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Graphical abstract 

 

Abstract 

Climate data composes of time series and space series with 
unknown. These unknown series contain complex co-
variation relations of climate data. The extraction of these 
relations is essential for further revealing the complex 
representations between time series and space series in 
climate data. As an important application, through 
extracting these co-variation relations, we can further 
predict the change of climate to provide early warning for 
natural disasters, e.g., Greenhouse effect. Hence, it is a 
challenge to explore the relations between climate data. To 
address this, this work proposes a deep neural network. 
Based on Brenier theorem, the loss function is derived. 
Since Brenier theorem rigorously proves that the data 
distribution in background space is consistent with the data 
distribution in the feature space with greatest probability, 
ensuring that the relations extracted from the latent space 
are as close to that of in background space as possible. 
Then, the parameters of time series consisting of eight 
variables are encoded by the first hidden layer in the 
proposed model. The remaining two hidden layers encode 
the latitude and longitude in spatial series, respectively. 

Experimental results show that the proposed method 
outperforms the state-of-the-art methods with respect to 
climate relations extracted. Hence, the proposed method 
is considered a good alternative in capturing relations 
between climate variables, as well as, between carbon 
dioxide (CO2) and surface temperature. 

Keywords: Climate, neural networks, relation extraction. 

1. Introduction 

The climate data contains a rich source of knowledge for 
relations research of climate. Multiple time series and 
space series with unknown hide in the large amount of 
climate data. Usually, these series are high-dimensionality 
and exist by abstract complex forms. Moreover, some 
ineffaceable redundant information that brings a great deal 
of trouble for climate patterns discovered, such as, noise, 
etc, also hides in climate data. Facing to high-dimensional 
and complex climate data, because manually curating 
these inner relations is time consuming and expensive, 
there has been growing interest in developing 
computational approaches for automatically extracting 
relations from climate data. Relations extraction for 
climate aims to automatically extract by taking advantage 
of machine learning and contributes to various fields of 
climate research. Since the curse of dimensionality and 
ineffaceable redundant information of disturbing, it is a 
challenge for relations extraction from climate data. 

Some study field, such as images, ecological and medical 
etc, great efforts have been made for relations extraction. 
In these field, some methods have been also successfully 
employed for automatic relations extraction, including (i) 
Pattern-based method, such as, pattern structures of 
syntactic trees in (Ming et al., 2008), similarly, method in 
(Raja et al., 2013), such method needs the crafting or 
defining of some patterns and rules according to features 
of tasks. Unfortunately, it is hard to defining of some 
patterns and rules in high-dimensional data. Moreover, 
Due to the diversity and complex data forms, pattern-
based method is easy to suffer from low recall rates. 

(ii) Feature-based method, e.g., in (Kim et al., 2015) and in 
(Raihani and Laachfoubi, 2016), this method relies on 
variation of features, and is very skill dependent tasks. For 
instance, in (Björne et al., 2013), the patterns are extracted 
based on domain knowledge features. As well as the 
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feature representations in (Li et al., 2010) are also obtained 
based on the feature coupling generalization. 

(iii) Kernel-based method, e.g., the neighborhood hash 
graph kernel method in (Zhang et al., 2011), it can 
effectively capture syntactic features from the structural 
data, for example, a hybrid kernel-based method is used for 
relations extraction (Chowdhury and Lavelli, 2013), beyond 
that, also using the multiple kernel methods, such as 
methods in (Thomas et al., 2013) and in (Zheng et al., 
2016). Kernel-based method needs to select suitable kernel 
functions, while this is a difficult task to design suitable 
kernel functions. 

(iv) deep architecture-based method, e.g., con-volutional 
neural networks (CNNs) in (Zheng et al., 2017), this method 
shows exciting potential in automatic feature learning 
(Zhao et al., 2016) and in capturing the correct low-
dimensional represents as accurately as possible (Goldberg 
et al., 2018; Le Cun et al., 2015; Ma et al.,  018). In actual 
application, CNNs are widely applied in relations extraction 
work. For instance, CNNs in (Zhao et al., 2016) and in (Liu 
et al., 2016) is used for medical relation extraction. In 
addition, the multichannel CNN (Quan et al., 2016) is also 
used for biological relation extraction. Certainly, sparse 
auto-encoders (SAEs) can also capture low-dimensional 
representations from high-dimensional data (Guo et al., 
2017). For instance, the multi-modal deep neural networks 
are used to explore informative and heterogeneous 
features from different feature groups (Zhao et al., 2015). 
Although the model in (Zhao et al., 2015) learns better 
variables representations, the model needs to predefine 
loss function in different task features, which is very hard 
to predefine loss function in application. To learn multi-
channel features representations in recognition tasks, a 
deep framework is designed in (Zhu et al., 2015). 

This indicates that deep architecture-based method has 
outstanding advantages to capture variable relations. This 
is because deep architectures are not simply to learn an 
identity function, more specifically, they squeeze 
redundant information out of data by learning under 
strong constraints (Vincent et al., 2010). From the 
perspective of the internal architecture, an encoder in deep 
architecture achieves the mapping of background space to 
latent space (feature space), while a decoder reconstructs 
the original input according to latent space (Bengio et al., 
2013). Obviously, obtaining the data distribution in latent 
space becomes very critical, because this influences the 
final output reconstructed by a decoder. The Brenier 
theorem can effectively solve the issue that data 
distribution in latent space is close to original data 
distribution in background space, since the Brenier 
theorem can calculate the optimal distance between 
background space and latent space from the view of 
geometry. 

To extract relations from climate, we designed deep neural 
networks possessing three hidden layers. Our primary goal 
is to capture the relations from climate. However, our final 
goal is to explore the ability of complex relations extracted 
using this architecture possessing deep paradigm. To 
achieve our studied goals, we developed the proposed 

model in the following steps: 1) the data in background 
space is sampled by the sampling theorem, to ensure that 
the discrete surface reconstructed quickly converge to an 
original surface. 2) the loss function in proposed model is 
derived according to Brenier theorem. Finally, we validate 
our thought-on climate datasets. 

We summarize the main contributions of this work as 
follows. 

1) The proposed model successfully captures these co-
variation representations between climate data, 
implying that this architecture possessing deep 
paradigm is better than that of possessing non-deep 
paradigm to obtain relations between complex 
variables. 

2) The decline in the correlation between seasons reduces 
the possibility of climate change maintaining the same 
pattern in different seasons. 

3) The trajectory of climate change shows continuity 
when CO2 concentration is low. In the areas with high 
surface temperature, CO2 concentration shows a local 
peak, meanwhile, this local peak phenomenon stays for 
a while. 

2. Notation and preliminary 
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Lemma 2. Brenier theorem (Brenier, 1991). Suppose x and 
y are the Euclidean space Rn, and the transportation cost is 
the quadratic Euclidean distance c(x, y) = |x−y|2. If u is 
absolutely continuous and u and v have finite second order 

moments, then there exists a convex function :X→R, such 

that the gradient map u gives the unique solution to the 

Monge’s problem, where u is called Brenier’s potential, u 
is called Brenier mapping or the optimal transmission mass 
mapping. In general, u is not unique. 

Lemma 1 and Lemma 2 provide a theory for deriving loss 
function, in section 3.1 we use them to derive the loss 
function in proposed model. Symbols of appearing and 
their meaning are given in Table 1. 
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Table 1. Symbol description 

Symbols Implication 

h vectors 

c a constant  

H open convex set 

v Dirac measure 

T transport map 

c(x, y) Euclidean distance  

u convex function  

u Brenier mapping 

 a constant  

 a constant 

 convex area 

p a point 

 Kantorovich’s potential 

,  [0,1] a confidence interval. 

n the number of neurons 

3. Methodology 

In this section, we explore how to select the loss function 
for the proposed model. Then, the sampling condition is 
given. To further analyze the trajectory of climate change, 
the correlation diagram is described. Finally, in subsection 
3.4, the proposed model is implemented. 

3.1. Loss function 

Lemma 1 interprets the optimal transportation mapping 
from a geometric point of view. The optimal transportation 
mapping is exactly what we expect to find, because it helps 
that the distribution reconstructed is close to the original 
distribution. In fact, Brenier theorem (i.e., lemma 2) 
indicates that the optimal transmission mapping is a 
gradient mapping of a convex function. The convex 
function is also called Brenier potential energy, i.e., 

:→R, where,  is itself convex R area. Hence, we only 
need calculate a gradient mapping of a convex function ( or 
Brenier potential energy). 

Reference (Brenier, 1991) indicate that if the source 
probability measure u satisfies some very broad conditions, 
such as absolute continuity, or the finite of second 
moment, the optimal transmission mapping exists and is 
unique. The gradient mapping of Brenier's potential 
function is u:→, which maps point p   to u(p)  . 
Therefore, the gradient mapping should satisfy the Monge-
Ampere equation, having that 

=


2det( )
u

D u
v u  (2) 

The existence of solution of Monge-Ampere equation has 
been proved by Gu et al., 2016. 

Above analyzing shows that selection loss functions is 
equivalent to calculate Brenier’s potential of convex 
functions. References (Su et al., 2017) and (Chen et al., 
2019) prove that the Brenier’s potential u and the 

Kantorovich’s potential  is related by following equation 

= −21
( ) | | ( )

2
u x x x  (3) 

Eq. (3) shows that calculation Brenier’s potential can be 
converted to calculate Kantorovich’s potential. 
Kantorovich’s potential can be calculated by calculation 
Wasserstein distance (Lei et al., 2019). Consequently, the 
selection of loss function is converted to calculate 
Wasserstein distance. In regard to the calculation of 
Wasserstein distance, please see in (Cédric, 2003, 2008; 
Kantorovich, 1948). 

As discussed in the section, we get a proper loss function 
through calculating the Wasserstein distance. Noting that 
there are many methods for the selection of loss function, 
e.g., Classification Loss, Regression Loss, etc. However, the 
above involved method provides a reference for the 
selection of loss functions. 

3.2. Data sampling 

To accurately discover the relations from climate, we need 
to consider sampling density. Since sampling density is 
related to the accuracy of surface  
reconstructed, sampling conditions should be strictly 
considered. Sampling conditions should be that at least 
there is one sampling point inside any geodesic disk with 

radius . In addition, the distance between any two 

sampling points is no less than the threshold.  
To ensure that the reconstructed discrete surface 

converges to the original smooth surface, an appropriate  

and  should be considered. Many methods  
can be used to measure the distance between any two 
sampling points, such as Hausdorff distance, geodesic 
distance, curvature measure and Laplace-Beltrami 
operator etc. 

3.3. Correlation diagram 

Climate data belongs to a typical multivariate distributed 
data, therefore, Markov random field model is very 
suitable to analyze the kind of correlation to multivariate 
distributed data (Rue and Held, 2005). To describe the 
correlation between climate variables, according to the 
principle of Markov random field model (Meinshausen and 
Buhlmann, 2006; Rue and Held, 2005), the inverse co-
variance matrix is used. Due to the non-zero element in the 
fitted inverse co-variance matrix is used to represent the 
conditional correlation between related variables, there 
should resolve the statistical confidence level of the non-
zero element. If ( [0,1]) is a confidence interval, the 
fitted inverse co-variance matrix should mistakenly obtain 

a non-zero element with the probability of  (Meinshausen 
and Buhlmann, 2006). 

The fitted inverse co-variance matrix not only reduces the 
number of parameters estimated, but also ensures the 
reliability of non-zero elements (Meinshausen and 
Buhlmann, 2006). This is because it effectively controls the 
unnecessary correlation degree. Moreover,  
it also ensures the credibility between each variable with 
correlation. Obviously, the authenticity of method is not 
lost due to the over-simplification of correlation. Hence, to 
guarantee a sufficient statistical confidence degree of the 
finally constructed correlation diagram, based on above 

discussed, we use = 0.05. 
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4. Model 

4.1. Model implementation 

The proposed deep model with three hidden-layers is as 
shown in Figure 1. The first layer in proposed model 
encodes time series parameters consisted of the 8 
variables (KM, KMLS, KH, KHLS, KHSFC, RI, 25(100 hPa), 
27(100 hPa)). The remaining two layers encodes spatial 
series parameters, i.e., encoding latitude and encoding 
longitude. This doing is that the same layer is helpful for the 
relations extraction between variables of the same type. 
Importantly, due to each layer corresponds to a series, 
three layer architectures are beneficial to better maintain 
the consistency between time series and spatial series, 
thereby encoding more compact. 

Model training. For inputting dataset (see Section 5.1 for 
detail), 80% of the data are used as training sample for 
training our model. During training, we dynamically adjust 
the iteration epoch according the observed training 
precision. The training stops until our model converges. 

Model testing. The left 20% of data are then used for 
testing sample. 

 

Figure 1. Model architecture. The first hidden-layer encodes 

eight variables. The second and third hidden-layer encode the 

longitude and the latitude, respectively. The eight variables are 

described at https://atmosphere.copernicus.eu/. 

From the view of inner architectures, compared with 
complicated deep architectures, e.g., multi-layer CNNs, 
Generative Adversarial Networks, our model has relatively 
shallow layers. In spite of this, but our model possesses a 
deep architecture basic paradigm, meanwhile, the loss 

function derived by Brenier theorem compensates for the 
weakness of shallow layers to a certain extent. Overall, our 
model is capability of achieving relations extraction from 
the complicated climate data. 

4.2. Hyper-parameters 

The proposed model has some hyper-parameters, such as 
neurons volume, activation functions, and learning rate, 
etc, therefore, we carefully studied part of them in the 
range of values. For other hyper-parameters, since they 
have no substantial impact on experimental results, their 
default values are adopted. 

(i) Optimizer. Adam not only inherits the ability from 
AdaGrad to effectively deal with sparse gradient, but 
also has the same ability as RMSProp to handle with 
non-stationary targets (Kingma and Ba, 2015). 
Compared with other optimizer, such as RMSprop, SGD, 
Momentum and Nesterov, etc, Adam show better 
performance in high-dimensional data. Hence, Adam is 
used as an optimizer for our model. 

(ii) Activation function. Common activation functions are 
ReLu, Sigmoid, tanh, eLU, etc. We verify the four 
activation functions. In addition, the suitable number of 

neurons is also explored in range of from 2 n  to n  (n is 

data volume). Through analyzing AUC value of hyper-
parameters, we adjusting them accordingly. The tuned 

results are that the number of neurons is n , and the 

ReLu is used as activation function in the  
first and second layer, and the tanh is used in the third 
layer. 

(iii) Learning rate. Adam can automatically provide an 
adaptive learning rate for different learning tasks, so 
there is no need to manually configure the learning rate. 

5. Experimental setting 

5.1. Dataset 

We explore the relations of climate in an annual cycle, 
which provides a reference for climate change in the next 
an annual cycle. So, climate data and CO2 data in an annual 
cycle are used as the studied objects. 

Table 2. Datasets description 

Dataset Description Data volume Dimensionality 

Climate low spatial, 8 latitudes, 8 longitudes, 8 variables 40000 512 

CO2 low spatial, 8 latitudes, 8 longitudes, 8 variables 65000  512 

 

 

Figure 2 Comparison of accuracy extracted. 

The ECMWF climate data is used in this work 
(https://atmosphere. copernicus.eu/), of which each 
sample has 512 components, consisting of 8 variables (KM, 

KMLS, KH, KHLS, KHSFC, RI, 25(100 hPa), 27(100 hPa)) at 
different locations, i.e., 8 latitudes and 8 longitudes, in 
Table 2. 

5.2. Comparison methods and assessment metrics 

We opt for the three state-of-the-art of typical relation 
extraction methods, i.e., (I) Feature-based method, 
method in (Björne et al., 2013). (II) Kernel-based method, 
method in (Chowdhury and Lavelli, 2013). (III) Deep 
architecture-based method, method in (Liu et al., 2016). 
For the three competitors, their optimal parameters 
observed in the corresponding literature are used. Unless 
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otherwise stated, all experiments are run on the same 
experimental settings. 

Receiver operating characteristic curve (ROC) and 
corresponding area under the curve (AUC) are used to 
assess the precision of relations extraction. 

6. Results and discussion 

In this section, we address entire experimental results. The 
low-dimensional representations from these high-
dimensional climate data are presented, and these 
relations extraction are visualized. 

6.1. Extraction precision 

The AUCs of methods are addressed in Figure 2. It can be 
seen that our method outperforms competing methods in 
extracted precision on climate dataset and CO2 dataset. As 
for the two datasets, the extracted accuracy of our method 
reaches above 85%. While for the three competitors are 
below 75%. In addition, deep method, e.g., method in (Liu 
et al., 2016), is superior to traditional method, e.g., method 
in (Björne et al., 2013) and (Chowdhury and Lavelli, 2013). 
This implies that this architecture possessing deep 
paradigm is better than that of possessing non-deep 
paradigm to obtain relations between complex variables. 

 

Figure 3 Correlation diagram. 

6.2. Change trajectory of climate 

Figure 3 addresses the correlation diagram. In Section 3.3, 
we determine the statistical confidence degree of the fitted 
inverse co-variance matrix, so this is feasible to directly 
study the number of edges in correlation diagram. Figure 4 
displays the trajectory of climate change in an annual cycle, 
and we visualize the trajectory using 2-dimension. 

Results indicate that in the first three quarters, the number 
of edges in correlation diagram drops, but in the fourth 
quarter show a rising trend, in Figure 3. Through analyzing 
Figures 3 and 4, several observations can be obtained. 

(i) Our method and competing methods find the 
trajectory of climate change. However, the trajectory 
discovered by our method outperforms the three 
competitors. 

(ii) The trajectory climate change shows obviously partial 
continuity in some seasons as shown in Figure 4, e.g., Q1 
and Q4, meaning that climate presents periodic change 
(partial continuity) and a-periodic change. 

(iii) The decreasing number of edges demonstrates that 
the correlation of between seasons is decreasing, 
implying that maintaining the same regularity in 
different seasons is getting lower and lower. 

 

Figure 4. Climate trajectory. Colors represent quarters of a year, 

i.e., first quarter (Q1), second quarter (Q2), third quarter (Q3), 

fourth quarter(Q4). (a) our method (b) method in (Liu et al., 

2016) (c) method in (Chowdhury and Lavelli, 2013) (d) method in 

(Björne et al., 2013). 

6.3. Co-variation relations extracted 

The relations of CO2, surface temperatures and seasons are 
addressed in Figure 5(a). Results show this encoding 
method, i.e., our method, can accurately capture the co-
variation relations of atmospheric carbon dioxide flux, time 
series and surface temperatures. Obviously, CO2 flux 
reaches the maximum amount in second quarter (Q2), as 
shown in Figure 5(b). 

 

Figure 5. Relations of CO2 flux, surface temperatures and 

seasons. 

Several observations can be obtained from Figure 5, having 
that 

(i) CO2 concentration presents a local peak in the areas of 
presenting higher surface temperature, e.g., 40o C. This 
phenomenon of local peak occurs concentrated within a 
certain period of time, i.e., CO2 concentration 
concentrates with a high probability in Q2. 

(ii) CO2 concentration is related to the trajectory of 
climate change. In Q2, CO2 concentration is higher than 
the other 3 quarters in Figure 5(b). Correspondingly, the 
trajectory of climate change in Q2 shows discontinuity, 
as shown in Figure 4(a). However, the continuity of 
trajectory in Q1 and Q4 is more obvious than that of in 
Q2 and Q3, meanwhile, CO2 concentration in Q1 and Q4 
is lower than that of in Q2 and Q3. 

Above results indicate that the proposed model can 
successfully learn relations between variables through 
filtering this non-eigenvalue information from complicated 
data. This indicates that models possessing deep 
architectures paradigm has more advantages than that of 
owning non-deep architectures in capturing relation 
between complex variables. 

7. Conclusion 

In this work, we investigated the issue of the relations 
extraction from complex climate variables. To address this, 
a deep neural network is designed to explore these 
interesting relations in this climate variables. We 
successfully capture the co-variation relations CO2 flux, 
surface temperatures and seasons, thereby further 
revealing the complex representations between time series 
and space series in meteorological data. 
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