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ABSTRACT 12 

The aim of this paper is to estimate the amount of aeolian dust, deposited by dry and wet 13 

processes, that is deposited to the eleven marine regions of the Mediterranean-Black Sea 14 
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Marine System (MBMS) and to compare it to the riverine influxes (i.e. suspended and dissolved 15 

sediment loads). This research is based on information for aeolian dust deposition at several 16 

coastal stations, around the MBMS, following an extended research of the available literature. 17 

For data elaboration, processing, and visualization a G.I.S. environment was utilized.  The total 18 

annual amount of dust input for the whole system has been estimated to 59.9 × 106 tonnes, of 19 

which 57.2 × 106 tonnes are deposited in the Mediterranean Sea and only 2.7 ×106 tonnes in 20 

the Black Sea. The contribution of dust input (load), corresponding to 6.2% and 0.8% of the 21 

total amount of suspended and dissolved load, for the Mediterranean and Black Sea 22 

respectively, reveals the significant role of the aeolian dust inputs to the MBMS marine 23 

environment, in particular, at its southern Mediterranean domain.  24 
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1 Introduction  27 

According to the "Glossary of Atmospheric Chemistry Terms" (IUPAC, 1990) dust is defined 28 

as "Small, dry, solid particles projected into the air by natural forces, such as wind, volcanic 29 

eruption, and by mechanical or man-made processes such as crushing, grinding, milling, 30 

drilling, demolition, shoveling, conveying, screening, bagging, and sweeping. Dust particles 31 

are usually in the size range from about 1 to 100 µm in diameter, and they settle slowly under 32 

the influence of gravity." Atmospheric dust particles are removed from the atmosphere through 33 

three processes: (a) dry deposition, where the particles are deposited directly to the earth’s 34 

surface (mainly through aerodynamic transport and or Brownian transport); (b) wet deposition, 35 

where the material is transferred by precipitation to the ground; and (c) cloud deposition, which 36 

is less important, than the other two processes and involves the movement of material that is 37 

trapped in non-precipitating droplets of clouds or fog (Lovett, 1994).  38 

The presence of dust in the atmosphere can affect the temperature of the atmosphere and ocean 39 

through the process of absorption and scattering of solar radiation by dust particles (e.g. Alpert 40 

et al., 1998; Miller & Tegen, 1998; Yue et al., 2010).  Dust may also affect marine biological 41 

processes by providing valuable nutrients (Jickells et al., 1998).  Although the fertilizing 42 

potential of atmospheric deposition on ocean production in the Mediterranean is a matter of 43 

debate, the coupling between dust deposition and the annual chlorophyll-a cycle can, on 44 

average, account for 11.5% of the total of nutrients (Gallisai et al., 2012). Similarly, Kalinskaya 45 

& Varenik (2019) have reported cases of dust transport over the Black Sea associated with high 46 

concentrations of inorganic phosphorus and silicon. Moreover, Rahav et al. (2020) have shown 47 

that cyanobacteria (i.e. Prochlorococcus) biomass, may be attributed, at least to some extent, 48 

to the impact of bio-aerosol deposition related to dust emissions in the case of oligotrophic 49 

“Low-Nutrients-Low-Chlorophyll-a” regions such as that of the Mediterranean basin.  50 

The scope of this work is to estimate the amount of aeolian dust being transferred by the 51 

atmosphere to the various marine regions of the Mediterranean-Black Sea Marine System 52 

(MBMS), through wet and dry processes, and to compare dust inputs to the suspended and 53 

dissolved sediment fluxes. 54 

 55 

2. Mediterranean and Black Sea marine system 56 

The Mediterranean Sea and the Black Sea comprise a semi-enclosed intercontinental marine 57 

system (i.e., MBMS: Mediterranean and Black Marine System), bordered by the Eurasian and 58 

African continents, having a total surface of circa 3x106 km2. The MBMS includes the three 59 

Mediterranean basins (Carter et al., 1972) i.e. Western, Centre, Eastern Mediterranean 60 
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(WMED, CMED, EMED) and the Black Sea (BLS), which are subsequently divided into 11 61 

marine regions (Cruzado, 1985; Ludwig et al., 2010; UNEP, 2012; Poulos & Kotinas 2020), as 62 

characteristically shown in Figure 1.  63 

The basins of the Mediterranean and Black Sea receive a non-negligible amount of aeolian 64 

inputs compared to the riverine sediment fluxes. For example, the annual rate of aeolian 65 

sediment supply (mostly Saharan dust) for the Aegean Sea is of the order of 10-40 g m-2 (Nihlén 66 

& Olsson, 1995) that corresponds to a total dust deposition of 1.5-6.5 x 106 t year-1 (Poulos, 67 

2009) when the total of suspended and dissolve load equals to 48 x 106 t year-1 (Poulos, 2019). 68 

The principal natural source of aeolian dust in the case of MBMS is the Sahara Desert (covering 69 

an area of about 9.2 × 106 km²) while a secondary source is the Arabian desert (spanning over 70 

an area of circa 1.85 × 106 km). In the case of the Black Sea and in particular at its eastern part 71 

additional sources of aeolian dust are the Central Asia deserts:  the Kyzyl-Kum (0.30 × 106 72 

km²); Karakum (0.35 × 106 km²); and the Aralkum (0.04 × 106 km²). 73 

 74 

 75 

Figure 1. The Mediterranean and Black Sea marine system (ALB: Alboran, WEST: West MED 76 

(North & South marine basins), TYR: Tyrrhenian, ADR: Adriatic, ION: Ionian, CEN: Centric 77 

MED, LEV: Levantine (North & South marine basins), AEG: Aegean , MAR: Marmara, BLA: 78 

Black Sea (West & East marine basins) and finally AZOV: Azov Sea. 79 

 80 

Most of the northward dust transportation across the MBMS (mainly affecting the 81 

Mediterranean but reaching also the Black Sea) is related to the southerly winds (Scirocco, 82 
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Ghibili, Khamsin), which are associated with seasonal displacement of cyclones over the 83 

Mediterranean (e.g. Rodriguez et al., 2001). Maximum dust transport is observed during spring 84 

over the central and eastern parts of the Mediterranean (Luck & Ben Othman, 2002; O’Hara et 85 

al., 2006). During summer, when anticyclonic conditions are prevalent, and drought 86 

characterizes the Mediterranean area (e.g. Roberts et al., 2008; Israelevich et al., 2012; Bout-87 

Roumazeilles et al., 2013), significant amounts of dust can be transported from the Sahara 88 

desert by the aforementioned southerly winds. Moreover, the transportation of dust to the 89 

eastern part of the Black Sea is associated with easterly /southeasterly winds related to the low- 90 

and mid-tropospheric flows from the Caspian – Central Asia regions in the east and warm 91 

advection from the Middle East in the south (Davitashvili, 2019). In general, the dust transport 92 

occurs in the form of “pulses”, and the annual dust flux can be controlled by a few episodes, 93 

with several researchers (e.g. Barnaba & Gobbi, 2004; Pey et al., 2003) reporting that a single 94 

Sahara outbreak can account for 40–80% of the total annual flux.  95 

The relative contribution of dry or wet deposition to dust inputs is determined by the rainfall 96 

regimes, which are highly variable in this region. For instance, in the eastern Mediterranean, 97 

the relative contribution of dry deposition can reach 93% of the total dust input during summer 98 

(Kubilay et al. 2000), whereas in the north-west of the Mediterranean wet deposition is 99 

prevalent (Vincent et al., 2015).  100 

 101 

3. Materials and methods 102 

The observed rates of dust deposition (wet and dry) in several stations of the study area 103 

(obtained from several researchers; see Table 1) were imported into a geodatabase. In Table 1 104 

the mean observed rates of dust deposition at coastal stations of the MBMS system are listed. 105 

Most of these stations cover periods that are longer than 2 years of continuous fields 106 

measurement but in the case of the Black Sea, where measurements are limited, stations with 107 

shorter durations of measurements were available.   108 

The values presented in Table 1, are within the same order of magnitude with the values 109 

reported by other researchers; for example, Guerzoni & Molinaroli (2005) have given annual 110 

values of 2-25 g m-2 and 6-46 g m-2 for the WMED and EMED, respectively. On the other hand, 111 

the values of Table 1 are one to two orders of magnitude higher than those simulated for MED 112 

by Gallisai et al. (2012), using the BSC-DREAM8b model for the period January 2000 - 113 

December 2007: 0.18-0.36 g m-2 year-1 (southern part) and 0.007-0.01 g m-2 year-1 (northern 114 

part). These differences can be attributed to the fluctuations of frequency and intensity of the 115 
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recorded dust events for different time periods and to the data (average monthly values) utilised 116 

in mathematical simulations.  117 

 118 

Table 1. Dust deposition rate (wet and dry) around the MBMS.  119 

Location Dust  

(g m-2 yr-1) 

Period Reference 

Lanjaron (S Spain) 11.1 2001–2002 Morales-Baquero et al. 

(2006) 

Montseny (NE Spain) 5.2 1983-1994 Avila et al. (1997) 

Palma de Baleares (E Spain) ~14 1982-2003 Fiol et al. (2005) 

Cap Ferrat (SE France) 11.4 2003-2007 Ternon et al. (2010) 

Capo Carbonara (SE Sardenia) 

Sardinia (2 sites) 

12.8 

9.8 

1990-1992 

1990/91/93 

Guerzoni et al., 1999 

Le Bolloch et al. (1996) 

Capo Cavallo (NW Corsica) 12.5 

9.7 

1985-1986 

1986-1987 

Bergametti et al. (1989) 

Remoudaki (1990) 

Lemnos Island (N Aegean Sea) 11.2  Nihlén & Olsson (1995) 

Mytilene (NE Aegean) 5.4 2001-2002 Guieu et al. (2010) 

Crete (S. Aegean) 36.4 1989-1990 Nihlén et al. (1995) 

Erdemili (SΕ Turkey) 13 1991-1992 Kubilay et al. (2000) 

Cavo Greco (Cyprus) 4.2 2001-2002 Guieu et al. (2010) 

Varna (E Bulgaria) 4.9 2009 Theodosi et al. (2013) 

Azov Sea (Russia) 36 2009-2013 Sorokina & Soier (2016) 

Sinop (N. Turkey) 1.9 2009 Theodosi et al. (2013) 

Haifa, Israel ~36 1992-1995 Herut & Krom (1996) 

Alexandria (N Egypt) 20.3 2001-2002 Guieu et al. (2010) 

North Libya (14 sites) 58 2000-2001 O’Hara et al. (2006) 

Mahdia (E Tunisia) 23.3 2001-2002 Guieu et al. (2010) 

Cap Spartel (NW Morocco) 7.2 2001-2002 Guieu et al. (2010) 

 120 

For the estimation of the dust inputs for each marine region of the MBMS the point data of 121 

Table 1 were imported in G.I.S., wherein Thiessen polygons were created, and a natural 122 

neighbour interpolation (Sibson, 1981) was used to calculate the spatial distribution of dust in 123 

the MBMS (grid size 1x1 km), followed by the calculation of total dust load for each of the 124 

marine regions. The algorithm behind the interpolation method (also known as “Sibson” or 125 

"area-stealing" interpolation) finds the closest subset of input samples (Okabe et al., 2000) to a 126 

query point and after applying weights, based on proportionate areas, it interpolates a value. It 127 

uses only a subset of samples that surround a point of interest, and interpolated values are 128 

within the range of the samples used for the interpolation. The calculated surface is smooth and 129 
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free of discontinuities and trends (e.g. peaks, pits). Also, this method doesn’t require to make 130 

statistical assumptions, can be applied to very small datasets as it is not statistically based 131 

(Etherington, 2020) and, finally, it is parameter free (no input parameters need to be specified). 132 

As a result of these properties this interpolation technique is well suited for the interpolation of 133 

continuous variables for which only a limited set of data points with highly irregular spatial 134 

distribution are available (Hofstra et al., 2008), like in our case. 135 

It has also to be noted that there is an uncertainty caused by either the inaccuracy of the 136 

measured mean annual value (mainly attributed to the small duration of the measurements), 137 

and/or the inherent error of the interpolation technique. Assuming that mean dust input for each 138 

site is accurately representative, in order to estimate the inaccuracy introduced by the 139 

interpolation method a cross validation method was applied: through an iterative procedure we 140 

excluded all sites, through rotation (one sample at a time),  followed by the calculation of a 141 

new interpolated surface for the new data set (Ghosh et al., 2012; Joseph et al., 2013). The 142 

estimated dust input value of the omitted point, for each rotation, was then compared with the 143 

observed value and a series of measurements of accuracy where calculated : (a) mean absolute 144 

error (MAE ) and (b) root mean squared error (RMSE).  145 

 146 

4. Results and Discussion 147 

The dust load (DUL), expressed in tonnes per year, for each of the marine regions of the MBMS 148 

(as shown in Figure 1) was calculated and is presented against the riverine sediment fluxes 149 

(SSL & DL) that are derived from the literature (SSL: suspended sediment load, DL: dissolved 150 

sediment load (Table 2).  151 

Dust deposition in the Mediterranean ranges between < 0.1 ×106 t year-1 (Sea of Marmara, to 152 

26 ×106 t year-1). The dust inputs for the Black Sea are generally <1 ×106 t year-1, with the 153 

exception of the Azov marine region (approx. 1.5 ×106 t year-1); this increased value is most 154 

probably related to the dust inputs of its surrounding flat area, and its proximity to the central 155 

and eastern Asian deserts.  156 

On an annual basis, the Mediterranean basin receives 57.17 × 106 tonnes of dust and the Black 157 

Sea 2.71 ×106 tonnes, which corresponds to 6.2% and 0.8% to their riverine inputs (suspended 158 

and dissolved load), respectively (Table 2). It has to be mentioned that in the case of the Centric 159 

Mediterranean marine basin dust contribution is 1.5 times higher than the contribution of 160 

riverine inputs (SSL+DL); this is explained by the absence of significant riverine inputs and 161 
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the proximity of this marine region to the Libyan coast, where the highest concentrations in 162 

aeolian dust form Sahara have been monitored 163 

 164 

Table 2. Catchment area (CA in km2) and annual estimates of suspended sediment load (SSL), 165 

dissolved sediment load (DL), Dust load (DUL) and the ratio between DUL and the sediment 166 

load (SSL+DL) for the marine regions of the Mediterranean and Black Seas Marine System 167 

(see also Figure 1). 168 

Marine 

Basin 

Area1 Dust rate DUL SSL2 DL2 SSL+DL DUL/ 

(SSL+DL) 

km2 (g m-2 yr-1) ×106 tonne (%) 

ALB 54,173 10.09 0.55 21.1 11.7 32.8 1.67 

WEST 573,340 12.87 7.38 150.1 61.7 211.8 3.48 

NWEST 261,240 12.52 3.27 85.7 37.6 123.3 2.65 

SWEST 312,100 13.17 4.11 64.4 24.1 88.5 4.64 

TYR 217,497 11.03 2.40 62.5 25.7 88.2 2.72 

WMED 845,010 11.57 9.78 233.7 99.1 332.8 2.94 

ADR 140,320 10.01 1.40 196 52.09 248.09 0.57 

ION 173,493 23.38 4.06 80.6 21.4 102 3.98 

CEN 616,527 42.17 26.00 10.6 6.1 16.7 155.68 

CMED 930,340 33.82 31.46 287.2 79.59 366.79 8.58 

LEV 552,100 21.71 11.98 151.6 15.18 166.78 7.19 

NLEV 138,126 13.48 1.86 25.9 8.8 34.7 5.37 

SLEV 413,974 24.45 10.12 125.7 6.38 132.08 7.66 

AEG 192,026 20.21 3.88 28.6 19.3 47.9 8.10 

MAR 11,887 5.23 0.06 2.1 2.1 4.2 1.48 

EMED 756,013 21.07 15.93 182.3 36.58 218.88 7.28 

MED 2,531,363 22.58 57.17 703.2 215.27 918.47 6.22 

BLA_W 261,013 3.65 0.95 138.2 129 267.2 0.36 

BLA_ E 161,221 1.69 0.27 28.4 15.6 44 0.62 

BLA 422,235 2.90 1.23 166.6 144.6 311.2 0.98 

AZOV 41,274 36 1.49 18.8 16 34.8 4.27 

BLS 463,509 5.85 2.71 185.4 160.6 346 0.78 

MBMS 2,994,872 19.99 59.88 888.6 375.87 1264.47 4.74 

1From Poulos and Kotinas (2020); 2Poulos (2019) 169 

 170 

The overall spatial distribution (Fig. 2) of dust inputs presents a W-E zonal distribution with 171 

values decreasing northwards. Therefore, aeolian dust inputs are expected to play a crucial role 172 

in bio-geo-chemical cycles at the southern parts of the central and eastern oligotrophic 173 
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Mediterranean Sea (Kress et al., 2003; UNEP/MAP, 2010; Poulos 2020), where the highest dust 174 

inputs occur and this work can help other researchers in marine or environmental studies. We 175 

have calculated the following accuracy measurements for our applied interpolation method: (a) 176 

MAE = 2.68, (b) RMSE = 1.5 which are relatively low compared to the range of the values that 177 

were used for the interpolation (Table 1), and in all cases the absolute error was less than 25%.  178 

 179 

 180 

Figure 2. Indicative Spatial distribution of the rate of dust inputs in the Mediterranean and Black Sea 181 

marine system (MBMS). 182 

 183 

5. Conclusions 184 

The MBMS is estimated to receive 59.9 x 106 tonnes of aeolian dust per year, from which 57.2 185 

x 106 tonnes are settled in the Mediterranean Sea (MED) marine region and 2.7 x 106 tonnes in 186 

the Black Sea (BLS) marine region. The central part of the Mediterranean (CMED) receives 187 

about 55% of the total dust load of the whole MED due to its proximity with the Sahara Desert, 188 

while the Black Sea (BLS) receives very small amounts of aeolian dust.  189 

Dust inputs (dry and wet), mostly of Saharan origin, cannot be ignored in environmental studies 190 

(i.e. biological productivity, sedimentation), regarding the Mediterranean Sea (primarily) and 191 

the Black Sea (secondarily), as they represent a significant percentage (almost 5%) to their total 192 

terrestrial influxes.   193 
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