and the 
rainfall data of unknown points located within the Hyogo 
Prefecture were interpolated using IDW interpolation. 

The Figure 8 illustrates the rainfall patterns of Hyogo 
Prefecture based on 41 years data (1980 to 2020). The 
rainfall intensity in Northern region increased from 1980 
to 2020; however, the rainfall intensity in South-western 
and South-eastern region decreased in same period.  

 

Figure 8. Annual rainfall pattern in Hyogo Prefecture based on 

1980-1999 and 2000-2020 period 

As shown in Figure 9, the local climate model of rainfall 
(2021 to 2100) based on RCP4.5 scenario for the Northern 
region is projected to have increase significantly. The 
Southern part of the study area is predicted to experience 
increase in rainfall in the period of 2021 – 2040 based on 
RCP4.5 scenario. There is minor part of Southern region is 
projected to experience significant fluctuation of rainfall 
intensity for 2021 – 2100 period. 

 

Figure 9. Simulated annual rainfall pattern in Hyogo Prefecture 

based on RCP4.5 (2021-2040, 2041-2060, 2061-2080 and 2081-

2100) 

Based on the local climate model RCP8.5 scenario (Figure 
10), it indicates that greater increase in rainfall intensity 
as compared to RCP4.5 scenario especially the Northern 
region of the Hyogo Prefecture is projected to have 
significant increase in second quarter of 21st century 
(2050-2100). Besides, the Southwestern and Southeastern 
region of Hyogo Prefecture might experience an increase 
of rainfall intensity in the 2021- 2040 period, which is 

projected having slightly fluctuations toward to end of this 
century.  

 

Figure 10.  Simulated annual rainfall pattern in Hyogo Prefecture 

based on RCP8.5 in 2021-2040, 2041-2060, 2061-2080 and 2081-

2100 

Table 8. Predictors used for simulation of maximum and 

minimum temperature climate models 

Stations Predictors 

Toyooka Mean sea level pressure 

500 hPa Geopotential 

500 hPa Wind speed 

500 hPa Zonal wind component 

500 hPa Specific humidity 

850 hPa Specific humidity 

Air temperature at 2 m 

Sanda Mean sea level pressure 

500 hPa Geopotential 

500 hPa Wind speed 

500 hPa Zonal wind component 

500 hPa Specific humidity 

850 hPa Specific humidity 

Air temperature at 2 m 

Fukusaki Mean sea level pressure 

500 hPa Geopotential 

500 hPa Wind speed 

500 hPa Zonal wind component 

500 hPa Specific humidity 

850 hPa Specific humidity 

Air temperature at 2 m 

Kamigoori Mean sea level pressure 

500 hPa Geopotential 

500 hPa Wind speed 

500 hPa Zonal wind component 

500 hPa Specific humidity 

850 hPa Specific humidity 

Air temperature at 2 m 

3.2. Temperature 

3.2.1. Model validation 

The historical models (1980 – 2005) of maximum (Tmax.) 
and minimum temperature (Tmin.) were simulated using 
the selected predictors, which are listed in Table 8. The 
similar predictors  were loaded for all stations as mean 
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sea level pressure, the geopotential, wind speed, zonal 
wind component, specific humidity at 500 hPa pressure 
level, specific humidity at 850 hPa pressure level and the 
air temperature at 2 m. The historical models were then 
validated against the observed Tmax. and Tmin.. The 
means of both simulated model and observation were 
compared and analysed in this study. 

 

 

Figure 11. Comparison of observation and historical model 

(1980-2005) for maximum (Tmax.) and minimum temperature 

(Tmin.) in Fukusaki, Kamigoori, Sanda and Toyooka Stations. 

Figure 11 shows the average of Tmax. and Tmin.. Similar 
mean of Tmax. are obtained for observation and historical 
models throughout the year. For Tmin., there are slightly 
underestimation for all stations in the October based on 
1980-2005 period.  

3.2.2. Reliability assessment of local climate models 
(temperature) 

Based on the reliability assessment results (Tables 9 and 
10), all stations that meet the minimum criteria and show 
strong reliability for both scenarios, with high R-squared, 
Pearson correlation and Cronbach’s Alpha coefficient. 
Thus, both scenarios (RCP4.5 and RCP8.5) are discussed 
and analysed in this study. The average Tmax. and Tmin. 
in Toyooka station were illustrated in Figures 12 and 13. 
The underestimation issue is observed for Tmax. based on 
observed, RCP4.5 and RCP8.5 local climate model, which 
the highest deviation recorded as 1.1 °C.  The average 
annual Tmin. in Toyooka for observed and local climate 
models (RCP4.5 and RCP8.5). Similarly, underestimation 
issue was found which highest deviation of 1.0 °C was 
observed in this study. Based on the Figures 12 and 13, 
increasing trends were found in the models (RCP4.5 and 
8.5), however from 2066 onwards, the local climate model 
simulated based on RCP8.5 shows a higher Tmin. (0.4 – 
1.0 oC) compared to RCP4.5.   

 

Figure 12. The observed, local climate models based on RCP4.5 

and 8.5 for average maximum temperature (Tmax.) observed in 

Toyooka station (2006-2100) 

 

Figure 13. The observed, local climate models based on RCP4.5 

and 8.5 for average minimum temperature (Tmin.) in Toyooka 

station (2006-2100) 

The average Tmax. and Tmin. for Sanda (2006 - 2100) 
were determined as shown in Figures 14 and 15. The 
observed Tmax. recorded in Sanda station (2006 – 2020) 
ranges from 18.7 °C to 20.6 °C; whereas the local climate 
models simulated based on RCP4.5 and RCP8.5 range from 
18.8 °C to 19.9 °C and 18.9 °C and 20.5 °C respectively. By 
comparing with the observed Tmax. recorded in Sanda 
station (2006 – 2020), the underestimation issue was 
identified with the highest deviation recorded as 1.5 °C.  

In contrast, overestimate issue was identified (as Figure 
15) in local climate models (Tmin.) with the highest 
deviation recorded as 0.9 °C. The observed Tmin. (2006 – 
2020) ranges from 8.5 °C to 9.6 °C, where the local climate 
models simulated based on RCP4.5 and RCP8.5 range from 
9.2 °C to 10.2 °C and from 9.3 °C to 11.0 °C respectively. 
However, the RCP8.5 model has shown the higher average 
Tmin. as compared to RCP4.5 model. The increase trends 
for Tmax. and Tmin. were observed in local climate model 
based on RCP4.5 and RCP8.5. Obviously, the local climate 
model (RCP8.5) for Tmax. show a significant increase in 
the third quarter of the 21st century. 

Moving forward to Southern region of Hyogo Prefecture, 
the average Tmax. and Tmin. in Fukusaki were determined 
in this study. Based on Figure 16, the underestimation 
issue found in the simulated models based on RCP4.5 and 
RCP8.5 scenario with a largest deviation of 1.5 °C. The ran 
range of observed average Tmax. recorded as 20.3 °C to 
21.5 °C; whereas the local climate model based on RCP4.5 
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and RCP8.5 scenario were simulated as 19.8 °C to 20.6 °C 
and 19.8 °C to 21.3 °C respectively.  Increase trends were 
also observed in the local climate models based on RCP4.5 
and RCP8.5, however the RCP8.5 model shows the 
significant increase starting from 2058 onwards. 

The simulated climate model (Tmin.) based on RCP4.5 and 
RCP8.5 scenario show slightly difference compared to the 
observed Tmin. (2006 to 2020) (Figure 17). The observed 
Tmin. (2006 – 2020) in Fukusaki station recorded the 
average Tmin. ranges from 10.2 °C to 11.3 °C; whereas the 
range of RCP4.5 and 8.5 scenario local model range from 
10.4 °C to 11.3 °C and 10.4 °C to 12.0 °C. Nevertheless, the 
increase trend is also identified in the local climate model 
based on RCP4.5 and 8.5 scenario, however the Tmin. 
based on RCP8.5 scenario shows a significant increase 
starting from 2066 onwards.  

 

Figure 14. The observed, local climate models based on RCP4.5 

and 8.5 for average maximum temperature (Tmax.) in Sanda 

Station (2006-2100) 

 

Figure 15. The observed, local climate models based on RCP4.5 

and 8.5 for average minimum temperature (Tmin.) in Sanda 

Station (2006-2100) 

Similar trend was found in South-eastern region 
(Kamigoori station) as shown in Figures 18 and 19. Based 
on the results, the range of observed Tmax. Starting from 
19.9 °C to 21.0 °C. The local climate models based on 
RCP4.5 and 8.5 scenario show the Tmax. range from 19.8 
°C to 20.7 °C, and 19.8°C - 21.3 °C respectively. The 
uptrend is simulated in the RCP 8.5 scenario after 2066.  
Similar simulation was recorded for Tmin. (Figure 19). This 
is due to higher emission scenario with GHGs reduction 
policy are not available in most of the countries 
after 2050.   

 

Figure 16. The observed, local climate models based on RCP4.5 

and 8.5 for average maximum temperature (Tmax.) in Fukusaki 

Station (2006-2100) 

 

Figure 17. The observed, local climate models based on RCP4.5 

and 8.5 for average annual minimum temperature (Tmin.) in 

Fukusaki Station (2006-2100) 

 

Figure 18. The observed, local climate models based on RCP4.5 

and 8.5 for average maximum temperature (Tmax.) in Kamigoori 

Station (2006-2100) 

 

Figure 19. The observed, local climate models based on RCP4.5 

and 8.5 for average annual minimum temperature of Kamigoori 

Station (2006-2100) 
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Table 9. Reliability assessment of maximum temperature models 

Reliability test RCP  R2 (R2 ≥ 0.4) Pearson Correlation  (r ≥ 0.6) Cronbach’s Alpha (α ≥ 0.4) 

Toyooka (Northern) 4.5 0.965* 0.982* 0.991* 

8.5 0.967* 0.983* 0.992* 

Sanda(South-western) 4.5 0.971* 0.985* 0.993* 

8.5 0.972* 0.986* 0.993* 

Fukusaki (Southern) 4.5 0.970* 0.985* 0.993* 

8.5 0.973* 0.986* 0.994* 

Kamigoori (South-

eastern) 

4.5 0.968* 0.984* 0.993* 

8.5 0.971* 0.985* 0.994* 

*indicates strong reliability. 

Table 10. Reliability assessment of minimum temperature models 

Reliability test RCP R2 (R2 ≥ 0.4) Pearson Correlation (r ≥ 0.6) Cronbach’s Alpha (α ≥ 0.4) 

Toyooka (Northern) 4.5 0.973* 0.986* 0.993* 

8.5 0.973* 0.986* 0.993* 

Sanda (South-western) 4.5 0.972* 0.986* 0.993* 

8.5 0.972* 0.986* 0.993* 

Fukusaki (Southern) 4.5 0.974* 0.987* 0.992* 

8.5 0.976* 0.976* 0.993* 

Kamigoori (South-eastern) 4.5 0.973* 0.987* 0.992* 

8.5 0.974* 0.987* 0.993* 

*indicates strong reliability. 

 

There is a critical point which is the underestimation 
issues occur frequently in the selected stations. It might 
be due to the inability of SDSM to estimate extreme 
events which might result in lower temperature. Previous 
research has indicated that downscaling precipitation 
using the SDSM may not perform well since it may 
underestimate or exaggerate by omitting some extreme 
precipitation occurrences (Akhter, Shamseldin and 
Melville, 2019; Chin, Tan and Akihiko, 2021). Increasing 
trends are observed in all of the stations, where the 
increase of maximum values range between 0.3 °C to 1.3 
°C.  Based on the result, the increasing trends found in 
Tmax. and Tmin. model starting 2066 onwards for RCP8.5 
scenario which is tallied in accordance to IPCC Sixth 
Assessment Report (AR6). This is due to higher emission 
scenario with GHGs reduction policy are not available in 
most of the countries after 2050.  However, interested 
parties and government agencies from Japan should take 
the consideration that underestimation issue occurs in the 
simulated local climate models for temperature.  

4. Conclusion 

Local climate models based on RCP4.5 and RCP8.5 
scenarios are successfully developed, and the reliability of 
models were assessed using linear regression, Pearson 
correlation and Cronbach alpha. Moderate relationships 
were obtained from the reliability assessments, where 
both local climate models simulated based on RCP4.5 and 
RCP8.5 scenarios showed similar valid and reliable results. 
Underestimation issues were found in all stations during 
Autumn seasons, which might be due to the failure of 
SDSM to project extreme rainfall intensity. 

The simulated rainfall pattern in different regions of 
Hyogo Prefecture shows there is increased rainfall from 

2021 – 2100 based on both RCP scenarios especially the 
local climate model for northern region of Hyogo shows 
significant increase of rainfall intensity. Besides, the 
southern region is expected to experience increase in 
rainfall (2021 – 2040), but the rainfall pattern is estimated 
to have slight fluctuations from 2041 – 2100. Both regions 
show different trends as they are in different climatic 
regions. However, local climate models based on RCP4.5 
showed less significant increase in overall as compared to 
RCP8.5 scenario.  Strong relationships were found 
between observed and simulated maximum and minimum 
temperature for RCP4.5 and RCP8.5 scenarios. Steady 
increase of average maximum and minimum temperature 
was observed from the simulated local climate models 
within the range of 0.3 °C to 1.3 °C. The range falls 
between the projected change in the average surface 
temperature by IPCC Sixth Assessment Report (AR6).  

Locally, we suggested that relevant government agencies 
and interested parties should take initiative to develop 
the disaster risk reduction plan with integration of climate 
uncertainty.  Besides, measures to reduce in greenhouse 
gas emissions such as afforestation and building design to 
reduce heat island effect shall be taken to stabilize the 
surface temperatures. However, continual climate 
modelling and improvement are suggested to monitor and 
project the changes in rainfall intensity and surface 
temperature. 
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