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Abstract 

Global demand for freshwater has led to increased use of 
industrial seawater desalination plants. A failure of any 
component of a desalination plant's control system can 
result in a malfunction. The fault occurring in the 
desalination plant slows down the processing speed and 
reduces the output rate. To overcome these issues, this 
paper presents an Artificial Neural Network with single and 
double component faults (ANN S-DCF) to detect the faults 
occurring in the desalination plant. The faults are split into 
two categories and the characteristics of each fault are 
trained in the ANN. The faults like not under system 
control, electrical fault, pump fault, control valve fault, 
inaccurate signal, old data fault, derived fault, and 
transmitter fault is analyzed here. The result of this work 
achieves the best accuracy compared to the existing 
techniques of SVR (Support Vector Regression), PCA 
(Principal Component Analysis), and DPLS (Dynamic Partial 
Least Square) method. As a consequence, the proposed 
ANN technique produces an accuracy rate of 97.04%, a 
precision rate of 93%, and a sensitivity rate of 95% 

respectively with low complexity and high operational 
speed than the existing techniques. 

Keywords: Artificial neural network, desalination plant, 
fault, single and double component fault, chlorination 
plant 

1. Introduction 

The scarcity of a certain amount of fertile water is 
increasing, which is essential for life on earth and economic 
and social development, and environmental sustainability 
(Gambier, A. et al. 2009). Over the last half-century, 
enormous advances in saltwater desalination and water 
treatment technologies have arisen. Even countries that do 
not have water shortages now may face more water 
shortages in the future (Ahn, S.J, et al. 2008). The two basic 
seawater desalination techniques are distillation and 
membrane separation. To handle the increasing need for 
freshwater, MSF (Multi-Stage Flash Distillation), MEE 
(Multi-Effect Evaporation) distillation, VC (Vapour 
Compression), and RO (Reverse Osmosis) are all the various 
technologies involved in desalination (Pascual, X, et al. 
2014). Figure 1 depicts the basic outlook of the desalination 
process.  

 

Figure 1. basic outlook of desalination 
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A desalination plant generally adds chlorine to the intake 
water to prevent biofouling, which results in the formation 
of hypochlorite, a toxic gas and mainly hypobromite 
(Gambier, A, et al. 2010). The most frequently used 
scrubbing solutions are sodium hydroxide solutions. It is 
necessary to understand all aspects of chlorine scrubbing 
applications, including temperature, end products, 
clearance of the finished products, and the safe handling of 
all chemicals involved (Sallami, A. et al. 2010; Khawaji, A.D. 
et al. 2008). It is designed to clean gaseous seepages by 
scrubbing chlorine from them. The resulting solution must 
be properly treated and vented to an environmentally 
responsible place. Many disruptions and defects can be 
arising during the regular functioning of the desalination 
system, which is complicated (Achbi, M.S. et al. 2020). The 
types of faults occurring in the desalination plants such as 
inaccurate signal, irregular pump working faults, electrical 
faults, control valve faults, old data faults, and transmitter 
faults. PCA (principal component analysis) (Garcia-Alvarez, 
et al. 2011) is applied to observing and identifying 
malfunctions that occur in the reverse osmosis plant. The 
monitoring and control of RO plant parameters have been 
subjected to several efforts, but there have still been 
challenges, including early fault prediction of different 
events. As well as early fault detection is among the 
essential needs for Indian RO plant operators to ensure 
that the overall plant's life span is extended while 
maintaining optimal operating conditions as well.  
Therefore, a proper fault diagnosis technique is needed for 
a desalination plant. 

The paper presents an Artificial Neural Network (ANN) with 
the single and double component fault (ANN S-DCF) 
introduced to detect the faults in chlorination plants. First, 
the faults are categorized into two namely single-
component faults and double-component faults. Then, the 
characteristics or features of each fault are trained in an 
ANN and this network detects the types of faults.  

The remaining content is ordered as the following sections: 
section 2 establishes the previous techniques of fault 
detection of the desalination plants; section 3 explains the 
comprehensive concept of the proposed ANN S-DCF; 
section 4 described the performance analysis and 
comparative analysis and section 4 describes the 
conclusion and the future scope. 

2. Related works 

This section provides an overview of various deep learning 
or machine learning techniques to detect the malfunctions 
of the seawater desalination system.  

Derbali et al. (2017). developed a decision tree algorithm 
technique to detect the malfunction of a desalination plant. 
Based on specific measurements, an authentic system was 
constructed using the membrane distillation system and 
nanotechnology. The faults that occurred between the 
model results and system outputs were then categorized to 
detect system failures. 

Abdel Fatah et al. (2018). proposed condition-based 
maintenance (CBM) method utilized for selecting the 
appropriate maintenance process in the seawater reverse 

osmosis desalination system to demonstrate whether 
digital models may be utilized to provide condition-based 
monitoring of rising force rising in pumps in a saltwater 
desalination plant. Because of internal resistance, it might 
be difficult to execute. 

Srivastava, S. et al. (2018). developed a different ANN-
based algorithm that can be used with a smartphone-based 
android app for early fault diagnosis and predictive 
maintenance and Web-based interfaces for data 
visualization and analytics. A variety of plant parameters 
are monitored including the flow rate, pressure, pH, TDS, 
and over- and undersupply voltage for the feed and output 
water tanks. 

Wang, B. et al. (2019). proposed a method for detecting 
Membrane Distillation Systems (MDS) faults using various 
machine-learning approaches. It was noted that the 
classification accuracy obtained by using the decision trees 
was the best as compared to the other learning techniques 
like K-Nearest Neighbours, Neural Networks, and Support 
Vector Machines (SVM). 

Mehrad, R., and Kargar. (2020). has been introduced a 
parity space approach for controlling and detecting the 
faults of the reverse osmosis desalination plant. Here, the 
parity space approach is utilized to identify the flaws that 
occur in the actuator. The retreating predictive control-
bounded data uncertainties controller is a strong and 
constant variation of generalized predictive control that is 
used in the suggested method.  

Pérez-Zuñiga et al. (2020). introduced a structural analysis 
approach in fault detection and isolation (FDI) utilized at 
any defect in its elements in the control system might cause 
a system to collapse, posing safety issues, wasting energy, 
and affecting the quality of freshwater. The analysis of the 
structural model enables the creation of this system, which 
may be used to develop diagnostic procedures. But here 
the sensors are adequately varying depending on the 
temperature, so a high range of false positive cases will 
occur.  

Mamandipoor, B. et al. (2020). proposed This paper 
proposes a Deep Neural Networks (LSTM)-based fault 
model for oxidation and nitrification processes in 
wastewater treatment plants. A continuous effort is being 
made to improve the purification performance of WWTPs 
while at the same time reducing their energy consumption. 
This has led to an increase in the automation of these 
plants and, subsequently, an increase in the number of 
measurement sensors. 

Anter, A.M., et al. (2020). proposed a Whale Optimizing 
Algorithm (WOA), based on chaos theory and fuzzy logic to 
the identification of faults during wastewater treatment to 
reduce costs and validate decision rules, as well as to 
identify non-well-structured domains in a dataset. The 
reliability and stability are low by using this method. 

This section gives a clear vision of the previous fault 
detection methods for detecting the malfunctions that 
occur internally in the desalination system. The major 
limitations deemed for the previous methods include a low 
number of faults only detected, taking more time to 
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process, and poor accuracy. To overcome these limitations, 
the proposed method implements a fault detection 
technique introduced by a machine learning method 
including an Artificial neural network (ANN S-DCF) with 
single and double component faults. 

3. Proposed model 

In this proposed method, the chlorination plant system 
contains an automatic reader, which automatically takes 
the readings of the working speed, timing, flow rate, fault 
rate, and overflow in certain microseconds continuously. It 
has a lot of working data in a specified time. But, here 
taking some sets of data with time for processing. The 
datasets are collected and the features of faults are also 
trained in an ANN. The combined help of single component 
faults and double component faults are involved to 
categorize the features of the faults. The proposed method 
(ANN S-DCF) is utilized to identify the faults occurring in the 
chlorination plant shown in Figure 2. 

 

Figure 2. Block diagram of a proposed model 

3.1. Chlorination plant:  

The emergency chlorine gas scrubber system is intended to 
safely neutralize unplanned chlorine leaks in the 
chlorination building and the chlorine storage area (Agus, 
E. et. Al., 2010). Here, it is considered part of the site’s 
safety equipment and must be maintained and inspected 
to ensure that it will function properly in an emergency. 
This chlorine scrubber system is automated, although there 
is a manual override to start or stop individual pumps, fans, 
and mixers as needed. While operation, a 10 percent of 
sodium hydroxide (NaOH) solution is delivered to the top 
of the scrubber column through an ETA-designed 
distributor, which ensures equal dispersion of the solution 
across the packing surface. Once chlorine comes into touch 
with the caustic solution, it undergoes a quick, irreversible 
chemical reaction, removing almost 99.5 percent of the 
chlorine by the time the gas reaches the top of the column. 

From a separate day tank, a 10% of sodium hydroxide 
(NaOH) solution circulated the column (Verbeke, R. et. Al., 
2020). The induced draught (ID) fan is designed to keep the 

furnace at negative pressure by sucking the combustion 
products out of it while maintaining a little rising force at 
the chimney’s outflow end. Because of the positive 
pressure, the exhaust gas leaves the chimney and 
combines with the surroundings, which is facilitated by the 
stack effect of the heating chimney at 120°C. The dampers 
are also a part of this plant, which are automatically 
regulated and keep within a safe margin of the predicted 
burner outflow (Farhat, N. et. Al., 2022). The four induced 
draught (ID) Fans pull chlorine gas through the scrubber 
column when a chlorine leak is detected in the chlorination 
facility or the chlorine storage area. 

3.1.1. High chlorine detection of chlorine storage area 

When the chlorine storage area sends a high chlorine 
signal, the scrubber plant’s Large Combustion Plants (LCP) 
activate the specified duty recirculation pump and wait 10 
seconds for the lower flow rate switch to activate. If the 
lower flow rate switch is not activated within that certain 
interval of time, the duty pump will be turned off and the 
standby pump will be turned on. Afterward, the HVAC 
(heating, ventilation, and air supply) control panel will turn 
on two extracting fans and their corresponding dampers, 
while the scrubber plant’s LCP will turn on two ID (induced 
draught) fans and wait for twenty seconds for the scrubber 
column intake pressure to return to normal, if not the 
system would be shut off. The plant will continue to run till 
the excessive chlorine alert has been cleared and the fans 
and pump have been turned off. 

3.1.2. High chlorine detection of chlorination building area 

When the chlorine storage area sends a high chlorine 
signal, the scrubber plant’s LCP activates the specified duty 
recirculation pump and waits for 10 seconds for the 
lower flow rate switch to activate. If the lower flow 
rate switch is not activated within that certain interval of 
time, the duty pump will be turned off and the stand-by 
pump will be turned on. Afterward, the HVAC (Heating, 
Ventilation, And Air Supply) control panel will turn on five 
extracting fans and their corresponding dampers, while the 
scrubber plant’s LCP will turn on four ID fans and wait for 
twenty seconds for the scrubber column intake pressure to 
return to normal, if not the system would be shut off. The 
plant will continue to run till the excessive chlorine alert 
has been cleared and the fans and pump have been turned 
off. 

In an auto shut-down sequence, the scrubber system is 
disabled, and the working pump and fans are halted 
however when the emergency push button on the local 
control panel is pressed.  

In a caustic fill sequence, the caustic fill process will begin 
through the chosen duty transferring pump whenever the 
low level in the storage tank is not enabled. The standby 
pump will automate to begin the process if the duty pump 
is disrupted by an electrical problem. When the High level 
in Day tank or the Low level in the Storage tank is triggered, 
the caustic filling process is terminated. 
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3.2. Types of faults occur in the chlorination plant 

The various types of faults occur in the chlorination plant. 
But here consider the seven types of faults. They are 
inaccurate fault, external fault, not under system control, 
Control disabled, old data fault, derived fault, and invalid 
fault. Fault bits are used to highlight problems in the signal 
processing chain, starting at the transmitter. They can 
detect many errors at the same time. 

(i) Inaccurate signal fault (f1) 

It can arise based on irregular reading. The signal is reached 
whenever before or after a certain time, but not 
transmitted the signal in the corresponding time.  

(ii) External fault(f2) 

Fault in the transmitter or signal wire. If more than 420mA 
means, fault will have occurred. If less than 420 mA means, 
fault be acquired. 

(iii) Not under system control(f3) 

This system will be automatically ON/OFF. 

(iv) Control disabled (f4) 

The signal will have come from DCS to the actuators. There 
is some fault in an actuator. While problems are occurring 
here. 

(v) Old data fault (f5) 

The system will be hanged, the previous value is not valid. 
The reading is frozen with old values.  

(vi) Derived fault (f6) 

One or more of the input signals of a derived signal is faulty 

(vii) Invalid fault (f7) 

The signal value is not based on any measurement. 

3.3. Single and double component fault (SCF and DCF) 

In a single-component fault, the fault should depend on 
one component, and in a double-component fault in which 
the fault depends on more than one component. Figure 3 
depicts the categorization of faults. The inaccurate signal 
fault is under the SCF, it depends only on the time. It is 
represented as f1. 

 

Figure 3. Categorization of faults 

The external fault is under DCF, it depends on both less 
than or greater than 420 mA. It is represented as f2. The not 

under-system control fault is under the DCF, it depends on 
both systems ON/OFF. It is represented as f3. The control 
disabled fault is under the DCF, it depends on DCS and 
actuators. It is represented as f4. The old data fault is under 
the DCF, it depends on the present and past values. It is 
represented as f5. The derived fault is under the DCF, it 
depends on the greater number of faults. It is represented 
as f6. The invalid fault is under DCF, it depends on any 
measurement.  

3.4. Working of ANN 

An Artificial Neural Network (ANN) is a network of neurons 
that uses a non-linear transformation to learn highly 
complicated functions. It has been successfully used for 
complex categorization tasks like image and signal 
recognition. Here, ANN is to address fault detection and 
classification challenges. First, trained the characteristics of 
the faults such as inaccurate signal fault (f1), external fault 
(f2), not under system control (f3), control disabled (f4), old 
data fault (f5), derived fault (f6) and invalid fault (f7) by using 
the ANN with various hyperparameter values. Then, look at 
the impacts of two hyper-parameters on the performance 
of the ANN including the number of hidden layers and the 
number of neurons in the last hidden layer. Finally, tested 
the ability of ANN to classify the faults.  

 

Figure 4. Structure of ANN 

Figure 4 demonstrates the four types of layers such as input 
layer, hidden layer, softmax layer, and output layer (Wu, et. 
al., 2018). In the fault detection approaches, input data 
must be normalized before being fed into the input layer 
and one way to do so is to use the feature scaling of the 
following form to ensure that all values are in the range [0, 
1]. The representation of scaling is expressed in equation 1. 

( )

−
 =

−

min ( )

maximum min ( )

v imum v
v

v imum v  (1) 

In the hidden layers, through the following nonlinear 
transformations, the information provided in the input 
data is sequentially changed into higher representations 
like features. The representation of the first and last hidden 
layer is expressed in equations 2 and 3.  

 +=1 1 1(   )H w u B  (2) 

( ) − += = 1    ,   (2, .., )l l l lH w h B l z  (3) 
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Whereas, u   unR , Hl   Hl
n

R  are the vectors of input and 

hidden layers representation. Then, 


−
 

1   
H nl Hl
n

lw R  and 

    Hl
n

lB R  are the weight matrices and bias vectors 

respectively and z denotes the number of hidden layers. 

Here, 
lH

n  is represented as the number of neurons present 

in each hidden layer and  is a non-linear activation 
function that makes the above transformation to be non-
linear. The rectified linear equation is defined as equation 
4.  

( ) =max(0, )u u  (4) 

The output of the final hidden layer is subjected to the 
transformation described in equation (2) without the 
activation function expressed in equation (5). 

= +     s s z sH w H B  (5) 

In the softmax layer, involves the softmax function of the 
following equation (6) determines the values of each 
output neuron.  

=

=



,

,1

exp( )
 

exp( )Hs

s i

i n

s ii

H
Y

H
 (6) 

The networks next choose the label with the highest output 
values to apply a predictable label to the input data and to 
detect the faults as f1, f2, f3, f4, f5, f6, and f7. The performance 
analysis and comparative analysis are seen in the result 
section (Figure 5). 

 

Figure 5: Bit Representation of a fault 

 

Figure 6: Training and testing accuracy of ANN S-DCF 

4. Result and discussion 

This section analyzes the various faults like f1 (inaccurate 
signal fault), f2 (electrical fault), f3 (pump fault), f4 (control 
fault), f5 (old data fault), f6 (derived fault), and f7 
(transmitter fault) and trained in ANN S-DCF to detect and 
classify the faults. For batch training, training datasets are 
split into twenty-five batches and the networks are trained 
for two hundred training epochs. The batch size is referred 

to as the number of training samples utilized in one 
iteration. The output performance has been estimated, 
analyzed, and compared to the existing classification 
approaches. The comparison is made based on the 
variations in existing and proposed techniques. 

 

Figure 7: Training and testing loss of ANN S-DCF 

 

Figure 8: Performance of ANN S-DCF 

 

Figure 9: Graphical representation of comparing existing with 

the ANN S-DCF method 

4.1. Performance metrics 

The accuracy, precision, sensitivity, and specificity were 
involved to estimate the outcome of the experiment.  

4.1.1. Accuracy 

Accuracy is a parameter shows that the percentage of 
categorized faults in each class related to the total number 
of faults in that class. In equation implies the accuracy of 
the ANN S-DCF.  
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=
         

     

number of sampleswithcorrect label
Accuracy

total number of samples  (7) 

4.1.2. Precision 

Precision is a parameter that depicts the percentage of 
detecting the count of positive samples to the total count 
of positive samples. Equation (8) implies the formula for pe 
(precision). Here, pe (Precision) is calculated by the tp  

(true positive) outcomes reduced by the total of tp  (true 

positive) and fp (false positive) outcomes.  

+
=e

tp
p

tp fp  (8) 

4.1.3. Sensitivity 

It is used to effectively interpret a positive result. It is 
estimated by analyzing the proportions of the true 
positives in both fault and functioning cases. The sensitivity 
is expressed below; 

=
+

 
tp

Sensitivity
tp fn  (9) 

4.1.4. Specificity 

Specificity can detect normal functioning cases. It is used 
here to identify the negative outcome in the analysis. 

=
+

 
tn

Specificity
tn fp  (10) 

Overall, the proposed model achieves 97.04% accuracy. 
Figures 6 and 7 show training and testing accuracy and loss 
curves. The accuracy curve has five to fifty epochs on the x-
axis and accuracy on the y-axis as shown in Figure 6. ANN 
S-DCF's training and testing accuracy curves show a high 
level of accuracy at 0.9704 based on epochs.  On the x-axis 
of Figure 7 is the loss curve of the ANN S-DCF, whereas the 
loss on the y-axis is the number of epochs. In both the 
training and testing phases, its loss is 2.96, which indicates 
the ANN S-DCF performs well. 

Figure 8 depicts the performance of the proposed ANN S-
DCF model. The result shows the proposed ANN S-DCF 
provided an accuracy of 97.05%, precision of 94.32%, 
specificity of 91.1%, and sensitivity of 92.13%. 

4.2. Comparative analysis 

The comparison of existing and proposed fault detection 
methods is replicated in Table 1 along with the related 
graphical representation in Figure 9. 

Table 1. Comparison of the ANN S-DCF and existing method 

Methods Accuracy Precision Specificity Sensitivity 

SVR 78.5 79.9 72.5 68.83 

PCA 80.3 76.3 75.2 72.1 

DPLS 85.6 82.13 78.01 79.5 

ANN S-DCF 97.05 94.32 91.1 92.13 

 

The performance metrics in percentage are compared to 
the proposed ANN S-DCF with the existing techniques 
including (SVR) support vector regression, PCA (principal 
component analysis), and DPLS (dynamic partial least 
square). When comparing the accuracy rates of fault 
detection with existing techniques like (SVR) support 
vector regression has an accuracy of 78.5 %, principal 
component analysis (PCA) has an accuracy of 80.3 %, 
dynamic partial least square (DPLS) has an accuracy of 85.6 
%, and the proposed artificial neural network with the 
single and double component fault (ANN S-DCF) has the 
maximum accurate of 97.0.5 %. While comparing the 
precision rate of fault detection with existing techniques 
like support vector regression (SVR) has a precision rate of 
79.9 %, principal component analysis (PCA) has a precision 
rate of 76.3 %, dynamic partial least square (DPLS) has a 
precision rate of 82.13 % and the proposed ANN S-DCF 
reaches the maximum precision rate of 93.32%. Next, 
comparing the specificity rate in percentage of various fault 
detection with existing techniques like support vector 
regression (SVR) has a specificity rate of 72.5 %, principal 
component analysis (PCA) has a specificity rate of 75.2 %, 
dynamic partial least square (DPLS) method has a 
specificity rate of 78.01 % and the proposed ANN S-DCF 
reaches the specificity rate of 92.1%. Then, comparing the 
sensitivity rate in percentage of various fault detection with 
existing techniques like support vector regression (SVR) has 

a sensitivity rate of 68.83 %, principal component analysis 
has a sensitivity rate of 72.1 %, dynamic partial least square 
(DPLS) method has the sensitivity rate of 79.5 % and the 
proposed ANN S-DCF reaches the sensitivity rate of 95.13 
%. The proposed ANN S-DCF reaches the maximum 
accuracy and highly reliable than the other existing 
systems. 

5. Conclusion 

The primary intent of this study is to split the various types 
of faults according to the depending component with 
single-component faults and double-component faults. 
After, that the features are trained to the artificial neural 
network (ANN). The proposed ANN S-DCF can be trained in 
all possible ways to detect and classify the faults like 
inaccurate signal fault (f1), external fault (f2), not under 
system control (f3), control disabled (f4), old data fault (f5), 
derived fault (f6) and invalid fault (f7) with low error rate. It 
deeply learned the features of each fault and reaches the 
maximum accuracy of training and testing data. This 
system quickly detects the faults and diagnose them with a 
minimum number of misclassification rate. The output 
values of the proposed ANN S-DCF fault detection are 
compared with the different fault detection techniques, to 
check the advancement of the proposed method. Within 
the instance of identifying the malfunctioning, researchers 
looked at the impact of two factors (number of hidden 
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layers, number of neurons in the last hidden layer) on 
system performance and discovered that, beyond a 
definite point, increasing network size does not improve 
fault identification accuracy rate. The proposed system has 
the benefit of being simple and efficient for industrial 
sectors. This proposed framework achieves an accuracy of 
97.05%, a precision rate of 94% and specificity rate of 92.13 
%, and a high computational speed. This work will 
encourage the use of Deep Neural Networks both in 
chlorination plants and in IoT-based Distributed Control 
Systems (DCS). 
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