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Abstract 

The precise analysis of conditions in the landscape before 
and aftermath of the disaster is a mandatory challenge in 
aerial image landscape monitoring. The change in patterns 
of landscape, damaged pathways, and damaged areas will 
have a major impact without monitoring and 
redevelopment. Therefore, semantic segmentation of the 
landscape is required to analyze the changes and avoid 
other risks in pre-and post-disaster scenarios. To address 
these queries a deep learning-based landscape monitoring 
method is presented in this work. A Gated Shaped 
Convolution Neural Network is utilized for the semantic 
segmentation of aerial landscape images. Initially, the 
aerial image undergoes pre-processing with the process of 
dilation and GSCNN emphasizes the shape and boundary 
masks of the affected landscape. To choose the best 
possible pathways and solutions for development the 
GSCNN undergoes particle swarm optimization. In the 
current research work, the proposed PSO-GSCNN is 
evaluated by comparing the accuracy, precision, and recall 
of the proposed method with Restricted Boltzmann 
Machines (RBMs), Convolutional Neural Networks, and 

Fuse-Net segmentation methods. In comparison with 
conventional RSM, CNN, and Fuse-Net, the accuracy rate 
of the model is 97.65%, the precision rate is 98.21%, and 
the recall rate is 97.23%. This technique has achieved 
97.66% accuracy, 97% precision, and 96% recall, all higher 
than the existing methods. 

Keywords: Landscape monitoring, aerial image, deep 
learning, gated shaped convolution neural network, 
particle swarm optimization 

1. Introduction 

Landscape monitoring refers to the monitoring of specific 
landscape areas over time by an ongoing, long-term 
surveillance system. If timely counteractions are to be 
taken, appropriate monitoring results in early recognition 
of crucial changes in the landscape (Sun et al., 2022). 
Landscape monitoring is a most important application to 
identify and emphasize the condition of the landscape at 
different times (Fu et al., 2021). It is mostly tender to early 
analysis of changes that are to occur in the environment 
and the emphasis on the after-effects of that change 
(Syrbe et al., 2007). The aerial image takes a contributed 
role due to its ability to identify sites, monitor changes in 
landscape topography through time, and even uncover 
subsurface features by studying topsoil characteristics and 
stereoscopic images, aerial photography is widely used in 
archaeological prospection (Rasidah Hashim 2010). Also, 
the method gathers important land use information 
(Hoshi et al., 2014 and Panagopoulos 2008). The aerial 
image contributes a major role in disaster management 
and provides adequate information in the form of an 
image. Aerial image monitoring offers major help in 
analyzing the landscape areas which have endured the 
disaster i.e., such areas may develop damaged routes, 
destruction in such areas due to the disaster (Bila et al., 
2011, Aziz et al., 2019 and Courtrai et al., 2016). So, 
landscape monitoring using any kind of aerial imagery is a 
mandatory function for further management of such 
areas after the disaster occurs (Mnih et al 2010). It is hard 
to observe the changes caused in the landscape manually 
and the manual analysis consumes complex time and is 
more susceptible to faults (Kaiser et al., 2017 and Awad 
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2013). as most of the volunteers may not be competent 
and experienced in precise analysis. Thus, imaging 
equipment that widely pictures the large coverage area is 
needed in monitoring the affected landscape. The precise 
picturing of the landscape must undergo segmentation of 
the aerial image to enable precise emphasis of the 
landscape to obtain the structural changes in patterns in 
the landscape (Boesch et al., 2008 and Mesquita et al., 
2019).   

Several prior-art methods are implemented in segmenting 
the aerial image for disaster management and post-
disaster investigation using several techniques and 
methods. Long-term monitoring of landscape using the 
aerial image to analyze the change in the landscape by 
monitoring over a long time has been established by Nor 
Rashida Hasim (Islam et al., 2022). The land use for 
cultivation has been monitored by aerial imaging 
classification. But the work should include further 
segmentation of the landscape. Also, the classification of 
the aerial image through the combined action of a 
modified Support vector machine (SVM) and least square 
techniques for the monitoring of environmental, land use 
and further applications. But the drawback is stated that 
the individual implementation would give better results 
instead of the combined action of the mechanism. The 
analysis of the landscape image after a disaster is a crucial 
role in landscape monitoring by segmenting the landscape 
images. The lack of segmentation of landscape images 
may result in misprediction of the changes which may 
result in severe future issues. To avoid this an advanced 
deep learning strategy is used in this work for the precise 
segmentation of the landscape aerial image for better 
prediction of before and after-effects of the disaster 
providing timely and actionable information. The 
following are the main contribution of this paper: 

• The Inria aerial image dataset is collected and pre-
processed using morphological dilation and corrosion is 
used to remove noise from aerial data. 

• An efficient Particle Swarm Optimized-Gated Shape 
Convolutional Neural Network is developed for 
segmentation of the Landscape aerial image which results 
in efficient segmentation. 

• The efficiency of the proposed framework is estimated 
using precision, accuracy, and recall. 

• The results of the proposed method are evaluated based 
on the comparative analysis with existing Fuse-net, CNN 
and RBN methods. 

The landscape monitoring process is demonstrated as 
follows, the following section contributes landscape 
monitoring and segmentation-related research and its 
drawbacks of the prior art techniques. In the proposed 
section the elaborate presentation of the proposed 
GSCNN for semantic segmentation is established followed 
by the PSO optimization. In the result section, the output 
processing of the aerial images with the performance 
analysis of the proposed method with pre-existing 
techniques is mentioned. Finally, in section 5 the overall 
study is briefly concluded. 

2. Literature review 

The antique landscape monitoring techniques have shown 
drawbacks and issues and further enhancement in the 
segmentation process. So the review of such pre-existing 
research is presented in this section. 

Andreas Kamilaris and Francesc X. Prenafeta-Boldú (2018) 
established landscape monitoring using UAVs for the 
analysis of conditions in the landscape. The situation in 
the specific area has been viewed through aerial imaging. 
The process of the work mainly depends on the disaster 
monitoring and prediction of the disaster by precise 
monitoring of the landscape. But the process indicates a 
major drawback in the slow process of monitoring and a 
large dataset makes the process complex with the 
prediction of noise in the aerial images captured during 
monitoring. 

Saramsha Dotel et al (2020) proposed a deep learning-
based landscape monitoring strategy for disaster 
management. The regions and landscapes affected and 
changes have been emphasized by the monitoring 
strategy. The CNN methodology deals with the semantic 
segmentation of the captured imagery during pre and 
post-disaster analysis. But further enhancement in the 
work has to be done by including object detection and 
automatic detection of the conditions in the landscape 
during the disaster by proper alignment of the input 
dataset to make robust access to the information. 

An aerial imagery-based disaster monitoring using deep 
learning methodology has been established by Siti Nor 
Khuzaimah Binti Amit and Yoshimitsu Aoki (2017) The 
wide view of the landscape and the conditions have been 
monitored using satellite imagery. The early detection and 
aftereffects and land pattern analysis has been 
established in the work. The data regarding the real state 
of the landscape. Further enhancement in the work has to 
be enabled by inducing the routing procedure analyzed 
using aerial imaging equipment which is included as a 
drawback. 

Hysa and Fatma Aycim Turer Baskaya (2019) proposed a 
planning strategy for the landscape to prevent the effects 
of the disaster. A mental map of urban legibility in disaster 
studies has appeared to be a useful tool for estimating the 
behavior of disaster victims in emergencies. For disaster-
sensitive spatial designs, as well as for the placement of 
awareness-raising features in these sites, it's crucial to 
show how they'll act, the landmarks they'll use for 
orientation, and the places they'll evacuate to have been 
utilized by such imaging. Also, mitigating the effects of 
climate change can be accomplished through enhancing 
awareness of daily landscapes. But the work has to be 
enhanced by inducing early prediction of disaster and 
enabling a disaster-free environment. 

R. Monika et al (2018) established a duo strategy of BCS 
(block comprehensive de-noising) with CTWT (curvelet 
transform with wiener filtering). A block-wise sampling for 
compression of data to transmit efficient satellite images 
has been employed. The restoration of satellite images for 
effectual de-noising with the proposed approach has been 
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utilized. The rehabilitation occurs with limited 
dimensional values. The limitation of the proposed work 
includes considerable progression in the feature of the 
image. 

Wenzhong Shi et al. (2020) established a review on 
change detection in remote sensing applications. Artificial 
intelligence-based change detection research and its 
innovative role of it in change detection have been 
expressed in the work. As remote sensing has a major role 
in the monitoring of the environment, urban planning, 
and disaster management, the changes in them have to 
be emphasized so the survey over the various change 
monitoring has been studied. The research on change 
detection has to be further enhanced by analyzing 
additional data about unsupervised AI monitoring, big 
data monitoring and more. 

Xin Gao et al. (2022) have proposed an aerial image-based 
object detection strategy in low-resolution imagery. Small 
object detection in the aerial image with the low 
resolution has been done by the post-processing of the 
aerial image using the integration of diverse post-
processing methodologies. In addition, various vehicle 
detection methods were implemented for the precise 
detection of small objects and extraction of specific 
features from the aerial image. But further enhancement 
in the detection lacks the precise identification of objects 
using the automated detection schemes. 

Ananya Gupta et al. (2021) implemented a deep learning-
based precise segmentation of aerial images for disaster 
management. The training of the Image-net results in 
capturing the disaster areas and using the open data it 
provides the specific data related to the management of 
disaster and emphasizes the damaged and affected areas. 
Further enhancement in the work has to be done by 
implementing the analysis of the road connectivity 
damages, block in the roads and condition of the 
landscapes. 

According to the literature study, an essential difficulty in 
aerial image landscape monitoring is the precise analysis 
of the landscape's state both before and after a disaster. 
Without monitoring and redevelopment, the altered 
patterns of the landscape, damaged pathways, and 
damaged places will have a significant impact. To 
overcome these challenges PSO-GSCNN methodology has 
been proposed and is presented in the following section. 

3. Proposed PSO-GSCNN method 

In this proposed work efficient monitoring of the 
landscape and enabling information regarding the 
conditions of the landscape affected due to the disaster is 
presented and the following flow diagram (Figure 1) 
indicates the overall process of the proposed work. 

The original dataset with no obstacles (i.e., before the 
disaster) and the dataset with the problem domain (i.e., 
after the disaster the changes in the patterns of the 
landscapes and queries) are trained such that, it 
undergoes further processing. 

 

Figure 1. Overall block diagram of the proposed methodology. 

3.1. Preprocessing  

The initial step includes the pre-processing of the aerial 
imagery which is an important step for the reduction of 
unwanted distortion and noise in the imagery. In this 
research, morphological dilation and corrosion are used to 
remove noise from aerial data. In aerial images, 
morphological processes extract structural information to 
detect landscape area borders. In morphological 
operations, a structural element is added to an input 
image to create a corresponding output resulting image. A 
matrix that identifies the treated pixel in the image and 
specifies the neighboring pixel value used for processing 
each pixel is referred to as a structuring element. The 
dilation process in which the dilation of X by Y is 
represented by, 

( )  =  |     
z

X Y z Y X  (1) 

In this case, the structural element X and . denotes the 
empty set are the same. In other words, the dilation of X 
by Y is the collection of all the structural element origin 
positions where the reflected and translated Y overlaps X 
to some extent. 

( ) =  |      c

z
X Y z Y X!  (2) 

When the translated Y does not overlap with the 
foreground of X, the erosion of X by Y is the collection of 
all origin locations of structural elements. 

3.2. Segmentation via gated shape convolutional neural 
network 

Gated convolutional layers are used to wire boundary 
information from the intermediate layers of the regular 
stream’s encoding path to the edge stream wch focuses 
on boundary segmentation solely. The edge stream learns 
to predict quality edges and uses the Sobel gradient 
magnitudes of the input image to further highlight 
contours and textures. Information between the two 
parallel streams is fused at the end to obtain enhanced 
boundary predictions. For a semantic segmentation of the 
landscape aerial image captured in pre-and post-disaster 
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scenarios, we induced the GSCNN method. The structure 
of the GSCNN method is depicted in Figure 2. 

 

Figure 2. Structure of GSCNN. 

The older Gated convolution network comprises the 
encoder and a decoder section. But this proposed 
framework comprises of regular and shaped stream 
accompanied by the fusion module which enables 
standard segmentation and shape information in the form 
of boundaries respectively. The shape stream deals with 
providing relevant data about the landscape boundaries 
via the gated convolution layer and basic monitoring. 
Consequently, refined segmentation around boundaries 
by merging characteristics from both the shape and 
semantic streams is carried out. Next, each module is 
presented in detail.  

In the proposed architecture, (Figure 3) there are two 
primary streams: a standard stream and a shaped stream. 
Any backbone design may provide regular streams. 
Residual blocks and gated convolutional layers are used to 
process shapes (GCLs). Using the Atrous Spatial Pyramid 
Pooling Module, the data from the two streams are then 
combined on many scales (ASPP). Automated Dual-Task 
Regularizes assure high-quality border segments in the 
segmentation mask. 

 

Figure 3. The comprehensive framework of the proposed 

GSCNN. 

Regular stream:  The stream RS(AI). takes an image 

AIRS3HW. with a height H and width W as input and 
creates dense pixel characteristics, as given by the 

parameter . As the normal stream, any fully-
convolutional feedforward network can be employed, 
such as a ResNet-based semantic segmentation network 
or a VGG network-based one. For regular-stream 
segmentation, ResNet-101 and WideResNet are the state-
of-the-art. For semantic segmentation, ResNet-101 and 
WideResNet are the state-of-the-art. Regular streams are 

represented by their output characteristics, 
 

   
H W

C
f frs RS . 

where f is the stride dotes the stride of the stream. 

Shape stream: It is represented by the symbol SS, 

outputs semantic boundaries with parameters  after 

receiving as inputs picture gradients, AI and the result of 
the first convolutional layer from the regular-stream. In 
the network design, a few leftover blocks are sandwiched 
between gated convolution layers (GCLs). As indicated 
below, GCL ensures that the shape stream only analyses 
boundary-relevant data (Figure 2). The output boundary 
map of the shape stream is denoted by the abbreviation 

RSHW. We apply supervised binary cross-entropy loss on 
output borders to supervise the shape stream s GT 
semantic segmentation masks can be used to obtain 
Ground-Truth (GT) binary edges. 

Fusion Module: The parameters F, for fusing the dense 
feature representations s from the regular branch with 
the boundary representations s from the shape branch in 
a way that retains multiscale contextual information are 
supplied as part of this module. By mixing region and 
boundary characteristics, it generates a finer semantic 
segmentation K prediction of K semantic classes. The 

categorical distribution f=p(y|ss,rs)=F(ss,rs)IRNHW 
produced by segmentation prediction for an N-class 
segmentation reveals how probable it is that a pixel 
belongs to that class among the N classes. To integrate ss 
and rs, we employ a boundary map in our spatial pyramid 
pooling approach. This strategy allows for the 
maintenance of context information at various levels and 
is a vital component of modern semantic segmentation 
networks. 

3.2.1. Gated convolutional layer 

A novel GCL layer is employed to promote information 
flow from the regular stream to the shape stream since 
predicting semantic segmentation and semantic 
boundaries are activities that are closely related to one 
another. The key element of the suggested architecture, 
GCL, aids the shape stream in processing the important 
data by removing the irrelevant data. Features from the 
regular stream are not included in the shape stream. 
Instead, it makes advantage of GCL to deactivate its 
activations that are not considered important by the 
higher-level data in the regular stream. This may be 
compared to a two-stream collaborative approach in 
which the more powerful stream with a deeper awareness 
of the problem assists the less experienced stream in 
focusing just on the essential aspects. As a result, the 
shape stream can adopt a shallow architecture and 
analyze a very high-resolution image. 

Here among two streams, GCL is employed at several 
locations. Let ‘t’ be the no. of locations, t ∈ 0, 1, · · ·,l  the 
running index, and rst and sst be the preliminary 
representations of the relevant regular and shape streams 
as evaluated by the GCL in the following. To use GCL, an 

attention map tRHW is constructed by concatenating rt 

and st. Then, a sigmoid function  is introduced, followed 

by a normalized 1 × 1 convolutional layer C11: 

( )( )  = 1 1 ||t t tC ss rs  
(3) 
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The concatenation of feature maps is referred to as ||, 
and GCL is implemented as et with a component-wise 

product with an attention map t, accompanied by 
residual connections and channel-wise weighting with 

kernel kt, according to the attention map . At each pixel 
(i, j), a GCL  #  is calculated as follows: 

( ) ( )
( ) ( ) ( )( ) ( )( )= = +

,  

, , ,,
ˆ

T
i J

t t t t t ti j i j t i ji j
e e k e k k#  

(4) 

t̂e  is sent on to be further processed in the shape 

stream's subsequent levels. Backpropagation is possible in 
both attention map computation and gated convolution 
because the calculations are distinct. Instinctively,   is be 

considered as an attention m that lends more weight to 
places with crucial border information from the 
perspective of an attention map. In our research, we 
employed three different GCLs. These are connected to 
the standard stream's third, fourth, and fifth layers. 
Bilinear interpolation is being used to up-sample the 
feature maps from the normal stream if necessary. 

3.2.2. Joint multi-task learning 

Apart of an end-to-end strategy, we learn the regular and 
shape streams along with the fusion module. Supervised 
segmentation and boundary map prediction are combined 
in the training phase. We employ typical binary cross-
entropy (BCE) loss to determine the expected boundary 
maps s and the predicted semantic segmentation f. 

( ) ( )      = +, ,
1 2  , ˆ ,ˆBCE CEL L e e L y f  (5) 

The boundaries of GT are denoted by ˆ H We Rς , and the 

semantic labels by ˆ H Wy Rς . The weighting of the losses is 

controlled by two hyperparameters, 1. and 2. As well as 
regular stream parameters, the BCE loss  ,

BCEL . BCE 

updates shape stream parameters. We update all network 
parameters at the end of the final categorical distribution 
of semantic classes with CE loss  ,

CEL , as in standard 

semantic segmentation networks. The significant 
difference between a boundary and non-boundary pixels 

on boundaries in BCE is taken into account using the  
coefficient. 

3.2.3. Dual task regularizer 

As indicated previously, p(y|ss,rs)RNHW is a categorical 

distribution generated by the fusion module. Let RHW 
be the potential that indicates if a particular pixel is part 
of a semantic boundary in the image. The following spatial 
derivative is calculated based on segmentation output: 

( ) =  arg 1
|| ( *   } ,

2

max N
kG p y rs ss  (6) 

where G denotes Gaussian filter.  

The overall loss is denoted as, 

 = + +1 2* *semantic edge dualtaskLoss L L L  (7) 

Even though, the proposed GSCNN enables the precise 
masking of the boundaries and shapes, the best possible 
choice of the pathways and solutions are addressed by 
optimizing the proposed method with PSO. 

PSO optimization: PSO has been suggested by Eberhart 
and Kennedy in 1995. It has been used vastly in the last 
two decades. It is an easily accessible technique for 
resolving complex optimization problems. The concept of 
PSO has been adopted from the biological behavior of 
swarms of birds. The benefits of the PSO algorithm include 
the rapid convergence rate, easiness, and good accuracy 
for solving non-linear, and discrete problems by choosing 
the best solution. With the aid of PSO, the research 
expects to fine-tune GSCNN hyperparameters including 
learning rate, momentum, and weight decay. When 
optimizing the network's weights, PSO employs these 
parameters as the objective criterion in the loss function, 
however, they can be difficult to get since they are often 
application-dependent, whereas GSCCNN is the objective 
criterion to minimize. Particle Swarm Optimization will 
identify the ideal hyper-parameter values in this way, 
minimizing the loss of functions throughout the training 
set. Firstly, the initialization is done with the particles with 
random values for each component of the solution vector. 
The efficiency of each particle is then determined based 
on its characterization of a solution. If the current solution 
fitness is better than the pbest, the existing solution will 
be updated with the current solution. If the existing 
solution's fitness is better than gbest, the current solution 
will be updated with gbest as well. Xi = (X1, X2,..., Xin), Vi 
= (V1, V2,..., Vin), and Pi = (P1, P2,..., Pin), which are n-
dimensional vectors denoting the i-th particle's velocity as 
well as the particle's previously best location, I = 1,2,..., N, 
and t = 1, 2,..., T, are used in this equation. Its parameter 
is regulated by w; its cognitive and social learning rates 
are controlled by c1 and c2; a random number and a 
random number, respectively, offer variety to the 
population; its best particle index is g; its constriction 
factor X controls the size of the velocity. The iteration 
cycle is repeated until the halting requirement is reached, 
which might take multiple iterations or a good solution. 
Another technique may be added to PSO to boost its 
performance even further. The swarm is extinguished and 
PSO is rebuilt while preserving gbest, resulting in swarm 
diversification, also known as an explosion. The particles' 
new velocities in the search space are then estimated 
using Eq 1. The search procedure for an optimum value 
has been continued till the termination criterion has been 
reached. The velocity and position of the particles have 
been evaluated as follows. 

+ = + − + −1
1 1 2 2( ) ( )

i

k k k k
i i best i best iV WV C r P P C r G P  (8) 

and 

+ += +1 1k k k
i i iP P V  (9) 

k
iV , k

iP  velocity, the position of particle i at iration k 
+1k

iV ,. +1k
iP   velocity, location of particle i at iteration k 
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ibestP
 

the best location of particle i until ition k 

Gbest global best location 

i position of the particle 

W inertia weight 

C1, C2 local weight 

r1, r2 random variables evenly dispersed inside [0,1] 

K iteration number 

Thus, the PSO-Optimized GSCNN enables the precise 
monitoring and segmenting of the specific areas and 
conditions in the disaster landscape by the best possible 
prediction using semantic segmentation. The following 
section deals with the demonstration of the result and 
performance analysis of the proposed work. 

4. Result and discussion 

In this section performance of the proposed PSO-
Optimized GSCNN algorithm is analyzed and assed with 
other existing methods. The findings by experimenting 
with our GSCNN architecture used diverse types of 
disasters using Inria aerial image dataset. The 
comprehensive processing of the proposed method is 
carried out concerning the respective disaster such as 
hurricane, flood and tsunami aerial imagery. The output of 
the proposed work is demonstrated as follows, 

 

Figure 4. Proposed semantic segmentation of hurricane 

landscape. 

The pre-disaster dataset and post-disaster dataset trained 
in the labeling dataset undergo the pre-processing 
process to remove the redundant data present in the 
aerial image. Further the boundary and shape masking to 
undergo the semantic segmentation is carried out.  
Finally, the PSO-optimized GSCNN deals with the 
segmentation of both the pre-and post-disaster dataset to 
emphasize the changes and destruction and damaged 
roads, and pathways in comparing both. The efficient 
segmentation is carried out and respective states and 
changes are emphasized. Figures 4–6 represent the 
output representation of semantic segmentation of 
landscape aerial images of disasters such as hurricanes, 
Flood and tsunamis respectively. 

 

Figure 5. Proposed semantic segmentation of flood landscape. 

 

Figure 6. Proposed semantic segmentation tsunami landscape. 

4.1. Evaluation indicators 

To delineate the GSCNN model performance loss function 
and accuracy are analyzed with existing models. The PSO-
GSCNN semantic segmentation model performance is 
analyzed by Precision (P), recall(R), Accuracy and PR curve. 
Where Precision is the consistency between the detected 
landscape area and the real landscape area. The recall is 
the proportion of the correct segmentation of samples in 
the total Sample. 

=
+

TP
P

TP FP  (10) 

=
+

TP
R

TP FN  (11) 

Where True positives (TP) represent the model that 
correctly predicted disaster areas in the landscape, True 
negative (FN) is the proposed model that does not predict 
landscape disaster areas, and FP(False Positive) are cases 
in which the network predicts the disaster areas 
incorrectly. 
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=
f

A
N  (12) 

Here f is the no. of corrected predictions and N is the no. 
of samples. 

The performance of the proposed method is evaluated 
based on the comparison of the suggested method with 
prior-art methods. The comparison of the accuracy, 
precision and recall of the proposed PSO-GSCNN is 
analyzed with Restricted Boltzmann-machine (RBM) 
[Sublime et al., 2019], Convolution Neural Network [Dotel 
et al., 2020] and Fuse-Net [Persello et al., 2021] 
segmentation techniques. Figure 7 shows the accurate 
comparison of the suggested method with existing models 

Table 1. Comparative analysis of accuracy 

Techniques Accuracy 

RBM  94 

CNN  92 

Fuse-Net 96 

PSO-GSCNN 98 

 

Figure 7. Accuracy comparison with existing models. 

Table 1 shows the accuracy performance of the PSO-
GSCNN of different landscape segmentation. The accuracy 
rate of the model is 97.65% which is significantly high 
compared to the existing segmentation methods. 

Table 2. Comparative analysis of precision 

Techniques Precision 

RBM  92 

CNN  91 

Fuse-Net  95 

PSO-GSCNN 99 

Table 2 shows the precision performance of the PSO-
GSCNN of different landscape segmentation. The 
precision rate of the model is 98.21% which is significantly 
high compared to the existing segmentation methods. 
Figure 8 shows the precision comparison of the proposed 
method with existing models. 

Table 3. Comparative analysis of precision 

Techniques Recall 

RBM  90 

CNN  95 

Fuse-Net  93 

PSO-GSCNN 98 

Table 3 shows the Recall performance of the PSO-GSCNN 
of different landscape segmentation. The recall rate of the 
model is 97.23% which is significantly high compared to 
the existing segmentation methods. Figure 9 shows the 
recall comparison of the proposed method with existing 
models. 

 

Figure 8. Precision comparison with existing models. 

 

Figure 9. Precision comparison with existing models. 

 

Figure 10. Overall performance measure. 

Table 4. Overall performance analysis based on different classes 

of the landscape 

Class 
Precision 

(%) 

Recall 

(%) 

Accuracy 

(%) 

Normal 98 96 97 

Road  98 97 99 

Houses  97 96 97 

Rivers  96 95 98 

pathways 98 99 97 

Routes  96 95 97 

Target spot  96 96 96 

Damaged grounds 97 97   98 

Damaged spot 97 96 98 

Average 97 96 97.66 

85 90 95 100

RBM

CNN

Fuse-Net

PSO-GSCNN

Accuracy

RBM

CNN

Fuse-Net

PSO-GSCNN

Precision

85 90 95 100

RBM

CNN

Fuse-Net

PSO-GSCNN

Recall
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The overall performance of the proposed method is 
analyzed by the accuracy, precision and recall calculation 
in terms of the state of the landscape concerning normal 
landscape, road, houses, rivers, pathways, routes, target 
spots, damaged grounds and damaged spots of the 
monitored landscape affected by the disaster. The 
average accuracy occurred is 97.66%, the average 
precision is achieved by 97% and the average recall is 
attained by 96%. Figure 10 indicates the graphical 
representation of the overall performance analysis based 
on the different classes of the landscape. 

Table 4 shows the performance of the proposed system 
with the different classes of the landscape affected by the 
disaster. The average accuracy of the model is 97.65% 
which is significantly high compared to the segmentation 
techniques. 

5. Conclusion 

This research presents a deep learning-based landscape 
monitoring method for the semantic segmentation of 
aerial landscape images, using a Gated Shaped 
Convolution Neural Network. Aerial images undergo pre-
processing with the process of dilation and GSCNN 
highlighting the shape and boundary masks of the 
affected landscape. The GSCNN undergoes particle swarm 
optimization to choose the best possible development 
path. The results of the proposed method are evaluated 
based on the comparative analysis with prior-art methods. 
The comparison of the accuracy, precision, and recall of 
proposed PSO-GSCNN is analyzed with Restricted 
Boltzmann Machine (RBM), Convolution Neural Network 
and Fuse-Net segmentation techniques. The accuracy rate 
of the model is 97.65%, the precision rate of the model is 
98.21%, the recall rate of the model is 97.23% in 
comparison with the conventional RSM, CNN and Fuse-
Net respectively. The average accuracy occurred is 
97.66%, the average precision is achieved by 97% and the 
average recall is attained by 96 % which is higher 
compared to the existing techniques. 
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