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Abstract 

Water being a precious commodity for every person 
around the world needs to be quality monitored 
continuously for ensuring safety whilst usage. The water 
data collected from sensors in water plants are used for 
water quality assessment. The anomaly present in the 
water data seriously affects the performance of water 
quality assessment. Hence it needs to be addressed. In this 
regard, water data collected from sensors have been 
subjected to various anomaly detection approaches guided 
by Machine Learning (ML) and Deep Learning framework. 
Standard machine learning algorithms have been used 
extensively in water quality analysis and these algorithms 
in general converge quickly. Considering the fact that 
manual feature selection has to be done for ML algorithms, 
Deep Learning (DL) algorithm is proposed which involve 
implicit feature learning. A hybrid model is formulated that 
takes advantage of both and it is data invariant too. This 
novel Hybrid Convolutional Neural Network (CNN) and 
Extreme Learning Machine (ELM) approach is used to 
detect presence of anomalies in sensor collected water 
data. The experiment of the proposed CNN-ELM model is 
carried out using the publicly available dataset GECCO 
2019. The findings proved that the model has improved the 
water quality assessment of the sensor water data 
collected by detecting the anomalies efficiently and 
achieves F1 score of 0.92. This model can be implemented 
in water quality assessment. 

Keywords: Anomaly detection, convolutional neural 
network, Extreme Learning Machine, Machine Learning, 
water quality. 

1. Introduction 

Water is always projected to be a vital need in our everyday 
life. Nearly $184 billion is spent towards supply of clean 
water globally (Sensus, 2013). There are serious diseases 
caused due to polluted water and can be classified as 
water-related, waterborne, water-based and water scarce 
diseases (NHMRC, 2011; Waterwise Rand Water, 2017). 
Hence, it is very important to find whether the water is of 
good quality. In addition to drinking water, other industries 
also utilize water such as gas distribution plants, oil 
refineries and smart grids. All water treatment and water 
distribution plants are generally termed as Critical 
Infrastructure (CI). These CIs are subjected to cyber-attacks 
of injecting false data (Exida, 2015) into the system. Such 
anomalies in data need to be found out. It becomes an 
inherent duty to assert the safety and quality of water 
being used in various use cases including drinking, 
sanitation and other related uses. Improving water quality 
has a direct and significant impact on public health (Yang et 
al., 2014). Therefore considering the abundant 
requirement of water in a global platform it is essential to 
detect any significant change in water conditions 
beforehand to avoid any burden on health care facilities. 
Water conditions are routinely monitored by sensors 
(Zhang et al., 2016) that record operative and quality 
indicators such as temperature, pH, etc. Any significant 
change in the sensor readings implies an anomaly in water 
quality. These anomalies serve as important indicators in a 
Water Distribution System (WDS) for early detection of 
undesirable changes and to prevent any from happening. 

Anomaly Detection refers to the process of finding 
undiscovered patterns that differ significantly from the 
normal or most likely behavior in a dataset. Abnormal 
conditions like improper quantity of chlorine in water 
sample, water with high acid or base content etc., 
represent anomaly. In addition to these abnormal events, 
faulty components in water quality assessment 
environment also represents anomaly. Also, the water 
quality data might have gone through intentional or 
unintentional attacks. Anomaly detection can be thought 
of as a classification problem wherein we determine 
whether a particular water sample as ‘normal’ or 
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‘anomalous’. There have been multiple approaches 
involving Machine Learning and Deep Learning frameworks 
to detect anomalies in water quality data. 

Water quality data is used in Water Distribution 
System(WDS), water quality research units etc. Though 
anomaly is not a frequently occurring phenomenon, if not 
treated properly many serious problems will be unnoticed 
which affects the water quality assessment. The serious 
problems are contamination of water and faulty operation 
of water quality assessment equipment etc. Also, since 
anomalies are not normal events which occur frequently, 
water quality datasets typically contain a very low 
proportion of anomalous water quality observations. With 
a heavy imbalance in dataset, it becomes tougher to train 
machine learning or deep learning models to detect 
anomalies in water quality datasets. Those models may 
tend to predict even anomalous data samples as normal 
more often, unless the models are fine-tuned to counter 
the imbalance. Hence it can be understood that the 
anomaly present in the water data seriously affects the 
performance of water quality assessment. 

1.1. Related work 

Initially anomaly detection in Water Distribution Systems 
(WDS) (Muharemi et al., 2019; Shalyga et al., 2018) 
involved traditional approaches like sampling the water 
used for drinking and performing various complex analysis 
techniques on the collected samples in laboratories. The 
mentioned traditional approach using Water Quality Index 
(WQI)(Arivarasi et al., 2017) is not only time consuming, 
but also involves manual labor for physical observation and 
analysis. Due to the complicated techniques involved for 
estimation, it is not appropriate to be translated to real-
time detection. 

The advancement of Wireless Sensor Networks (WSN 
paved the way for the use of wireless sensors to record 
various parameters (like pH, turbidity, conductance, etc.) 
of water supplied to the general public (Akyildiz et al., 
2002). This approach not only turned out to be time-
efficient, but was also cost-effective. Monitoring using 
WSN involves placement of sensors at monitoring stations 
of WDS to capture continuous data. 

With the humongous data collected by WSNs, it is vital to 
make sense out of the data which is to understand the data 
pattern and apply the inferred knowledge to detect 
anomalies in water. Traditionally, various simple threshold-
based detection algorithms were employed. Those 
methods did not provide satisfactory results. Anomaly 
detection approach was employed to identify any unusual 
patterns in water meter readings, not just threshold 
markers. Various Machine Learning (ML) algorithms such as 
Support Vector Machines (SVM), Artificial Neural Networks 
(ANN) and Logistic Regression (LR)(Muharemi et al., 2018) 
were proposed to be employed in anomaly detection.Both 
SVM and LR are basically binary classifiers which are able 
to classify water as anomalous or normal. 

Real test bed data generated from Festo MPA (Robles-
Durazno et al., 2021) workstation rig and some features 
which are engineered are current, voltage and power from 

the sensors. Multilayer perceptron, k-Nearest Neighbor 
(KNN),SVM, Decision Trees(DT), and Random Forest(RF) 
are used to classify the anomalous data produced by cyber-
attacks. The ML models created using ML techniques were 
able to achieve feasible and satisfactory results. 
Additionally, the efficacy of Ensemble methods (Chen et al., 
2018) was experimented and they produced satisfactory 
results. A dynamic ensemble selection method called non-
dominated local class specific accuracy was developed 
(Ribeiro et al., 2020). The authors had given a solution to 
solve problems related to false positives and false negative 
in water anomaly. This method benefits both consumer 
and water companies. A comprehensive study on the 
various methods is also available (Dogo et al., 2019). 

The tendencies of water quality variation is found by an 
autoregressive method using Bayesian auto regressive 
(BAR)(Liu et al., 2020) and Isolation Forest (IF) algorithm is 
used to detect water anomaly. Both algorithms are 
combined to find anomalies in Potomac River of West 
Virginia, USA. This also provides early warning of 
emergency operations in advance. 

A Multilayer perceptron model was used for finding 
anomaly in Secured Water Treatment (SWaT) dataset (MR 
et al., 2020). They used unsupervised approach to protect 
any critical infrastructure from cyber-attacks. The 
abnormal deviation in sensor values which is used to detect 
anomalies is found by the Cumulative SUM (CUSUM) 
approach. The analysis is done for normal operation and 
direct and stealthy attacks. A framework designed to find 
anomalies in the high frequency data collected from situ 
sensors (Leigh et al., 2019) situated in rivers flowing into 
Great Barrier Reef. There are some prioritized anomalies 
such as level shifts, isolated spikes in the water data. They 
can be identified by the regression methods, but it suffers 
from false positive rates. So, feature based methods are 
used which gave better results but again, it suffers from 
false negative rates. 

Rule based methods are used to figure out missing values. 
A combined approach of these three methods is used to 
form an optimal framework in detecting anomalies which 
produced obviously optimal outcomes. Though the 
performance of ML approaches is considerable, they 
require the need of extensive feature engineering for 
comparable results. To solve the computational complexity 
posed by explicit feature engineering, application of Deep 
Learning (DL) techniques (Muharemi et al., 2019; Fehst et 
al., 2018) were exploited in anomaly detection that 
performed feature extraction implicitly. Generative 
adversarial networks (Wu et al., 2021) can be used for 
detecting anomalies for underwater gliders. The model was 
trained on a time series two healthy dataset and then 
tested on nine deployment datasets. The obtained model 
was robust in nature. Also, various other DL algorithms like 
Long Short-Term Memory (LSTM) and Recurrent Neural 
Networks (RNN), were applied in water quality detection. 
However, unlike ML algorithms like SVM and LR, deep 
learning methodologies have produced unsatisfactory 
results. The performance degradation of deep learning 
models is attributed to the imbalance problem associated 
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with water quality anomaly data sets. Subsequently Qian et 
al. considered the class imbalance problem affecting deep 
learning methods (Qian et al., 2020) and performed 
sampling of data before training a LSTM network. However, 
the authors performed evaluation on a different data set 
and hence their work is hard to be generalized. 

While existing approaches typically involve standalone 
Machine Learning models or standalone deep learning 
models, in this paper, we propose a hybrid model of 
combining CNN and ELM. The innovation applied here is 
that we combine and exploit the advantages of both the 
models - quick learning time of ELM and the implicit feature 
extraction ability of CNN for finding anomalies in the water 
data. With computations on publicly available GECCO 
water quality dataset (SPOTSeven Lab, 2019), it is shown 
that the complementary strengths of ELM and CNN 
together is beneficial in a real-time environment where the 
inference time is pivotal. 

The anomaly detection of the hybrid model is used for 
improving the water quality assessment. Some of the 
advantages include implicit feature learning (making it 
dataset invariant), less inference time and higher chances 
of detecting anomalies which is evident from the 
evaluation scores as mentioned in section 3. Since the 
chances of detecting anomalies are increased, it makes it 
possible to detect damage of critical structure of water 
distribution and assessment plant thereby reducing the 
chances of incurring huge loss. Also, the model makes it 
possible to detect contaminated water thereby reducing 
the risk of general public getting access to unsafe water. 

2. Materials and methods 

2.1. Dataset 

The time-series collection of water features was obtained 
from the publicly available GECCO 2019 Industrial 
Challenge dataset (SPOT Seven Lab, 2019). The dataset 
comprises of 8 indicators as mentioned in the Table 1, 
obtained by sensor readings in a WDS from July 1, 2017, to 

September30, 2017. The dataset has a total number of 
132480 records out of which 132268 records are non-
anomalous and 212 records are anomalous. The dataset 
has multiple records with the values of one-to-many fields 
not filled with data. The missing values in the dataset are 
replaced using Multiple Imputation by Chained Equations 
(MICE) (Azur et al., 2011). 

Also, after comparing the number of data samples for the 
two cases, it is observed that a significant difference in the 
proportion of records. The dataset is thereby concluded to 
exhibit a data imbalance problem. To study the effect of 
this high imbalance, the performance comparison of the 
hybrid CNN-ELM model by training it with three differently 
sampled datasets - the original dataset, the oversampled 
dataset and a combined oversampled and under sampled 
dataset. For the oversampled dataset, imputing values to 
the minority class to the original dataset by implementing 
SMOTE (Bowyer et al., 2011) sampling technique. For the 
combined oversampled and under sampled dataset, once 
the dataset is SMOTE oversampled, Random under sampler 
is used to delete some records of the majority class 
according to the sampling strategy provided. 

2.2. Algorithms 

2.2.1. Convolutional neural network (CNN) 

CNN is very popular and makes it different among others in 
terms of its greater performance with audio signal, speech 
signal and images. The convolutional, pooling and fully 
connected layer are the backbone of CNN. The first 
convolutional layer being representative of the core 
operation of the architecture performs dot product of two 
vectors, where one is the kernel and the other in the input. 
The kernel slides across the input vector in one dimension 
(since the input is sensory data). The sliding size of the 
kernel is called as stride. The filters determine the 
dimensionality of the output space. The kernel size will be 
lesser than that of input vector, so that we store only the 
significant and meaningful information. 

Table 1. Indicators in the dataset used 

Indicator Description 

Time Time at which the measurement was made (in yyyy:mm:dd HH:MM:SS format) 

Tp Temperature of water (in °C) 

pH pH value of water 

Cond Electrical Conductivity of water (in S/m) 

Turb Turbidity of water (in FTU) 

SAC Spectral Absorption Coefficient (in 1/m) 

PFM Pulse Frequency Modulation (in Hz) 

EVENT Boolean marker which indicates whether sample is anomalous 

 

Max pooling layer down-samples the input fed by taking 
the maximum value of the spatial window of the specified 
pool-size. The window gets shifted according to the 
specified strides. The flatten layer flattens the input fed 
(convert input into 1-D array) without affecting the batch 
size.CNN makes use of a mathematical operation called 
convolution to derive a weighting function w(m) from 
every CNN layer. In w(m), ‘a’ represents the age of 
measurement of time series data. CNN architecture is 
shown in Figure 1. 

The convolution operation is represented as, 



=−

= = −
 

( ) ( * )( )   ( ) ( )
m

s t x w t x m w t m  
 

Here, kernel or filter is represented as w, input as x and the 
output as s for continuous time series data t. The 
experiment on CNN is done for considering its effect to 
extract meaningful features from data such that the 
computation becomes efficient. 
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Figure 1 Architecture of CNN. 

2.2.2. Extreme learning machine (ELM) 

Figure 2 shows the ELM architecture which comprises of 
three-layer feed forward architecture. The first, second and 
third layer corresponds to input, hidden and output layers. 
The weight connections between the first layer and the 
hidden layer are randomly generated, set and fixed. 
Between the hidden and the input layer, the connection 
weights are trained in a single pass of input using Moore 
Penrose pseudo-inverse method. 

The outputs from the hidden layer are produced and 
output is obtained from the final output layer by using the 
appropriate activation functions. Attributing to the good 
generalization performance and faster training time by 
ELM, the experiment is carried out on different activation 
functions for our task. 

 

Figure 2 Architecture of ELM. 

2.3. Proposed architecture 

The proposed hybrid model targets to utilize the best 
characteristics of both CNN and ELM in such a way that 
CNN performs implicit feature extraction and ELM pools 
the trained features by CNN to effectively detect or classify 
records to produce the desired output as shown in Figure 
3. In detail, the CNN model is trained end-to-end to classify 
the records as anomalous or not. After training the CNN 
model for a desired number of iterations, the output from 
the penultimate layer of the model, i.e., the flatten layer is 
used as input for the ELM input layer. The features 
extracted by CNN model is fed as input to the ELM input 
layer obtains from the flatten layer and uses it to train its 
hidden layer weights. The output finally obtained from the 
ELM is the target variable that denotes whether a record is 
anomalous or not. 

 

Figure 3 Hybrid CNN-ELM architecture. 

The newness of this approach is that this method removes 
the need for manual feature extraction which is an 
essential step in training machine learning models. CNN 
does the implicit feature extraction while ELM does fast 
learning to predict results thereby reducing inference time. 
The scientific progress achieved through this approach is 
that this model is invariant to datasets i.e., since a deep 
learning model is employed to do implicit feature 
extraction, our model is not dataset specific and will 
perform well for different datasets which may contain 
different features. For example, GECCO 2018 and GECCO 
2019 datasets had different sets of features but our model 
is suited to perform for both datasets. This ability of the 
model makes it a perfect fit for invariant datasets to 
produce results with high reliability in a short span of time. 

3. Results and discussion 

3.1. Performance metrics 

The performance metrics such as accuracy, recall, precision 
and f1 score are used to evaluate the proposed hybrid 
model. When performing the classification task on the test 
set of the model, the following four outcomes are possible. 
Here positive means anomaly data and negative means 
non-anomaly data. 

True Positive (TP): When both actual and predicted values 
are anomaly. 

False Positive (FP): When the predicted value is anomaly 
and actual value is non-anomaly. 

True Negative (TN): When both actual and predicted values 
are non-anomaly. 

False Negative (FN): When the predicted value is non-
anomaly and actual value is anomaly. 

Confusion Matrix is an n x n matrix where n denotes the 
number of classes. The confusion matrix is a 2 x 2 matrix 
filled with actual class values against predicted class values 
since there are two classes. Depending upon the number of 
TP, FP, TN and FN the evaluation of the performance of the 
model is done using the following metrics: 

3.1.1. Accuracy 

Accuracy is the ratio of the number of correct predicted 
data to the total number of predicted data. Since, an 
imbalanced dataset is under consideration with almost 
99.57 percent samples of the dataset belong to class 0, the 
accuracy is close to 1.0. Therefore, accuracy does not 
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capture all the aspects of model's performance and hence 
do not use accuracy as a performance metric. 

+
=

+ + +

TN TP
Accuracy

TP FN TN FP  
 

3.1.2. Precision 

Precision is the ratio of number of true positives samples to 
the number of samples predicted as positive by the model. 
Precision helps us to understand how the model is able to 
predict and produce valid and relevant results. The formula 
to find precision is given below: 

=
+

( )  
TP

Precision PR
TP FP  

 

3.1.3. Recall 

Recall is the ratio of number of true positives to the number 
of samples that are actually positive. Recall is also known 
as True Positive Rate (TPR). Recall helps us to understand 
how complete our model is predicting the true positives. 
The formula to find recall is given below: 

=
+

( )  
TP

Recall RC
TP FN  

 

3.1.4. F1-score 

F1-score is the harmonic mean of precision and recall. F1-
score is the most important performance metric as it 
captures the performance of the model by taking both false 
positives and false negatives into account. Hence, F1-score 
is the most significant performance metric when dealing 
with a highly imbalanced dataset. 

The formula to find the F1-score of the model is given 
below: 

 
=  

+ 

 
1  2 

PR RC
F score

PR RC  
 

Since f1-score is a measure of both precision and recall, it 
is suitable for deciding on the performance of the model. 

3.1.5. AUC-ROC 

ROC (Receiver Operating Characteristic) is a probability 
curve plotted with the True Positive Rate (TPR) against the 
False Positive Rate (FPR). ‘Area under the Curve’ (AUC) of 
the ROC represents the degree of separability of the 
different classes by the model. Higher the AUC-ROC, the 
model is better at classifying a sample of class 0 as class 0 
and a sample of class 1 as class 1. 

=
+

 
FP

FPR
TN FP  

 

It is already mentioned that recall is also known as TPR. So 
once TPR vs. FPR is plotted, the value of AUC-ROC can be 
found out. For an ideal model, the AUC-ROC is 1.0.There is 
a need to maximize AUC-ROC so that the model performs 
better in distinguishing the two classes. 

3.2. Implementation results 

3.2.1. Convolutional neural network 

The standalone CNN architecture was experimented for 
different loss functions and optimizers. From extensive 
experimentation, using Binary Cross Entropy as loss 
function and Stochastic Gradient Descent (SGD) as 
optimizer provided the best performance. The 
experimental results for the differently sampled datasets 
with Binary Cross Entropy Loss function and SGD optimizer 
are detailed in Table 2 given below. 

From Table 2, it is observed that the model performs the 
best for the original dataset with the F1-score of 0.73. 

Table 2. Performance of standalone CNN 

Dataset Precision Recall F1-score AUC-ROC 

Original 1.0 0.65 0.73 0.64 

SMOTE oversampled 0.51 0.94 0.49 0.92 

SMOTE oversampled and random under sampled 0.60 0.97 0.67 0.93 

Table 3. Performance of standalone ELM 

Dataset Precision Recall F1-score AUC-ROC 

Original 0.98 0.82 0.88 0.82 

SMOTE Oversampled 0.60 0.95 0.66 0.95 

SMOTE Oversampled and Random Under sampled 0.72 0.94 0.80 0.93 

 

3.2.2. Extreme learning machine 

The standalone ELM architecture was experimented on 
different activation functions, i.e. Sigmoid, Tanh and Radial 
Basis Function (RBF) for different neuron capacity. Table 3 
presents experimental results of performance of ELM 
based on different approaches. ELM based on 1000 
neurons combined with sigmoid activation performs 
comparatively better than other approaches. It is observed 
that the model performs the best for the original dataset 
with the F1-score of 0.88. 

3.2.3. Hybrid CNN-ELM 

The combination of the best performing CNN and ELM 
model as observed from Tables 2 and 3 is used to formulate 
the Hybrid CNN-ELM model. The ROC curves for the Hybrid 
CNN-ELM models trained with original dataset, SMOTE 
(Chawla et al., 2002) dataset and the SMOTE oversampled 
and random under sampled datasets are shown in the 
Figures 4–6 respectively. 
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Figure 4 ROC Curve of Hybrid CNN-ELM trained with original 

dataset (AUC = 0.84). 

It is observed that SMOTE oversampled dataset model 
performs significantly better with a near perfect ROC curve 
with AUC of 0.97 because the model is trained with 
relatively more samples when compared with the model 
trained with the original dataset. 

 

Figure 5 ROC Curve of Hybrid CNN-ELM trained with SMOTE 

oversampled dataset (AUC = 0.97). 

 

Figure 6 ROC Curve of Hybrid CNN-ELM trained with SMOTE 

oversampled and random under sampled dataset (AUC = 0.94). 

Table 4. Confusion matrix for hybrid CNN-ELM trained with 

original dataset 

 Predicted positive Predicted 

negative 

Actual Positive 23 (TP) 10 (FN) 

Actual Negative 0 (FP) 26463 (TN) 

Tables 4–6 show that the CNN-ELM model trained with 
original dataset has FP+FN=10 and has very little chances 
of misclassifying. In Table 7, the results of proposed work 

of hybrid model under different datasets used for training. 
Considering F-1 score is a pivotal metric in the case of 
imbalanced datasets, the Hybrid CNN-ELM model trained 
with the original dataset outperforms the other two 
sampling-based approaches. 

Table 5. Confusion matrix for hybrid CNN-ELM trained with 

SMOTE oversampled dataset 

 Predicted positive Predicted 

negative 

Actual Positive 31 (TP) 2 (FN) 

Actual Negative 49 (FP) 26414 (TN) 

Table 6. Confusion matrix for hybrid CNN-ELM trained with 

SMOTE oversampled and random under sampled dataset 

 Predicted positive Predicted 

negative 

Actual Positive 29 (TP) 4 (FN) 

Actual Negative 39 (FP) 26424 (TN) 

F1-score is our major performance metric. Unlike other set 
of classification problems where accuracy is of more 
importance, we focus on F1-score since our dataset is 
highly imbalanced and our focus is more on finding 
anomalies. In this case we want to maximize the true 
positives (anomalies) and minimize false positives and false 
negatives. Precision and Recall are two metrics which are 
usually complementary. Precision focuses on how our 
model is able to produce valid results while recall focuses 
on how complete our model is. Though they are 
complementary, when true positives are higher, both 
precision and recall will improve. F1-score being the 
harmonic mean of precision and recall thereby becomes 
the most significant metric through which the model’s 
performance can be determined. As shown in Table 7, our 
model can achieve an F1-score of 0.92 which corresponds 
to the fact that the hybrid CNN-ELM model is able to detect 
anomalies more often. This proves that the model can 
detect anomalies caused by any unusual events injected 
due to intentional or unintentional attacks or failure of 
component. This ability of the model can be credited to the 
implicit feature learning ability of CNN and generalizability 
of ELM. 

3.3. Comparison with existing approaches 

Table 8 details the comparison of experimental results 
obtained by related works using deep learning for 
automatic feature selection and machine learning methods 
for quick convergence. In the case of machine learning 
based approaches, SVM benchmarks a F1 score of 0.989. In 
the case of deep learning approaches, our work Hybrid 
CNN-ELM outperforms most of the existing deep learning 
works and achieves a F1 score of 0.92. There is a 
performance improvement of 10%, 2% when compared to 

Muharemi et al., 2018’s RNN and LSTM approaches. 

3.4. Comparison with different datasets 

To prove that our model works across different datasets 
and it has an inherent data invariant behavior, we have 
used our model for another dataset GECCO 2018 (SPOT 
Seven Lab, 2018). The results are shown in Table 9. For both 
datasets, our model is able to achieve F1-score more than 
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0.9. For GECCO 2018 our model has given F1-score as 0.98 
and AUC-ROC as 0.97. There is a significant increase in both 
the scores because of the fact that GECCO 2018 has 

different features, and the proportion of anomalous data is 
more than GECCO 2019. 

Table 7. Performance of Hybrid CNN-ELM 

Dataset Precision Recall F1-score AUC-ROC 

Original 1.0 0.85 0.92 0.84 

SMOTE oversampled 0.69 0.97 0.77 0.97 

SMOTE oversampled and random under sampled 0.71 0.94 0.79 0.94 

Table 8. Comparison of existing methods on GECCO water quality dataset 

Approaches Method F1-score 

Muharemi et al., 2018 

LR 0.584 

SVM 0.087 

ANN 0.019 

Muharemi et al., 2019 
RNN 0.834 

LSTM 0.902 

Chen et al., 2018 
LR  0.480 

LSTM  0.800 

Proposed Hybrid ELM Model Hybrid CNN – ELM 0.920 

 

Table 9. Performance of Hybrid CNN-ELM when trained with 

different datasets 

Dataset Precision Recall F1-

score 

AUC-ROC 

GECCO 2019 1.0 0.85 0.92 0.84 

GECCO 2018 1.0 0.97 0.98 0.97 

The significant scientific contribution of our approach is 
that it is data invariant and it has implicit feature learning 
capability which is evident from the results presented in 
Tables 8 and 9. 

4. Conclusion 

In this paper, an improvement to water quality assessment 
is done through detecting anomalies in water quality data. 
A Hybrid CNN-ELM model is developed for improving the 
water quality assessment. This hybrid framework combines 
the implicit feature extraction ability of CNN and 
generalizability of ELM to make it efficient than the 
machine learning models which makes manual feature 
selection. The experiments and the results obtained is 
evident that hybrid framework outperforms the existing 
methods with f1 score of 0.92. The proposed hybrid model 
also works well across another dataset GECCO 2018 with f1 
score of 0.98 which proves that it is data invariant. 

One of the limitations is that it requires a longer time to 
train the model with the training time proportional to the 
size of the water quality dataset. Another limitation is that 
the model is a heavyweight component which makes it 
harder to import on the end hardware device. Considering 
the advent of optimization of deep learning models making 
them capable of running on an edge device (Chen, Ran, 
2019), future scope of our work can be extended to 
deploying our model to water quality detection 
environment and validate real-time performance. 
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