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ABSTRACT 

Researches to foresee the possible effects of climate change on the environment and living beings 

for taking necessary precautions on time have increased in recent years. In the improvement of 

these studies, especially the reduction of estimation errors by downscaling the outputs of global 

climate models played an important role.  In this study, the effect of the statistical downscaling 

method on improving the prediction accuracy of global climate models (GCM) was investigated. 

For this purpose, a statistical downscaling method based on multiple linear regression was applied 

to improve monthly precipitation estimates of 3 different GCM (CanESM2, GISS-E2H, and CSIRO 

Mk 3-6-0) used in future climate predictions. The effect of this method on improving GCM 

prediction accuracy was determined by comparing the results obtained as a result of scale reduction 

with the results obtained from the observation station. The predictive parameters for global climate 

models were determined using downscaling methods by applying correlation analysis for the study 

area. As a result of this analysis, it was seen that the air temperature and specific humidity values at 

the pressure level of 925 hPa and the geopotential height value at the 300 hPa pressure level had the 

best correlation for the years 1970-2005. The usability of three different global climate models for 

the forecast of future precipitation in the Antakya district of Hatay province was investigated using 

multiple linear regression analysis, one of the downscaling methods. As a result of the statistical 

analysis, it was seen that the use of the downscaling method increased the accuracy of all prediction 

models. 

Keywords: GCM, Statistical Downscaling, Predictor Selection, Reanalysis Data, Hatay   



 

3 

 

1. Introduction 

In recent climate studies, the negative effects of greenhouse gases on the atmosphere, environment 

and living things are among the most researched topics. While investigating these effects, it is of 

great importance to predict the changes of climatic factors at different times and locations and to 

evaluate their potential effects (Tolika et al., 2008; Wang et al., 2014). 

It is predicted that sudden and abnormal adverse effects on water supply and crop productivity due 

to temperature increase and irregular rainfall caused by climate change (Moallim et al., 2016). 

Predicting climate change and its possible effects at an acceptable level of confidence has a vital 

role in producing long-term solutions to the effects of global warming. Therefore, it is very 

important to develop climate models necessary for future prediction (Jia et al., 2019; Li et al., 

2020). 

Global Climate Models (GCMs) are models used to predict the effects of future climate change on 

meteorological parameters under different climate scenarios. In addition, they also allow examining 

the effect of increasing greenhouse gas emissions on climatic variables (Askari et al., 2020). 

However, the spectral resolutions of most GCM models are not sensitive enough to predict local 

climatic events. Therefore, downscaling methods are applied to produce data sets with higher 

resolution than GCM outputs (Maraun et al., 2010; Titus et al., 2013). 

There are many downscaling methods in the literature based on various theorems. These methods 

are basically divided into two as "dynamic" and "statistical" (Kostopoulou et al., 2007). Dynamic 

methods have the advantage of simulating the regional climate at higher resolutions, but they are 

quite costly and computationally complex (Sachindra., 2014; Zhang and Yan., 2015). On the other 

hand, the ease of use of statistical methods has led many researchers to use such methods 

(Kostopoulou et al., 2007). Statistical downscaling methods have been developed to establish 

quantitative relationships between large-scale atmospheric variables and local surface variables 

(Fistikoglu and Okkan., 2011). Various regression analyzes are used as statistical scale reduction 

method (Maraun et al., 2010). These; linear regression analysis (Cheng et al., 2008), canonical 
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correlation analysis (Chen and Chen, 2003), singular value decomposition (Busuioc et al., 1999) 

and artificial neural networks (ANN) methods (Pryor and Schoof., 2020). 

Huth (2002) evaluated the best downscaling methods to be applied in GCM models and stated that 

the Multiple Regression Analysis method produced the best estimates. 

Kostopoulou et al. (2007) examined the estimation ability of three different downscaling techniques 

in order to simulate the seasonal maximum and minimum temperatures in Greece. They used 

atmospheric parameters obtained at pressure levels between 1000-500 hPa as predictors. Multiple 

linear regression analysis and canonical correlation analysis methods gave values close to both the 

standard deviation and the mean of the observed values in the estimation of maximum temperature 

and minimum temperatures. 

Tolika et al. (2008) used the outputs they obtained from the global climate model in two different 

scaling down methods to predict future climate events. As a result of their analysis, they stated that 

the multiple linear regression (MLR) method made good predictions. In addition, they explained 

that the downscaling methods were more successful in predicting the winter months compared to 

other months. 

Mishra et al. (2014) applied the multiple linear regression downscaling model to the daily 

precipitation data obtained from the global climate model to increase the prediction accuracy. They 

used NCEP re-analysis data to calibrate the model. As a result of the analysis, they explained that 

the scale reduction method increases the prediction accuracy of the model. 

Malha et al. (2019) in their study aimed to increase the accuracy of future precipitation prediction 

with the global climate model. For this purpose, they examined the effect of multiple linear 

regression downscaling method. As a result, they explained that the multiple linear regression 

analysis gave good results for the study area. 

Al-Mukhtar and Qasim (2019) used CanESM2 model to predict future temperature and 

precipitation amounts, and multiple linear regression model as statistical downscaling method. They 

used NCEP re-analysis data as predictors in the model. As a result of the study, they explained that 



 

5 

 

with the downscaling method, the global climate model can predict temperature and precipitation 

data at an acceptable level for the study area. 

The aim of this study is to establish the adequate  model that will predict monthly precipitation 

amounts in the future by using downscaling methods in different global climate models and to 

evaluate the model results by applying the established model in Hatay Antakya district. 

 

2. Materials and methods 

2.1. Study area 

The study area where the model will be applied is Antakya district of Hatay province, Turkey 

located between 36° 10 'N latitude and 36° 06' E longitude and location of the study area is given in 

Figure 1. It is 80 m above sea level and has surface area of 610 km2. Antakya has Mediterranean 

climate that generally mild winter seasons and arid summer with an average annual temperature of 

16-21°C and rainfall of 570-1,160 mm. (Doğanlar and Atmaca, 2011; Karabulut, 2015).  

It is located between the Amanos mountains in the north and the Cebel-i Akra mountains in the 

south. The Orontes river, which runs through the middle of the region, is the main river system 

flowing from Syria to the Amik plain and then into the Mediterranean. This plain is located in the 

northeast of the study area and has great potential for agricultural crop production. (Irvem and 

Topaloglu, 2012).  

The reason why this region was chosen as the study area is the floods seen during the high rainy 

seasons. It is very important to be able to make an accurate estimation of precipitation in order to 

take the necessary precautions against these floods. In addition, being able to accurately predict 

precipitation, which is a very effective climate variable in agricultural production, which is 

important for the region, will play an important role in increasing agricultural productivity. 
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Figure 1. Study area 

2.2. Meteorological Data Set 

The monthly precipitation amounts observed for the district of Hatay Antakya between 1970 and 

2019 were obtained from the observation station of the General Directorate of Meteorology. 

2.3. Reanalysis Data Set 

Atmospheric variables used for the study area and their properties are given in Table 1. The 

monthly averages of these variables for the years 1970-2005 were obtained from the National 

Environmental Forecast Center (NCEP) / National Atmospheric Research Center (NCAR) 

reanalysis data set. The horizontal resolution of the data is 2.5 ° latitude × 2.5 ° longitude, and the 

vertical resolution is 17 constant pressure levels (Goyal and Ojha., 2012). 

2.4. GCM Data Set 

In this study as global climate models (GCM), CanESM2 (Arora et al., 2011) produced by Canada 

Climate Center, GISS-E2-H (Schmidt et al., 2012) produced by NASA Goddard Institute and 

CSIRO Mk-3-6-0 (Rotstayn et al., 2012) produced by Australian Queensland Climate Change 
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Center are used. The outputs of these models shown in Table 1 for the study area were obtained 

from the internet address https://esgf-node.llnl.gov/search/cmip5/ for the years 1970-2019. 

Table 1. Predictive variables for the downscaling method 

 
No Predictors Code Unit 

1 Air Temperature (300 hPa) AirT300 °C 

2 Air Temperature (500 hPa) AirT500 °C 

3 Air Temperature (850 hPa) AirT850 °C 

4 Air Temperature (925 hPa) AirT925 °C 

5 Geopotential Height (300 hPa) Hgt300 m 

6 Geopotential Height (500 hPa) Hgt500 m 

7 Geopotential Height (850 hPa) Hgt850 m 

8 Geopotential Height (925 hPa) Hgt925 m 

9 Relative Humidity (300 hPa) Rhum300 % 

10 Relative Humidity (500 hPa) Rhum500 % 

11 Relative Humidity (850hPa) Rhum850 % 

12 Relative Humidity (925 hPa) Rhum925 % 

13 Specific Humidity (300 hPa) Shum300 g kg-1 

14 Specific Humidity (500 hPa) Shum500 g kg-1 

15 Specific Humidity (850 hPa) Shum850 g kg-1 

16 Specific Humidity (925 hPa) Shum925 g kg-1 

17 U-wind (300 hPa) Uwnd300 m s-1 

18 U-wind (500 hPa) Uwnd500 m s-1 

19 U-wind (850 hPa) Uwnd850 m s-1 

20 U-wind (925 hPa) Uwnd925 m s-1 

21 V-wind (300 hPa) Vwnd300 m s-1 

22 V-wind (500 hPa) Vwnd500 m s-1 

23 V-wind (850 hPa) Vwnd850 m s-1 

24 V-wind (925 hPa) Vwnd925 m s-1 

 

2.5. Selection of Predictors 

The statistical downscaling method is based on the establishment of empirical relationships between 

coarse-scale atmospheric and local climate characteristics. Selection of appropriate predictor 

variables is one of the most important steps in downscaling methods applied to improve estimates 

(Osman and Abdellatif, 2017). This method is used to determine the predictor showing the most 

appropriate correlation between precipitation measurements obtained from meteorological stations 

and the data obtained from the reanalysis data set (Al-Mukhtar and Qasim, 2019). The downscaling 

model are used to build the linear relationship 

between predictand (observed precipitation) and one or more than one independent atmospheric 

variables as predictor (NCEP reanalysis data) (Mahla et al. 2019). The most important assumption 

of statistical downscaling method is that the relationship between climatic parameters will not 

change as the climate changes. Therefore, it is accepted that the statistical relationships between the 
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same scale predictand and predictors will always remain the same (Trzaska and Schnarr, 2014). 

There are many atmospheric variables that can be used as predictors. However, using very many 

estimators in the model may cause an increase in uncertainty caused by an unrelated parameter, and 

using very few estimators may cause poor precipitation and temperature estimates (Zhang and Yan., 

2015). Therefore, correlation analysis and P value approaches are used to determine the optimum 

number of variables. These statistical approaches are regarded as a measure of the relationship 

between predictor and observational data. Smaller P value (P <0.05) and higher correlation mean 

that there is a good correlation between variables (Yang et al., 2017). 

Correlation coefficients of variables with the highest correlation are selected for model formulation 

as a result of correlation analysis between predictive variables (reanalysis) and observation 

(meteorological station) data (Behera et al., 2016). In this study, among the variables given in Table 

1, the variables to be used in the scale reduction method were selected as a result of the correlation 

analysis of Pearson (Pearson,1896) and Spearman’s Rank (Spearman,1904). 

2.6. Multiple Linear Regression Analysis 

MLR analysis is used to examine the relationship of these variables with the dependent variable in 

the case of more than one variable. If variables are defined as 𝑋𝑖
1, 𝑋𝑖

2, … , 𝑋𝑖
𝑛 the linear regression 

model is expressed by Eq. 1 (Lee and Singh, 2019). 

 

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖
1 + 𝛽2𝑋𝑖

2 + ⋯+ 𝛽𝑛𝑋𝑖
𝑛        (1) 

 

A larger scale variable is more effective than a variable with a smaller scale in the MLR 

downscaling method. For this reason, the standardization process has been applied as a pre-

treatment in downscaling. The Eq. 2 is used for standardization (Goyal and Ojha, 2012). 

 

𝑋𝑖 = 
( 𝑋𝑖

𝑂𝑟𝑔
− �̅�)

𝑠𝑥
           (2) 
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where; 𝑋𝑖
𝑂𝑟𝑔

 is the value of the variable before it is standardized, �̅� is the average of the values of 

the variable, and 𝑠𝑥 is the standard deviation of the values the variable takes. 

 

�̂�𝑖
𝑂𝑟𝑔

= (�̂�𝑖 𝑥 𝑠𝑦 + �̅�)          (3) 

 

where; �̂�𝑖
𝑂𝑟𝑔

 is precipitation estimation obtained by the downscaling method, 𝑠𝑦 is standard 

deviation of precipitation amounts for the base period (1970-2005) and �̅� is the average of 

precipitation for the base period (1970-2005). The issue to be considered is that while 

standardization is applied to the variables obtained from the next period (2006-2019) outputs of the 

global climate model, the standard deviation and average of the base period variables as standard 

deviation and mean are taken into account (Lee and Singh, 2019). 

2.7. Performance Evaluation Criteria 

Statistical criteria used in the study to check the accuracy of the estimation data of the models; root 

mean squares error (RMSE), percent bias (PB), Willmott's index of agreement (d) and performance 

index (C '). The prediction abilities of the data were evaluated using the classification given in 

Table 2. 

Pbias are used to determine how far the model predicted values are in the negative or positive 

direction from the observed values. While positive values indicate that the observed values are 

greater than the simulation values, negative values indicate the opposite situation (Gupta et al., 

1999) 

 

𝑃𝑏𝑖𝑎𝑠 = 100 (∑𝑂𝑏𝑠𝑖 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖 / ∑𝑂𝑏𝑠𝑖 )      (4) 

 

The value of RMSE should always be positive and it is desired to be close to zero. It indicates that 

the smaller the value, the better the performance of the model. RMSE provides information about 
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the short-term performance of correlations by providing comparison of the deviation between model 

outputs and observed values (Ghorbani et al., 2018). 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
 ∑(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖 − 𝑂𝑏𝑠𝑖)2        (5) 

 

The Willmott index of agreement (d) shows the degree of fit between observed and predicted 

measurements between 0 and 1. The closer the result is to 1, the better the model performance is 

determined (Willmott, 1981). 

 

𝑑 =  
∑(𝑂𝑏𝑠𝑖− 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖)

2

∑([𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖− 𝑂𝑏𝑠𝑚𝑒𝑎𝑛]+ [𝑂𝑏𝑠𝑖− 𝑂𝑏𝑠𝑚𝑒𝑎𝑛])2
       (6) 

 

The performance index (C ') combines accuracy and precision criteria in the relationship of the 

model with predictive data. Pearson's linear correlation coefficient, which measures the degree and 

direction of distribution between variables, was used as precision criteria. Willmott's index of 

agreement was chosen as the accuracy criterion because it measures the degree of fit between the 

predicted and observed data. The performance index of the model was calculated by Eq. 7 and 

evaluated using Table 2 (Santos et al., 2020). 

 

𝐶′ = 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝐶𝐶) ∗  Willmott′s index of agreement(𝑑)    (7) 

 

Table 2. Model performance evaluation table (Moriasi et al., 2007; Santos et al., 2020). 

 
Classification C’ PBias  

Very Good  0.75 - 1.00 < ± 10 

Good 0.65 - 0.75 ± 10 - ± 15 

Satisfactory 0.60 - 0.65 ± 15 - ± 25 

Unsatisfactory < 0.50 > ± 25 
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3. Results and Discussion 

3.1. Results of Predictors Selection 

In determining the predictors, the results of the statistical analysis made for the base period of 1970-

2005 in order to determine the correlation of the variables with the observed precipitation data are 

given in Table 3 and Predictor selection was made by considering Table 4 and predictors with high 

correlation values were used for formulation.  

 

Table 3. Results of correlation analysis of predictor variables 

 
Predictor Variable Pearson Spearman’s Rank Predictor Variable Pearson Spearman’s Rank 

AirT300 -0,538 -0,661 Shum300 -0,434 -0,594 

AirT500 -0,565 -0,687 Shum500 -0,533 -0,682 

AirT850 -0,509 -0,612 Shum850 -0,466 -0,554 

AirT925 -0,606 -0,728 Shum925 -0,595 -0,722 

Hgt300 -0,587 -0,713 Uwnd300 -0,116 -0,125 

Hgt500 -0,556 -0,679 Uwnd500 -0,126 -0,149 

Hgt850 -0,429 -0,496 Uwnd850 -0,358 -0,409 

Hgt925  0,088 -0,102 Uwnd925 -0,319 -0,406 

Rhum300  0,024 -0,021 Vwnd300 -0,047 -0,066 

Rhum500 -0,001 -0,020 Vwnd500 -0,033 -0,031 

Rhum850 0,369 -0,430 Vwnd850 -0,042 -0,052 

Rhum925 -0,371 -0,432 Vwnd925 -0,092 -0,123 

 

According to the results, it was seen that air temperature and specific humidity values at 925 hPa 

pressure level and geopotential height values at 300 hPa pressure level had a better correlation than 

other atmospheric variables. Therefore, these data were used as predictor variables (Fistikoglu and 

Okkan., 2011). The reason for the low correlations of predictor variables is estimated to be due to 

the heterogeneity of precipitation (Al-Mukhtar and Qasim, 2019). 

Table 4. Interpretation of correlation coefficient values (Woo et al., 2018) 

Correlation Value İnterpretation 

± 0.90 - 1.00 Very High Correlation 

±0.70 – 0.90 High Correlation 

±0.50 – 0.70 Moderate Correlation 

±0.30 – 0.50 Low Correlation 

±0.00 – 0.30 Negligible Correlation 

 

3.2. Results of Downscaling Method 

Before applying the downscaling method, the standardization process was applied to the predictor 

variables for the base period of 1970-2005. The coefficients of the variables obtained as a result of 
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the regression analysis between the standardized predictor variables and standardized rainfall 

measurements are given in Table 5. The formula obtained by using the coefficients of the predictive 

variables as a result of the analysis is given in Eq 8. 

 

Table 5 Regression analysis result for the base period 

 

  Coefficients Standard Error t Stat 

β0 0,00 0,04 0,00 

β1 -0,88 0,23 -3,86 

β2 0,36 0,16 2,32 

β3 -0,08 0,15 -0,52 

 

𝑌𝑖 = −0,88 ∗ 𝐴𝑖𝑟𝑇925 + 0,36 ∗ 𝐻𝑔𝑡300 − 0,08 ∗ Shum925     (8) 

 

Finally, the predictor variables from the GCM model were obtained for the base period (1970-2005) 

and the next period (2006-2019). By standardizing these variables, 𝑋 = [1, 𝑋𝑖
1, 𝑋𝑖

2, … , 𝑋𝑖
𝑛]  value 

was obtained. The corrected estimates for 2006-2019 are calculated using Eq. 9 and 10. Monthly 

averages of the estimation results calculated for each GCM are given in Table 6. 

 

�̂�𝑌𝑒𝑎𝑟,𝑀𝑜𝑛𝑡ℎ =

[
 
 
 
1
𝑋𝑖

1

𝑋𝑖
2

𝑋𝑖
3]
 
 
 

∗ [

0
𝛽1

𝛽2

𝛽3

]          (9) 

�̂�𝑌𝑒𝑎𝑟,𝑀𝑜𝑛𝑡ℎ
𝑂𝑟𝑔.

= (�̂�𝑌𝑒𝑎𝑟,𝑀𝑜𝑛𝑡ℎ 𝑥 𝑠 𝑌𝑎ğ𝚤ş,1970−2004) + �̅�𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛,1970−2004   (10) 

 

Table 6. Average monthly precipitation estimates between 2006-2019 

 
 MGM GCM Downscaled GCM 

Months Mean 

Precipitation 

(mm) 

CanESM2 GISS-E2H 

CSIRO  

Mk 3-6-0 CanESM2 GISS-E2H 

CSIRO  

Mk 3-6-0 

January 191,56 56,04 111,81 50,86 162,85 132,28 166,93 

February 147,66 55,80 84,39 29,29 149,46 123,55 151,10 

March 137,59 27,64 54,06 23,57 122,07 109,67 116,45 

April 102,99 13,53 17,31 14,89 90,13 77,29 85,75 

May 70,31 14,16 13,40 2,04 53,62 59,07 61,74 

June 19,24 8,98 10,11 0,63 16,65 41,01 25,00 

July 1,96 12,00 9,16 0,06 4,78 28,85 10,07 
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August 2,10 8,92 14,35 0,13 3,20 21,86 14,37 

September 56,91 5,11 7,74 2,52 39,69 24,66 48,29 

October 64,92 16,46 25,33 25,27 87,83 47,56 75,20 

November 89,14 35,14 120,99 35,94 124,23 94,47 124,58 

December 200,89 47,67 151,24 76,96 154,03 123,12 158,90 

 

When the results of the forecast are examined, it is seen that precipitation forecasts are better in 

winter months and worse in summer months. The poor forecasts seen in the summer months are 

thought to be due to the fact that the model still predicts precipitation even though there is no 

precipitation during these months. 

3.3. Performance Evaluation of Downscaling Method 

By applying the MLR downscaling method to three different climate models, the forecast data 

obtained for the future period (2006-2019) and the actual data obtained from meteorology for the 

same years were statistically compared. R2, MAPE, Pbias, RMSE, Willmott’s index of agreement 

values were calculated for each GCM and the results are given in Table 7.  

Table 7. Performance evaluation of downscaled global climate models 

 
 R2 RMSE d Pbias C’ 

CanESM2 

GCM 0,74 82,52 0,56 72,22 0,48 

Downscaled 0,90 21,94 0,97 7,07 0,92 

GISS-E2H 

GCM 0,66 54,52 0,79 42,88 0,64 

Downscaled 0,89 34,96 0,89 2,68 0,84 

CSIRO-Mk 3-6-0 

GCM 0,76 82,82 0,58 75,85 0,51 

Downscaled 0,92 20,17 0,97 4,32 0,93 

 

 

3.3.1. CanESM2 

It is seen in Figure 2 that the predictions of GCM after downscaling are much better than the 

estimates before downscaling for all months. The results of R2 was found to be more than 0.9, 

which indicated good correlation between observed and downscaled precipitation.  

When the RMSE results were examined, it was seen that the CanESM2 model decreased from 

82.52 to 21.94 which indicates less discrepancy between observed and downscaled time series.  
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Similarly, PBias values decreased for from 72.22, to 7.07. These results show that the downscaling 

method has reduced the amount of error in the estimations resulting from the coarse resolution of 

GCM models. 

 

 

Figure 2. Comparison of the CanESM2 model's estimates before and after statistical downscaling 

 

According to C' values, it was seen that the accuracy performance of the GCM model for estimation 

increased above 0.80 by the downscaling method and when referring Table 2, the model estimation 

results could be considered quite good.  

 

3.2.2. CSIRO-Mk 3-6-0 

When the results of the statistical analysis of CSIRO-Mk 3-6-0 raw and precipitation data were 

examined, it was seen in Figure 3 that the application of the downscaling method in this model 

improved the prediction accuracy quite well compared to the raw data. The coefficient of 

determination was calculated to above 0.90. This shows that downscaled data are in a high linear 

relationship with the data measured from the precipitation observation station. 
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Figure 3. Comparison of the CanESM2 model's estimates before and after statistical downscaling 

 

When the RMSE results were examined, the CSIRO-Mk 3-6-0 model decreased from 82.82 to 

20.17. Similarly, PBias values decreased for the CSIRO-Mk 3-6-0 models from 75.85 7.32. These 

results show that the downscaling method has reduced the amount of error in the estimations 

resulting from the coarse resolution of GCM. According to C' values, it was seen that the accuracy 

performance of the GCM model for estimation increased to 0.93 by the downscaling method and 

when referring Table 2 the model estimation results could be considered quite good.  

 

3.3.3. GISS-E2H 

Figure 4 shows that the downscaling model estimates give better estimates than the raw GISS-E2H 

estimates. The determination coefficient was found to be 0.89 when examined in general, this result 

showed that the relationship between observed and downscaled precipitation was good.  However, 

it was determined that the GCM raw data estimated better than the downscaled data for the summer 

months. The reason for this is thought to be the unexpected rains and drought events in the study 

area during these months. Such extreme events are a known phenomenon. These events are very 

difficult to predict with models. The effect of this phenomenon was seen in the other two GCMs. 
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However, the downscaling method was able to reduce the estimation error a little in CanESM2 and 

CSIRO-Mk 3-6-0. However, its use in GISS-E2H has failed to predict summer months. 

 

Figure 4. Comparison of the GISS-E2H model's estimates before and after statistical downscaling 

 

When Table 7 was examined, it was seen that the RMSE values decreased by almost 50% and Pbias 

value decreased from 42.88 to 2.68. These results show that when all months are examined, the 

downscaled data give more similar estimates to the observation data than the raw data. In addition, 

when the model results are classified according to the calculated C 'value based on Table 2, it is 

seen that the unsatisfactory estimates perform very good after the downscaling model. 

 

4. Conclusions 

Estimating the impact of climate change on atmospheric variables, which is one of the biggest 

problems globally today, will allow both taking necessary precautions in advance and minimizing 

the damages that will occur. For this purpose, it is very important to minimize the prediction errors 

caused by the low resolution of the global climate model outputs that have been used in recent 

years. 
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In this study, the predictor parameters were determined using correlation analysis in the 

downscaling model created for the study area. As a result of this analysis, it was seen that the air 

temperature and specific humidity values at the pressure level of 925 hPa and the geopotential 

height at the 300 hPa pressure level had the best correlation for the years 1970-2005. The 

downscaling procedure of precipitation of this study was in agreement with other studies (e.g., 

Wilby et al., 1998; Al-Mukhtar and Qasim, 2019), It has been determined that using atmospheric 

variables while reducing the coarse scale of precipitation estimates obtained from GCMs is 

successful in establishing a satisfactory relationship. 

In our study, the usability of multiple linear regression analysis was examined to increase the 

accuracy in monthly precipitation estimates made by three different global climate models 

(CanESM2, GISS-E2H and CSIRO Mk 3-6-0). As a result of the statistical analysis, the prediction 

ability (C ') of the CanESM2 model increased from 0.48 to 0.92, the GISS-E2H model from 0.64 to 

0.84 and the CSIRO Mk 3-6-0 model from 0.51 to 0.93.  

Based on these results, it was determined that the use of the downscaling method for all three 

models increased the prediction accuracy of the models. However, it was determined that the GISS-

E2-H model had difficulties in predicting precipitation during the summer months due to the 

drought and unexpected rainfalls in the study area during these months. CanESM2 was the model 

that made the closest estimates to the precipitation obtained from the observation stations for all 

months. Similar to the results of our study; Najafi et al. (2011), Sachindra and Perera (2016), 

Behera et al. (2016), Mahla et al. (2019) and Al-Mukhtar and Qasim (2019) indicated that MLR 

could be used for downscaling of monthly rainfall of regions under arid and semi-arid.  

With this method, it is seen that the outputs of global climate models can be used in the studies to 

evaluate the effect of climate change for the study area. In addition, it has been determined that the 

outputs of these models can be used in agricultural and hydrological models after examining them 

with the necessary statistical analysis. 
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