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ABSTRACT 18 

Photocatalytic degradation for wastewater treatment is a method that has recently attracted attention. 19 

In this research, a synthesized composite of Fe3O4/SiO2/NiO with magnetic properties was used for 20 

the photocatalytic degradation of methylene blue dye under UV light. Furthermore, the composites 21 

were characterized using XRD, FTIR, BET surface area, SEM-EDS, VSM, and UV-DRS. The results 22 

showed that the Fe3O4/SiO2/NiO composite is magnetic with a saturation magnetization of 53.84 23 

emu/g. The Fe3O4/SiO2/NiO composite has a surface area of 128.8 m2/g, large than Fe3O4 and 24 

Fe3O/SiO2. The Fe3O4/SiO2/NiO composite has a band gap of 2.83 eV. The photocatalytic activity of 25 

Fe3O4/SiO2/NiO composite against the methylene blue dye exhibited high degradation efficiency 26 

reaching 98.51 %. The pseudo-first-order is appropriate to describe the kinetics model of 27 

photocatalytic degradation on methylene blue dye . The decrease in the degradation efficiency of the 28 

Fe3O4/SiO2/NiO composite after 5 times for the photocatalytic degradation of methylene blue dye 29 

from 98.02 % to 94.97 % indicates that the catalyst has high stability. Considering these results, the 30 

Fe3O4/SiO2/NiO composites could be used as a potential catalyst in industrial wastewater. 31 

Keywords: Fe3O4/SiO2/NiO, magnetic composite, photocatalytic, degradation, methylene blue dye  32 



 

 

 

1. Introduction 33 

Wastewater discharged from industry often contains pathogenic organisms in organic and 34 

inorganic contaminants that harm the environment (Pham et al., 2018). It contains dyes with several 35 

characteristics, including a large volume of waste, high chromaticity, high organic matter 36 

concentration, poor biodegradability, disturbing aesthetics, and blocking the transmission of sunlight, 37 

thereby reducing the photosynthetic activity in the waters. Additionally, a low concentration of dye 38 

(< 1 mg/L) can disturb the waters (Vandevivere et al., 1998). Methylene blue (C16H18ClN3S) is a 39 

cationic dye widely used in the coloring industry and as a chemical indicator (Khodai et al., 2013; 40 

Kuang et al., 2020). It has an aromatic group and a complex structure that is hydrophilic and stable 41 

to light, temperature, and chemicals (Hou et al., 2018). 42 

Various technologies, such as biological, physical, and chemical treatment have been used to 43 

reduce the concentration of dyes. The methods used to removal dye include adsorption (Ziaadini et 44 

al., 2019), precipitation (Ali et al., 2006), coagulation-flocculation (Moghaddam et al., 2010), 45 

filtration (David et al., 2020), ozonation (Dias et al., 2019) and others. Adsorption is often applied 46 

because it effectively reduces the concentration of dyes but causes secondary pollutants (Fu et al., 47 

2019). Presently, Advanced Oxidation Processes (AOPs) have been an effective method for 48 

degrading organic pollutants (Behzadi et al., 2020) due to their low cost and high efficiency (Behzadi 49 

et al., 2020; Jarariya, 2022). 50 

The AOPs method often used is heterogeneous photocatalysis based on semiconductor 51 

materials. The irradiation of the semiconductor by photons on the band gap energy produces positive 52 

and negative electrons. Furthermore, the positive hole reacts with a water molecule to produce a 53 

hydroxyl radical (•OH), while electrons react with O2 molecules to form superoxide radicals (•O2). 54 

The hydroxyl and superoxide radicals degrade dye into smaller non-toxic compounds, CO2 and H2O 55 

(Gao et al., 2013; Salomon et al., 2012). The several semiconductor materials used include TiO2 (Hou 56 

et al., 2018), NiFe2O4 (Hariani et al., 2021), NiO (Lett et al., 2022), ZnO (Chen et al., 2017), and 57 

CoFe2O4 (Loan et al., 2019). 58 



 

 

 

Nickel oxide (NiO) is a p-type transition metal oxide semiconductor with a band gap of about 59 

3.5 eV, antiferromagnetic, high conductivity, stable, and catalytic properties (Hosny, 2011; D’Amario 60 

et al., 2018; Barakat et al., 2013). It performs effectively in the photodegradation of orange II dye 61 

(Khan et al., 2022), methylene blue (Let et al., 2022; Wan et al., 2013), and methyl orange dye 62 

(Barzinjy et al., 2020). The combination of magnetic ferrite with NiO is a strategy to increase the 63 

efficiency of the catalytic process and the separation of the catalyst from the solution. The magnetic 64 

ferrite serves as a core. SiO2 is a layer to avoid the interaction between NiO and magnetic ferrite. The 65 

core-shell-shell structure increases the surface area, reduces the cost of catalyst usage, and increases 66 

lifespan (Channei et al., 2014; Girginova et al., 2010). For example, Fe3O4 coated with activated 67 

carbon and TiO2 showed better catalytic ability than used with only TiO2 (Gebrezgiabher et al., 2019). 68 

This research synthesized a magnetic composite of Fe3O4/SiO2/NiO, with Fe3O4 as the core, 69 

SiO2 as the inner shell, and NiO as the outer shell. Fe3O4 is the most widely used magnetic iron oxide 70 

compared to other ferrite compounds with an inverse spinel structure and superparamagnetic. The 71 

advantage of using Fe3O4 as a core in composites, after being used for photocatalytic degradation 72 

process, the composite can easily be separated from the solution using an external magnet, without 73 

filtering. Fe3O4/SiO2/NiO were applied for photocatalytic degradation of methylene blue dye under 74 

UV light irradiation. Finally, the kinetic photocatalytic degradation and reusability of these 75 

composites were investigated. 76 

2. Materials and methods 77 

2.1. Materials 78 

The materials used are of analytical grade without purification, including FeCl2·4H2O, 79 

FeCl3·6H2O, FeCl3·6H2O, NiCl2·6H2O, NaOH, HCl, C2H5OH, NH4OH, NH4HCO3, Tetraethyl 80 

orthosilicate (TEOS), Diethylene Glycol (DEG), methylene blue dye purchased from Merck 81 

(Germany), distilled water, and N2 gas. 82 

 83 
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2.2. Synthesis of Fe3O4 85 

Fe3O4 was synthesized using the coprecipitation method. First, a total of 1.988 g FeCl2·4H2O 86 

and 5.406 g FeCl3·6H2O were dissolved in 20 mL of distilled water. Afterward, 1 M NaOH was added 87 

to the solution dropwise while slowly stirring with a magnetic stirrer at a speed of 100 rpm, and N2 88 

gas was emitted until the pH reached ± 10. The precipitate was separated from the solution using a 89 

magnet and washed several times with distilled water and ethanol until the pH was neutral. Finally, 90 

it was dried in an oven at 70ºC for 3 hours. 91 

2.3. Synthesis of Fe3O4/SiO2 92 

The Fe3O4/SiO2 was synthesized using the Stober method. First, 0.5 g Fe3O4 was dispersed in 93 

20 mL of ethanol using an ultrasonic bath for 30 minutes at room temperature. The obtained product 94 

was added 5 mL of ammonia solution (28%), followed by the gradual addition of 2 mL TEOS solution 95 

(1 mL TEOS in 20 mL ethanol) using a magnetic stirrer for 3 for 5 hours. The precipitate was washed 96 

several times with distilled water and ethanol until the pH was neutral. The Fe3O4/SiO2 were dried in 97 

an oven at a temperature of 70ºC for 3 hours. 98 

2.4. Synthesis of Fe3O4/SiO2/NiO 99 

An amount of 0.5 g of NiCl2·6H2O was dispersed in 10 mL of DEG for 30 minutes at room 100 

temperature using a water bath sonicator, followed by adding 0.5 g of Fe3O4/SiO2 and 10 mL of 101 

0.0025 M NH4HCO3 solution under stirring for 15 minutes. The mixture was transferred to a Teflon 102 

autoclave and heated at 120 for 5 hours. The precipitate was washed using distilled water and ethanol. 103 

The obtained product was dried in an oven at 70ºC for 3 hours. Finally, it is calcined at a temperature 104 

of 300ºC for 2 hours. 105 

2.5. Characterization 106 

The product obtained was identified using an X-ray diffractometer (XRD Panalytical), operated 107 

at 40 kV and 30 mA, Cuα (λ = 1.542 Å) as a radiation source, and a range of 2θ at 10-90°. The bond 108 

formation was analyzed with Fourier Transform Infra-Red spectroscopy (FTIR, Prestige 21, 109 

Shimadzu) at wave numbers of 400-4000 cm-1 using the KBr pellet technique. Furthermore, the 110 



 

 

 

specific surface areas were evaluated with N2 adsorption-desorption using the BET (Quantachrome 111 

QuadraWin) method. Scanning electron microscopy with an energy dispersive spectrometer (SEM-112 

EDS JSM 6510) was used to observe surface morphology and elemental composition. Additionally, 113 

magnetic properties were evaluated using a Vibrating Sample Magnetometer (VSM Oxford Type 1.2 114 

T). UV-Vis Diffuse Reflectance Spectroscopy (Pharmaspec, UV-1700) was used to determine the 115 

band gap at 200-800 nm wavelengths. The concentration of methylene blue dye was determined using 116 

a UV-Vis spectrophotometer (Type Orion Aquamate 8000). 117 

2.6. Photocatalytic activity 118 

Photocatalytic activity of Fe3O4/SiO2/NiO against methylene blue dye under UV light 119 

irradiation source (15-W x 3, Philips). In the experiment, 50 mL methylene blue dye at a concentration 120 

of 20 mg/L with a 0.5 g/L catalyst dose, the pH of the solution was varied at 5, 6, 7, 8, 9, and 10 using 121 

0.1 M HCl or NaOH. The mixture was stirred in a dark room for 40 minutes to reach equilibrium, 122 

followed by a photocatalytic degradation process for 120 minutes (20 minutes intervals). Other 123 

variables are catalyst dose (0.25, 0.5, 0.75 and 1.0 g/L) and the dye concentration (10, 20, 30, and 40 124 

mg/L). 125 

The reusability of the catalyst was assessed by magnetically separating it following photocatalytic 126 

degradation under optimal conditions. It was then washed using deionized water and dried in an oven 127 

for 3 hours at 70°C. Calcination was carried out at 300ºC for ± 2 hours to remove organic substances 128 

(Prasad et al., 2022). Finally, the catalyst is reused for photocatalytic degradation and repeated up to 129 

5 times. 130 

3. Results and Discussion 131 

3.1. Catalyst characterization 132 

Fe3O4 as the core was synthesized and coated SiO2 using the coprecipitation and the sol-gel 133 

methods, respectively. The Fe3O4/SiO2/NiO was synthesized using the hydrothermal technique. 134 

Figure 1 shows that the crystal structure of Fe3O4, Fe3O4/SiO2, and Fe3O4/SiO2/NiO were determined 135 

using XRD. According to the cubic spinel phase (JCPDS card no. 74-0748), the diffraction 136 



 

 

 

characteristics of Fe3O4 were observed at 2θ = 30.39°, 35.69°, 43.35°, 53.87°, 57.65°, and 62.97°. 137 

This was appropriate for the planes (220), (311), (400), (422), (511), and (440). After coating with 138 

SiO2, a broad peak was observed at 2θ around 23°. This peak is a characteristic of amorphous SiO2 139 

(Chen et al., 2014).  140 

The new peaks in Fe3O4/SiO2/NiO were observed at 2θ = 76.01° (311) and 80.05° (222). 141 

Meanwhile, other peaks overlapped those of Fe3O4, including 37.21° (111), 43.45° (200), and 62.95° 142 

(220), according to the structure of JCPDS card no. 78-0423 (NiO). Using the Debye-Scherrer 143 

equation, the crystal size of Fe3O4 was calculated to be 7.0 nm, while those of Fe3O4/SiO2 and 144 

Fe3O4/SiO2/NiO were 8.2 nm. Another research showed that coating Fe3O4 with SiO2 increased the 145 

crystal size from 22.60 to 38.0 nm (Reman et al., 2021). 146 

 147 

Figure 1. XRD diffraction pattern of (a) Fe3O4, (b) Fe3O4/SiO2, and (c) Fe3O4/SiO2/NiO 148 

Figure 2 shows the FTIR spectra of Fe3O4, Fe3O4/SiO2, and Fe3O4/SiO2/NiO. The wave 149 

numbers between 3400 cm-1 and 1600 cm-1 appear in all peaks, indicating the presence of O-H groups 150 

from free water, which is absorbed by the catalyst (Hariani et al., 2021; Elzahrani 2017; Ojemaye et 151 

al., 2017). In Figure 2(a), Fe-O stretching vibration is observed at a wave of 557.43 cm-1. Meanwhile, 152 

no other peak was observed apart from water absorption. Figure 2b shows an additional peak at 464.84 153 

and 804.31 cm-1, which indicates symmetrical and asymmetrical Si-O terminals (Reman et al., 2021). 154 

A strong peak at 1089.78 cm-1 is an asymmetric Si-O-Si and Si-O-H vibrational bond observed at a 155 



 

 

 

wave number of 950.60 cm-1 (Fu et al., 2019; Han and An, 2021). The wave number for metal-oxygen 156 

stretching vibration was observed in the 400-700 cm-1 range. The absorption band in the 600–700 157 

cm−1 indicates absorptions of Ni-O stretching vibration. This study appears at 670.32 cm-1, even 158 

though it is not sharp (Qiao et al., 2009). 159 

 160 

Figure 2. FTIR spectra of (a) Fe3O4, (b) Fe3O4/SiO2, and (c) Fe3O4/SiO2/NiO 161 

The surface area affects the catalyst's ability in the degradation process (Kalam et al., 2018). 162 

Based on the N2 gas adsorption-desorption curve shown in Figure 3, the specific surface area (SBET) 163 

of Fe3O4, Fe3O4/SiO2, and Fe3O4/SiO2/NiO were determined using BET analysis. According to the 164 

classification IUPAC, all BET curves showed compliance with the Type IV isotherm, namely 165 

mesoporous materials. The specific surface area of Fe3O4 (SBET) is 88.4 m2/g, but after coating with 166 

SiO2, it becomes 124.2 m2/g. SiO2 protects it from agglomeration processes, thereby increasing the 167 

surface area (Li et al., 2017; Wu et al., 2020). Another research showed that coating Fe3O4 with 168 

graphene oxide (GO) produces a larger surface area than Fe3O4 and GO (Thy et al., 2020). In this 169 

study, the Fe3O4/SiO2/NiO has a larger surface area than Fe3O4 and Fe3O4/SiO2, which are 128.8 m2/g. 170 

These results are similar to CoFe2O4/SiO2/TiO2, which have a larger surface area than CoFe2O4 and 171 

CoFe2O4/SiO2 (Zielińska-Jurek et al., 2017). 172 
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 174 

Figure 3. N2 adsorption-desorption isotherm of (a) Fe3O4, (b) Fe3O4/SiO2, and (c) Fe3O4/SiO2/NiO 175 

Figure 4 presents the morphology of Fe3O4, Fe3O4/SiO2, and Fe3O4/SiO2/NiO analyzed using 176 

SEM. The Fe3O4 surface appears to be small, dense, and agglomerated, while the Fe3O4/SiO2 and 177 

Fe3O4/SiO2/NiO appear to be a granular molecule with reasonably large sizes coating Fe3O4. The 178 

SEM mapping of the Fe3O4/SiO2/NiO in Figure 5 shows the distribution of elements on the composite 179 

surface. Some parts of the surface indicate the agglomeration of Fe3O4 (red). Meanwhile, Ni (blue) 180 

appears to be distributed on the surface of Fe3O4/SiO2 and Fe3O4.  181 
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 183 

Figure 4. Morphology of (a) Fe3O4, (b) Fe3O4/SiO2, and (c) Fe3O4/SiO2/NiO 184 

     185 

Figure 5. SEM Maping of Fe3O4/SiO2/NiO 186 

Table 1 shows the composition of Fe3O4, Fe3O4/SiO2, and Fe3O4/SiO2/NiO as a result of EDX 187 

analysis. The composition of Fe3O4 consists of Fe and O, which indicates its purity. The addition of 188 

Si to Fe3O4/SiO2 indicates that SiO2 has successfully to coating Fe3O4, while the addition of Ni shows 189 

that the element was distributed on the surface of Fe3O4/SiO2. 190 

Table 1. EDX analysis of Fe3O4, Fe3O4/SiO2, and Fe3O4/SiO2/NiO 191 

Materials Elements (%) 

 O Fe Si Ni 

Fe3O4 29.70 70.30 - - 

Fe3O4/SiO2 53.51 18.60 27.89 - 

Fe3O4/SiO2/NiO 53.28 14.64 23.97 8.11 

  192 



 

 

 

Figure 6 shows the magnetic properties of Fe3O4, Fe3O4/SiO2, and Fe3O4/SiO2/NiO. The Fe3O4 193 

saturation magnetization of 83.26 emu/g is classified as strong magnetization. Previous research 194 

showed that nanomagnetic coating ferrite with non-magnetic materials reduces saturation 195 

magnetization. Subsequently, coating Fe3O4 with SiO2 blocks the interaction of the magnetic dipole 196 

between adjacent magnetic particles and isolates them from the magnetic field (Kotutha et al., 2019). 197 

In general, SiO2 is non-magnetic, which implies that it is insulating and inert. In this research, the 198 

saturation magnetization values of Fe3O4/SiO2 and Fe3O4/SiO2/NiO were 61.96 and 53.84 emu/g, 199 

respectively. The presence of NiO reduces the properties of Fe3O4/SiO2. This is related to the surface 200 

effect and anisotropy of the particles (Zhao et al., 2015; Sadeghi et al., 2012). The magnetization 201 

curve shows a mixture of ferromagnetic and superparamagnetic properties. Therefore, the magnetic 202 

properties allow for the easy separation of the composite from the solution after being used for 203 

photocatalytic degradation. 204 

 205 

Figure 6. The magnetization of (a) Fe3O4, (b) Fe3O4/SiO2 and (c) Fe3O4/SiO2/NiO 206 

The energy absorbed by the catalyst depends on the optical band gap energy, namely the 207 

difference between the valence and conduction bands (Kalam et al., 2018). Figure 7 shows plots 208 

(αhv)2 versus Energy (eV) to obtain band gap values of Fe3O4/SiO2/NiO. The broad spectrum 209 

indicates that Fe3O4 dominates the phase in the material. Finally, the band gap value is obtained from 210 

Tauc's plot according to the following equation. 211 



 

 

 

      (𝛼ℎ𝑣)2 = A(hv− Eg)                      (1)         212 

Where 𝛼, A, ℎ, 𝑣, and 𝐸𝑔 are the absorption coefficient, proportionality constant, Planck's constant, 213 

vibrational frequency, and energy band gap. NiO was absorbed in a wavelength of 320 nm. Another 214 

research showed that NiO and Fe3O4 were observed at 330 nm and 440 nm, respectively (Barzinjy et 215 

al., 2020). In this research, the Fe3O4/SiO2/NiO band gap was 2.83 eV, which is smaller than the band 216 

gap of NiO ~ 3.5 eV and larger than the band gap of ferrite compounds ~ 2 eV (Hariani et al., 2021). 217 

The formation of the core-shell-shell, namely the Fe3O4/SiO2/NiO, successfully reduced the band 218 

gap. 219 

 220 

Figure 7. Wood-Tauc plot for Fe3O4/SiO2/NiO  221 

3.2. Photocatalytic activity 222 

 Figure 8a shows the effect of pH on the efficiency of photocatalytic degradation. The dye 223 

concentration was 20 mg/L, and the catalyst dose was 0.5 g/L with a pH varying from 5 to 10. The 224 

pH solution contributes to the degradation of dyestuffs and gives a charge to the catalyst's surface. 225 

Photocatalytic degradation of methylene blue dye using several catalysts, namely TiO2, ZnO, Co3O4, 226 

CdS, and MnTiO3, was optimum at a pH range of 9 to 11 (Alkaykh et al., 2020; Alkaim et al., 2014). 227 

Methylene blue dye is a cationic dye at alkaline pH, the dye has a positive charge, and the interaction 228 

is more effective with a negatively charged catalyst. Furthermore, there are many OH- ions at the pH 229 

of alkaline solutions. The catalyst absorbs irradiation to produce holes (ℎ𝑉𝐵
+ ) which then react with 230 



 

 

 

OH- to form hydroxyl radicals (•OH). At high pH, hydroxyl radicals are quickly scavenged, giving 231 

them no opportunity to react with dyes (Alkaim et al., 2014).  232 

  233 

 234 

Figure 8. Effect of (a) pH solution, (b) catalyst dose, and (c) initial concentration of dye on the 235 

photocatalytic degradation of the Fe3O4/SiO2/NiO  236 

 The effect of catalyst doses was conducted with variations of 0.25, 0.5, 0.75, and 1.0 g/L, while 237 

the concentration was 20 mg/L at a pH of 9. Figure 8b shows that the higher the amount of catalyst, 238 

the more the dye degraded. In addition to being observed at 100 minutes, doses of 0.5 and 0.75 g/L 239 

had nearly the same degradation rate. However, there was a decrease at 1.0 g/L. At higher doses, there 240 

is a reduction in the reaction rate due to catalyst loading, which causes the deactivation of activated 241 

molecules by collision with ground state catalysts (Herman, 1995). Furthermore, the optimum dose 242 

was at 0.5 g/L with a dye reduction efficiency of 89.77% in 100 minutes.  243 



 

 

 

 The effect of the initial dye concentration was analyzed using 10 to 50 mg/L. Figure 8c shows 244 

that the dye reduction efficiency increased directly with the initial dye concentration after 100 min. 245 

It also increases with the number of dye molecules adsorbed on the catalyst surface. This prevents 246 

photons from reaching the catalyst surface as they are blocked by the dye (Hariani et al., 2022; 247 

Makeswari and Saraswathi, 2020). Therefore, the photocatalytic degradation of methylene blue dye 248 

was better at a low concentration of 10 mg/L with an efficiency of 98.51%. This indicates that the 249 

catalyst plays a significant role in dye degradation. 250 

The mechanism of photocatalytic degradation of methylene blue (MB) dye using Fe3O4/SiO2/NiO 251 

composite according to the reaction: (Ammar et al., 2020). 252 

Fe3O4/SiO2/NiO + ℎ𝑣     Fe3O4/SiO2/NiO (𝑒𝐶𝐵
− +  ℎ𝑉𝐵

+
) 253 

𝑒𝐶𝐵
−  + O2      O𝟐

−•  254 

ℎ𝑉𝐵
+  + H2O     OH•   +  H+   255 

O𝟐
−•  +  H+  

   OH2
•    256 

O𝟐
−•  +  H2O

  
   HO2

•   + OH− 257 

OH2
•   + H2O     H2O2  + OH•  258 

H2O2   2 OH•   259 

MB-Fe3O4/SiO2/NiO + OH•   + O𝟐
−•   Fe3O4/SiO2/NiO + CO2 + H2O + other product 260 

3.3. Kinetic for photodegradation 261 

 The following formula expresses the kinetic model of photocatalytic degradation on methylene 262 

blue dye using pseudo-first-order: 263 

 ln 𝐶0/𝐶𝑡 =  𝑘𝑡      (2) 264 

Where 𝐶0 and 𝐶𝑡 are the initial concentration at each time (a certain time) (mg/L), 𝑡 is the irradiation 265 

time (min), and 𝑘 is the rate constant (min-1). The 𝑘 value is obtained from the slope of the linear 266 

fitting graph ln 𝐶0/𝐶𝑡 Versus 𝑡. This research determined the kinetics of photocatalytic degradation 267 

using a methylene blue dye concentration of 10 mg/L, a catalyst dose of 0.5 g/L, and a solution pH 268 

of 9 (Figure 9). The coefficient of determination value (R2= 0.990 > 0.9) indicates that the kinetic 269 

model is compatible (Van et al., 2019). Therefore, the k value obtained is 1.1.10-4 min-1. 270 



 

 

 

 271 

Figure 9. The plot of the pseudo-first-order for photocatalytic degradation on methylene blue dye 272 

3.4. Reusability of Fe3O4/SiO2/NiO 273 

Reusability is essential for the remediation process as it aims to see the cost-effectiveness and 274 

feasibility of catalysts (Gebrezgiabher et al., 2019; Moosavi et al., 2020). Its performance uses 275 

methylene blue dye concentration of 10 mg/L, a dose of 0.5 g/L, and a solution of pH 9. Figure 10 276 

shows the efficiency of photocatalytic degradation after 5 cycles. Subsequently, the efficiency of 277 

photocatalytic degradation decreased from 98.02 to 94.97% (< 5%). The photocatalyst properties, 278 

such as surface area, number of active sites, and the presence of impurities, could change during 279 

reuse, but those with approximately 5 cycles continue to show good performance. It can be believed 280 

that the Fe3O4/SiO2/NiO exhibits excellent photocatalyst stability. 281 

 282 

Figure 10. Reusability of Fe3O4/SiO2/NiO  283 



 

 

 

Table 2 shows a degradation efficiency comparison of methylene blue dye using several catalysts. 284 

The results of this research have high degradation efficiency with the same initial concentration and 285 

relatively fast time.  286 

Table 2. Photocatalytic degradation efficiency of some catalysts againts methylene blue dye 287 

Catalyst 
Initial concentration 

(mg/L) 

Irradiation 

time (min) 

Efficiency 

(%) 

References 

 

Cu-TiO2/ZnO 35 120 64.72 
Khaki et al., 

(2017) 

SnS2-SiO2@α-Fe2O3 5 100 96.0 
Balu et al., 

(2018) 

ZnO-SnO2 10 60 96.53 
Lin et al., 

(2018) 

TiO2/Alg/FeNPs 5 120 97.6 
Kanakaraju et 

al., (2018) 

CoFe2O4/H2O2 10 140 82.0 
Kalam et al., 

(2018) 

Fe3O4@SiO2@CeO2 10 50 98.0 Ziaadini et al., 

(2019) 

CoFe2O4@SiO2@DyCe2O7 20 30 94.5 

Zinatloo-

Ajabshir and 

Salavati-Niasari 

(2019) 

Fe2TiO5 10 250 97.0 
Vasiljevic et 

al., (2020) 

Fe3O4/SiO2/NiO 10 100 98.51 Present study 

 288 

4. Conclusion 289 

The core-shell-shell composite Fe3O4/SiO2/NiO has been successfully synthesized, with Fe3O4 290 

as the core, SiO2 as the interlayer, and NiO spread on the composite surface. The composite has 291 

magnetic properties with a saturation magnetization value of 53.84 emu/g. Furthermore, the optimum 292 

conditions for photocatalytic degradation of Fe3O4/SiO2/NiO against methylene blue dye were pH 9, 293 

catalyst dose of 0.5 g/L, 10 mg/L dye concentration, and irradiation time of 100 minutes, the 294 



 

 

 

degradation efficiency of 98.51%. This composite has high stability, and reusability of approximately 295 

5 cycles decreases the removal efficiency by < 5%. Therefore, the Fe3O4/SiO2/NiO composite has the 296 

potential to reduce water pollution. Further research needs to be developed for the photocatalytic 297 

degradation of wastewater containing other pollutants. 298 
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