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Abstract 

Flooding events are the most devastating natural disasters 
that Malaysia had experienced these recent years. It has 
become a challenge for the government and society to 
mitigate the flood events that occurs naturally, especially 
when climate change had worsened the situation. This 
study focuses on changes of rainfall, maximum and 
minimum temperature in Penang. With the fast growth 
rate of resident population and its economic status, 
obtaining the suitable and viable future climate scenario is 
crucial and significant to enhancing the flood forecasting 
capabilities in the Penang Island. The dataset obtained 
from CanESM2 GCM was used to generate the regionalized 
rainfall and temperature data based on Intergovernmental 
Panel on Climate Change (IPCC) Fifth Assessment report 
(AR5) Representative Concentration Pathways (RCPs) of 4.5 
and 8.5 W/m2 emission scenario. The downscaling period 
(2005–2100) for maximum temperature (Tmax) and 

minimum temperature (Tmin) and rainfall time were 
developed using the statistical downscaling technique. For 
reliability analysis, the model outputs were analysed with 
Probability Density Function (PDF), Linear Regression and 
Pearson Correction Test. Based on the reliability analysis 
outcomes, the possible causes for acknowledging that the 
Penang Island could follow the high emission scenario RCP 
8.5. This indicates that the average monthly rainfall and 
temperature of Penang Island may increase consequential 
of the regional climate change, resulting from an increasing 
population, the industrial development and ever-escalating 
transportation needs. 

Keywords: Regional climate model, statistical downscaling, 
flood risk, Penang Island, Malaysia. 

1. Introduction 

Changes of climate system is unavoidable in this century as 
stated in the Sixth Assessment Report (AR6) published by 
Intergovernmental Panel on Climate Change (IPCC, 2021). 
With the increasing average surface temperatures 
(approximately +1.5°C), the extreme weather such as 
prolonged drought and intensive precipitation will likely to 
occur in most regions. The rapid increment of atmospheric 
greenhouse gases (GHG) concentration is the root cause 
invoking the climate change process, which have been 
reported in Sixth Assessment Report (IPCC (2021). 
Consequently, global warming which is one of the climate 
changes effects has caused the glaciers and ice sheets to 
melt at a fast rate which subsequently leads to rising global 
sea levels. It also tends to alter the hydrologic cycles and 
caused extreme weather events (IPCC 2013; 2021). This will 
eventually amplify the number of extreme weather events 
happened such as floods and droughts (Horton and 
McMichael 2008).  Flooding events are recognised as the 
most devastating natural disasters that onslaught Malaysia 
more frequently these recent years. According to the 
Malaysian Department Irrigation and Drainage, (2000), a 
total 85 out of 185 rivers are at the risk of recurrent 
flooding. It also stated that approximately 29,800 km2 
(Total 9 % of the total Malaysia’s land area) is vulnerable to 
flood disaster. A total of 4.82 million (22% of Malaysia’s 
population) citizens will be affected by floods. Climate 
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change is the foremost main factor to worsen the situation. 
Neither the government nor society is in a position to 
minimize or stop the flood event completely, as it is a 
natural phenomenon (FRMP, 2012). 

Penang Island is undergoing rapid economic development 
and most of human settlements are located at the coastal 
areas. It has been affected by monsoon interchange season 
annually, for example the increased frequency and 
magnitude of flood events has been observed at the low-
laying area in Penang Island. Different flood studies for 
Penang Island have stated that it is vulnerable to the 
impacts of climate change due to the sea level rise, 
temperature and rainfall pattern variation. In addition, the 
flood issue in the island can also be worsened with increase 
of rainfall intensity and expansion of subsidence surface 
areas. Gao et al., (2021) analysed the Penang Island land 
subsidence to obtain the flood inundated areas. The land 
subsidence would increase 2.0% and 5.9% of the flood 
inundated area, based on the sea level rise projections. 
Osman et al., (2021) stated that in this region, flooding and 
urban waterlogging issue are frequently observed due to 
climate changes and urbanization development. Othman et 
al., (2021) reported that due to climate change, rainfall in 
northern region of Peninsular Malaysia, including Penang, 
has increased since last decades. Based on historical 
record, the average maximum rainfall per hour has 
increased six-fold from an average of 31 mm in the 1990s 
to 180 mm in the 2010s. 

Prospectively, precipitation projection is crucial to assess 
the probability of flood and drought occurrence in a local 
area (Tan and Loh 2017). Based on Sixth Assessment Report 
(AR6), Intergovernmental Panel on Climate Change (IPCC) 
applied a different general circulation model (GCMs) to 
assess the future climate scenario based on different 
radiative forcing. It has stressed on the high likelihood of 
extreme weather events occurred in Southeast Asia region. 
The GCMs are feasible to predict the precipitation pattern 
in a particular region which are developed based on grid 
scale (200 to 600 km). Due to the coarse resolution of 
GCMs, the accuracy will be questionable when it is applied 
into local scale (50-100km) hydrological study. Hence, the 
regional climate model (RCM) downscaled from global 
climate models (GCM) is important tool to predict the 
variation of precipitation and temperature in local level 
(Goyal et al., 2012, Trzaska and Schnarr 2014). It contains 
higher resolution and additional information, which can 
represent a better local landscape, hydrological profile, and 
local atmospheric processes (Shivam et al., 2017). 

Data scientists synthesize the GCMs data with different 
kind of downscaling approaches i.e dynamic and statistical 
methods. It has concluded that statistical downscaling 
method (SDSM) was faster and reliable approaches to 
generate the RCMs for the hydrological studies. For 
instance, Ang et al., (2016) and Fung et al., (2019) applied 
the SDSM on CanESM2 based on RCP4.5 and 8.5 scenario. 
The changes of rainfall and daily temperature patterns 
have been simulated under RCP 8.5 in Malaysia. The model 
output of projected rainfall downscaled by SDMS has 
produced the Standardized Precipitation Index (SPI) and 

Standardized Precipitation Evapotranspiration Index (SPEI). 
Tahir et al., (2018) stated that statistical downscaling of 
precipitation and temperature is important to investigate 
the impact of climate change on the catchment. Under 
Coupled Model Intercomparison Project Phase 5 (CMIP5) 
model of CanESM2, the precipitation is expected to 
increase from last quarter of this century.  Hassan and 
Harun (2011) apply the SDSM approach using GCM 
HadCM3 to generate RCM for Perak State, Malaysia. The 
downscaled daily precipitation and temperature for the 
period (2010-2099) showed the increase of total average 
annual rainfall and temperature. Abnormal precipitation 
pattern is estimated to be occurred in the future. It shows 
how to use of different downscaled RCMs to assess the 
rainfall pattern, eventually predicts the potential climate 
induced disasters in the study area. Unfortunately, lack of 
flood risk studies in Penang are found based on regional 
climate modelling approach. Due to high economy 
activities and high population density in the Penang Island, 
it is important to enhance the flood risk reduction 
capabilities by coupling with a reliable regional climate 
model (RCM). However, the issue of high reliable regional 
climate model remains as a major stumbling block to 
develop an effective flood disaster management plan in 
Penang Island.  To address this issue, this study aims to 
demonstrate the application statistically downscaling work 
to develop the RCM for Penang Island. Hence, CanESM2 
has been applied in this study with objectives to develop 
the regional climate model based on statistical approach 
and analyse the trend of climate variation based on 
selected representative concentration pathway (RCP). 

2. Background of study area 

Penang Island was chosen as the study area. The main 
constituent island of the state of Penang, Malaysia has the 
coordination of 5.59° to 5.12°N latitude and 100.17° to 
100.56°E longitude. Penang Island is apart from the 
mainland of Peninsular Malaysia with the Malacca Strait 
located in between as shown in Figure 1. Approximately 
half of the Penang state population living in the island, 
whilst the others are residing in the Penang part of the 
mainland. The population number of Penang Island was 
recorded as 1,776,800 in 2018 with the density of 
1,684/km2 (DOS 2018).  

 

Figure 1. Study area and distribution of meteorological stations. 
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With the high density of population in Penang Island, the 
failure of flood disaster management and contingency 
action could lead to severe loss of lives, disease 
transmission and economic damages. Penang Island has a 
tropical monsoon and rainforest type of climate that falls 
under Köppen climate classification (Af). There are four 
weather monitoring facilities in Penang Island.  According 
to the Malaysian Meteorological Department (MMD), the 
average annual precipitation of Penang Island was 
recorded approximately 2,670 mm with an average 
temperature of 23–32oC. 

3. Methodology 

3.1. CanESM2 and NCEP/NCAR reanalysis data setup 

The GCM model (CanESM2) output selected, and the 
statistical downscaling software (SDSM ver.5.3) used are 
both introduced in this section. The CCCma (Canadian 
Centre for Climate Modeling & Analysis) is a part of the 
Climate Research Division of Environment Canada. It is 
currently located at the University of Victoria, Victoria, 
British Columbia. The aim of CCCma is to form and apply 
the climate models in order to improve the understanding 
of climate change. Besides that, it also generates 
quantitative projections for future climate of Canada and 
globally. The model had also been used to contribute input 
to the Coupled Model Inter-comparison Project- phase 5 
(CMIP5) (Flato et al.,2000; Flato et al., 2013). 

The CanESM2 model is into its fourth generation as a 
coupled global climate model. This model was evolved 
from the earlier CanESM1 version. It includes the fourth-
generation atmospheric component (CanAM4), a spectral 
model which employs a T63 triangular truncation 
associated with spatial resolution of 128 x 64 horizontal 
grids and 35 vertical layers. The CanESM2 consists of 40 
levels of ocean component of the upper ocean with 
approximately 10 m resolutions and 1.41o x 0.94o of the 
horizontal resolution (Arora and Boer 2014). 

The NCEP/NCAR Reanalysis data set is a continually 
updated (since 1948) globally gridded data set that 
represents the state of the Earth's atmosphere. It is a 
combination product of the National Centres for 
Environmental Prediction (NCEP) and the National Centre 
for Atmospheric Research (NCAR).  It has a resolution of 
roughly 210 km horizontally and 28 levels vertically. It has 
more than 80 variables, for example, geo-potential height, 
temperature, relative humidity, wind components and so 
on (NCAR/UCAR Research Data Archive, 2016). In this 
study, all the available data covered the Penang Island 
were collected and examined. The time period of the data 
collected was 1976 to 2005 as corresponding to availability 
of historical data set. This data set was downloaded from 
the Canadian Climate Data and Scenarios website (climate-
scenarios.canada.ca/ 
?page=pred-canesm2) (Canadian Climate Data and 
Scenarios, 2019). 

3.2. Model predictors  

The independent variables used in the model are normally 
referred to as the model predictors. They are also the 

controlling variables of the model. The model predictands 
are the responding/ dependent variables for the modelling. 
Simply saying, we can obtain the relationship between 
predictors and predictands by input both of them into the 
model calibration. Table 1 shows the description of the 
predictor variables of the NCEP/NCAR reanalysis data set. 

3.3. Station data (Predictands) validation 

In this study, the station data were obtained from the 4 
stations i.e stations no.5302001, 5302003, 5402001, and 
the Bayan Lepas (BL). At least 20 years of data for all the 
rainfall and temperature stations were used for the station 
data validation and the range of this period as shown in 
Table 2. 

3.4. Downscaling experimental setup 

The Quality Control function is important for the 
identification of gross data errors, specification of missing 
data codes and outliers prior to model calibration and 
downscaling process. Handling and processing of missing 
and imperfect data is essential for practical usage of data. 
In many instances it may be appropriate to transform the 
predictors and/or the predictand before the model 
calibration. This ensures a better fitting between predictors 
and predictand since their relationship are always changing 
and not linear. In this study, all 26 variables were 
transformed with lag transformation ranging -9 to 9 (total 
20 lag transformation of each variable) to capture the best 
predictor in the following section. 

The variable (Predictors) screening process is to assist the 
user in selecting the appropriate downscaling predictor by 
examining which of the large-scale variables that have a 
stronger relationship with the localized variables. This 
stage is usually the most challenging step in downscaling 
process as the result largely depends on the selection of the 
predictors. The variables with the highest partial 
correlation and the lowest or zero p-value associated with 
other variables are chosen. This step can also  
filter some of the variables with high correlation with 
predictand but are also highly associated with other 
variables as well. Such variables did not add much value to 
the decision-making process. In this study, the significant 
level was set to be 10 % in defining the dependency of 
variable with others. Hence, the selection of final 
predictors was based on the partial correlation of the 
variables and their p-value. The variables that are beyond 
the significant level were omitted from the selection and 
the predictors. 

The partial correlation indicates the correlation between 
predictors and predictand without the influence of other 
variables, while the p-value measures how extreme the 
correlation between predictors and predictand is, in terms 
of probability. Smaller p-value indicates that this 
association is less likely to occur by chance. 
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Table 1. Description of Predictor Variables 

Predictor variables  Description of predictor variables  Predictor variables  Description of predictor variables  

mslpgl  Mean seal level pressure  p5zhgl  500hPa Divergence of true wind  

p1_fgl  1000hPa Wind speed  p850gl  850hPa Geopotential  

p1_ugl  1000hPa Zonal wind component  p8_fgl  850hPa Wind speed  

p1_vgl  1000hPa Meridional wind component  p8_ugl  850hPa Zonal wind component  

p1_zgl  1000hPa Relative vorticity of wind  p8_vgl  850hPa Meridional wind component  

p1thgl  1000hPaWind direction  p8_zgl  850hPa Relative vorticity of wind  

p1zhgl  1000hPa Divergence of true wind  p8thgl  850hPa Wind direction  

p500gl  500hPa Geopotential  p8zhgl  850hPa Divergence of true wind  

p5_fgl  500hPa Wind speed  prcpgl  Total precipitation  

p5_ugl  500hPa Zonal wind component  s500gl  500hPa Specific humidity  

p5_vgl  500hPa Meridional wind component  s850gl  850hPa Specific humidity  

p5_zgl  500hPa Relative vorticity of wind  shumgl  1000hPa Specific humidity  

p5thgl  500hPa Wind direction  tempgl  Air temperature at 2m  

Table 2. Time period of data validation for all rainfall and temperature stations 

Station name Location (Lat, Long) Baseline period 

5302001 5.3917, 100.2125 1983 - 2005 

5302003 5.3958, 100.2653 1983 - 2005 

5402001 5.4236 , 100.2708 1983 - 2005 

BL-Rainfall 5.3000  100.2667 1984 - 2005 

BL-tempmin 5.3000  100.2667 1984 - 2005 

BL-tempmax 5.3000  100.2667 1984 - 2005 

Table 3. Selected predictors with respective partial correlation coefficient and p-value 

Stations Predictors Descriptions Partial r p-value 

5302001 (rainfall) 

p1_ugl (6) 1000 hpa wind speed 0.054 0.000 

p8_ugl (1) 850 hpa wind speed 0.083 0.000 

p8thgl (-5) 850 hpa wind direction 0.067 0.000 

s500gl (-1) 500 hpa specific humidity 0.046 0.000 

tempgl (-9) Air temperature at 2m 0.057 0.000 

5302003 (rainfall) 

p1_ugl (-2) 1000 hpa wind speed 0.064 0.000 

p8_ugl (2) 850 hpa wind speed 0.076 0.000 

p8thgl (5) 850 hpa wind direction 0.057 0.000 

prcpgl (-4) Total precipitation -0.033 0.000 

shumgl (-5) 1000 hpa specific humidity 0.055 0.000 

5402001 (rainfall) 

p1_ugl (4) 1000 hpa wind speed 0.055 0.000 

p8_ugl (4) 850 hpa wind speed 0.082 0.000 

p8_vgl (-8) 850hpa meridional wind 0.051 0.000 

p8thgl (-5) 850 hpa wind direction 0.071 0.000 

tempgl (-9) Air temperature at 2m 0.055 0.000 

BL-Rainfall (rainfall) 

p1_ugl (-4) 1000 hpa wind speed 0.059 0.000 

p8_ugl (2) 850 hpa wind speed 0.087 0.000 

p8thgl (-8) 850 hpa wind direction 0.072 0.000 

BL-tempmin (minimum temperature) 

p1_ugl (9) 1000 hpa wind speed -0.108 0.000 

p500gl (-9) 500 hpa geopotential 0.180 0.000 

shumgl (-2) 1000 hpa specific humidity 0.192 0.000 

tempgl (6) Air temperature at 2m 0.136 0.000 

BL-tempmax (maximum temperature) 

mslpgl (6) Mean sea level pressure -0.120 0.000 

p1_ugl (-8) 1000hpa wind speed -0.217 0.000 

p500gl (1) 500 hpa geopotential 0.170 0.000 

s500gl  500 hpa specific humidity -0.099 0.000 

tempgl (9) air temperature at 2m 0.101 0.000 

Bracket “(x)” indicated the predictor undergone x-lag transformation. 

 

The calibrated model takes the User-defined predictand 
along with a set of predictors to compute the parameters 
of multiple regression equations through an optimization 
algorithm. In this study, the ordinary least square method 

was chosen for the rainfall optimization while the dual 
simplex was for temperature optimization. The selected 
model type was that for the monthly basis for both rainfall 
and temperature downscaling. There were 12 regression 
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functions developed by SDSM for an entire year. This 
selection was due to the high variance of climate 
throughout the year in Malaysia, especially its rainfall. 

The type of process was set to be “unconditional” for 
temperature and “conditional “for rainfall downscaling. For 
the unconditional model, a direct link is assumed between 
predictors and predictands (for example, local wind speed) 
while for the conditional model, it is assumed there was an 
intermediate process in between (for example, local 
precipitation). 

The parameter such as variance inflation and bias 
correction were initially set to be 12 and 1.0 respectively. 
Variance inflation controls the variance magnitude in 
downscaled data while bias correction was used to 
compensate the model tendency for over-or-under-
estimating the mean of downscaled data. It was suggested 
that two of these parameters to be adjusted and the values 
corresponding to best validation result should be chosen. 
The length of 30 years available observed data sets was 
divided into three groups. The first group consisted of 20 
years data from year 1976 to 1995 was used for the 
calibration process whereas the second group of year 1976 
to 1986 data was used for the station data validation and 
the third group of 1996 to 2006 was used for determination 
of RCPs. 

The CanESM2 output of the three different scenarios 
(historical, RCP 4.5 and RCP 8.5) and ‘Year Length’ 
parameter of 365 days is used. The historical CanESM2 was 
used to simulate the historical model (1983-2005) and for 
the comparison with actual historical data. This will prove 
that the predictors selected during screening process are 
suitable. ‘Scenario Generator’ operation generated 20 
ensembles of synthetic daily weather series from futuristic 
large-scale predictors (GCM output) rather than 
NCEP/NCAR Reanalysis data. 

For the validation part, it involved comparing the mean of 
generated climate data by ‘Scenario Generator’ and 
observed station data of each month over a 10 year’s 
period. This comparison included graphical way (plotting 
graphs) and statistical way (computing coefficient of 
correlation, linear regression, standard normal distribution 
and probability density function between two sets of data). 

Correlation coefficient (r) is a quantitative statistic which 
computes the correlation and dependency between two 
random variables. The result ranges from -1 to 1. When the 
result is close to 1 or -1, it represents a high relationship 
between two sets of variables in positive or negative trend 
respectively. In opposing, no relationship between 
variables when r=0. The computation of correlation 
coefficient is shown as below; 
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Where x denotes first set of variables and y denotes the 
second set of variables. In this research, correlation 
coefficient was also used in analysis of the relationship 
between two chosen indices in later section. 

Linear regression is defined as a linear approach to 
modeling the relationship between a dependent variable 
and one or more independent variables (Freedman, 2007). 
In this study, our goal is forecasting and hence the linear 
regression was used for the comparison of the simulated 
data and also observed station data. A High R-square value 
detonates that the simulated data is correlated with the 
observed station data. 

In probability theory, the normal distribution is a type of 
continuous probability distribution for the real-valued 
random variable. For the normal distribution case, the 
simplest one is known as the standard normal distribution. 
The computation of standard normal distribution is shown 
as below: 
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If the mean equals zero and the standard deviation equals 
one, it will be known as the probability density function 
(PDF). The PDF is a function whose value at any given 
sample point in the sample space can be interpreted as 
providing a relative likelihood that the value of random 
variable would equal the sample. In this study, the area 
under the graph of standard normal distribution and 
probability density function were computed or the 
validation of data and selection of RCP for the future trend 
as well. Finally, the selection of RCP climate scenario for 
Penang station will be based on all the four statistical tests 
mentioned above (Casella and Berger 2001). 

4. Results and discussion 

A total of 26 NCEP/NCAR variables (Predictors) which 
performed lag-transformation from lag -9 to lag 9 were 
analysed by partial correction test to identify the sensitivity 
of predictors to predictands (station data). The variables 
with the least or zero value of significant level (p-value) and 
highest value of partial correlation (partial r) were selected 
as the predictors. The list of selected predictors for all the 
stations with partial correlation coefficient and significant 
level respectively is shown in Table 3. The screening 
outcome shows that the 100 hpa wind speed (p1_ugl) is 
sensitive to all predictands for rainfall and temperature 
parameter. In addition, the 850 hpa wind speed (p8_ugl) 
and the 850 hpa wind direction (p8thgl) are also sensitive 
to the predictand for rainfall. 

The partial correlation of predictors for the rainfall 
predictand was in the range of |0.033 - 0.087|; and the 
temperature predictand was in the range of |0.108 - 
0.217|. This indicates that the daily rainfall tends to be less 
predictable as it has higher fluctuation (Ang, 2016). As 
shown in Table 3, station 5302003 is loaded with lowest 
partial correlation (-0.033) whereas BL-Rainfall station is 
determined as the highest partial correlation value (0.087) 
for rainfall predictand. 

For the temperature predictand, the BL-tempmin station is 
loaded with the highest value of partial correlation and the 
BL-tempmax station held the lowest, which are 0.108 and -
0.217 respectively. The negative sign of the partial 
correlation or otherwise known as the inverse partial 
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correlation is a relationship between two variables 
whereby, they move in opposite direction e.g if variable X 
increase, then variable Y will decrease (Baba et al., 2004). 

The predictor 1000hpa wind speed tends to affect both the 
rainfall and temperature parameters. The altitude of 
1000hpa and 850hpa are approximately at respectively 
114m and 1456m above sea level. Penang Island is located 
at 3m above sea level with Penang Hill at height of 833m 
above sea level. The 1000hpa altitude acts as a wind 
boundary and includes the surface of Penang Island. Back 
and Bretherton (2005) had stated that surface wind speed 
contributes to the small amount of daily rainfall. Based on 
Figure 2, the surface level wind speed promotes the 
evaporation rate and formed shallow cumulus population. 
These cumuli eventually increase the relative humidity of 
atmosphere and hence also increase the deep convection 
and precipitation rate. Besides that, the surface wind 
(resulting from the surrounding island sea current) also acts 
as an agent that regulates the Penang Island regional 
temperature (Bigg et al., 2003). This has factored in the 
1000hpa wind speed as the main predictor that affects 
maximum and minimum temperature of the stations. 

 

Figure 2. Schematic of convective initiation mechanism (Back 

and Bretherton, 2005). 

There are two common predictors (variables) loaded in the 
model for rainfall stations (5302001, 5302003, 5402001 
and BL-Rainfall) and these are the 850hpa wind speed and 
the 850hpa wind direction. These refer to the wind speed 
and wind direction at altitude of approximately 1456m 
above sea level. At higher level of altitude, wind speed and 
wind direction are larger compared to those of the lower 
altitude. According to Turgut and Usanmaz (2016), the 
average wind directions increased from 169o at lower 

altitude to 260o at higher altitude based on the data 
retrieved from a station located nearby the sea. In near the 
surface, there are plenty of structures, vegetation and 
mountains to limit the speed of the wind but at altitude of 
850hpa there are none. This result in the greater wind 
speed at high altitude compared to lower altitude. A 
combination of higher wind speed and wind direction 
results in greater fluxes that increased the deep convection 
and hence the rainfall rate is higher (Back and Bretherton, 
2005). 

For the temperature station (BL-tempmax and BL-
tempmin), the common variables loaded in the model are 
500hpa geopotential and air temperature at 2.0 m. The air 
temperature is routinely measured at 2 meters height 
above ground at the meteorological station (BL-Rainfall). 
This enables us to identify the temperature profile, as it 
varies with height. The variable 500hpa geopotential refers 
to the altitude whereby the pressure is 500hpa 
(approximately 5.5km above sea level) and it forms a layer 
of atmosphere from the ground to the 500hpa height. This 
layer is also accordingly known as “thickness” from the 
meteorological perspective. 

 

Figure 3. Comparison of observed and simulated average 

monthly rainfall. 

The temperature data were obtained by the 
meteorological stations (BL-tempmin BL-tempmax) located 
at 2.0 m above sea level. The maximum and minimum 
temperature of Penang Island are possibly affected due to 
the coordinate of the island on Earth longitude and 
latitude, surrounding sea water, wind movement, 
precipitation, local activities and geographical terrain 
within the 500hpa geopotential boundary. 

Table 4. Validation of historical model (SDSM) vs. station data (Observed) for Rainfall and Temperature Downscaling using coefficient of 

correlation 

 Station Name Correlation coefficient (r) 

Rainfall 

5302001 0.9665 

5302003 0.9467 

5402001 0.9652 

BL- Rainfall 0.9344 

Minimum temperature BL- tempmin 0.9724 

Maximum temperature BL- tempmax 0.9727 
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Table 5. Results of tests for rainfall and temperature stations 

 Correlation coefficient (r) Linear regression (R2) Probability density function (coverage %) 

Station name RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 

5302001 (0.948) 0.944 0.606 (0.655) 73.22 (75.81) 

5302003 0.868 (0.908) 0.665 (0.717) 97.00 (98.00) 

5402001 (0.839) 0.816 0.614 (0.623) 99.50 (100.0) 

BL-Rainfall 0.895 (0.950) 0.632 (0.682) 94.61 (99.50) 

BL-tempmin 0.901 (0.919) 0.605 (0.643) 90.79 (99.65) 

BL-tempmax 0.850 (0.890) 0.622 (0.631) 93.08 (98.78) 

*Brackets indicates that the data has bigger value. 

 

 

Figure 4. Comparison of observed and simulated maximum 

temperature and minimum temperature. 

 

Figure 5. Non-cumulative probability density function (PDF) of 

monthly temperature for RCP 4.5 climate scenario and 

observation. 

4.1. Comparison of historical model and Observation data 
(1983-2005) 

In order to evaluate the performance of the SDSM 
downscaled models, the comparison of historical model 
and Observation data for 1983-2005 period was conducted 
in this study. The only difference between the observed 
and historical model average monthly rainfall was 
determined for station 5302001 as shown in Figure 4. 
There are differences of 5.1mm and 3.31mm respectively 
for April and May. Other than that, the SDSM performed 
well for all rainfall and temperature stations. For the BL-
tempmax and BL-tempmax stations, there are slightly 
differences between the observed data and historical 

model (<0.3°C). This however is acceptable as it is less than 
1 % (<0.01) in the historical model. 

Statistical and graphical methods were used to evaluate 
the performance of SDSM software. The average monthly 
rainfall, maximum temperature and minimum temperature 
of each month throughout validation period were 
computed for historical model and observed station data. 
The graphical comparisons of these two sets of results are 
shown in Figures 3 and 4. These graphs represent the 
monthly average rainfall and monthly temperature for 
maximum and minimum. The generated average maximum 
and minimum temperature data are similar to the 
observed data. It is supported by the correlation coefficient 
r, which range from 0.9344 - 0.9665 for four rainfall 
stations, 0.9724 - 0.9727 for temperature stations (See 
Table 4). 

 

Figure 6. Non-cumulative probability density function (PDF) of 

monthly rainfall for RCP 4.5 climate scenario and observation. 

4.2. Representative concentration pathways (RCPs) 

The observed rainfalls and temperatures of the baseline 
period had been used to generate the projected time series 
up till year 2100 under RCP 4.5 and RCP 8.5 climate 
scenario. Similar to the data validation, the Correlation 
coefficient linear regression test and probability density 
function test were used to identify the local climate model 
scenario for Penang Island. As shown in Table 5, the value 
indicated the result meets the minimum criteria (r>0.9; R2> 
0.6) for correlation coefficient and linear regression and 
higher overlapped curve area (>90%) for probability 
density function (PDF). 

The result shows that climate model based on RCP 8.5 has 
meet most of minimum criteria. For the PDF test, the 
overlapped curve area ranged from 73.22 - 99.50 % for the 
RCP 4.5 scenario and 75.81- 100 % for the RCP 8.5 scenario.  
In order to determine the similarity of the simulation and 
observation, Figures 5–8 tabulate the PDF curves and the 
mean values. The closer the mean value of the simulated 
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data (RCPs) to the observed data will have the more 
identical graphs between simulated and observed data.  
The mean value of observed data ranges from 6.476 to 
8.159 mm for the rainfall stations and from 24.70 to 31.7°C 
for the temperature data. For the RCP 4.5 scenario, the 
rainfall means values range from 6.119-7.122 mm and 
24.6-31.4oC for temperature. For the RCP 8.5scenario, the 
range of mean value is 6.100- 7.164 mm and 24.7 -31.5°C 
for temperature. 

 

Figure 7. Non-cumulative probability density function (PDF) of 

monthly temperature for RCP 8.5 climate scenario and 

observation. 

 

Figure 8. Non-cumulative probability density function (PDF) of 

monthly rainfall for RCP 8.5 climate scenario and observation. 

Based on the RCP 8.5 climate scenario, the monthly rainfall 
for station 5302001 would have increased by a maximum 
10 mm from 1982 to 2100. Such an increment would also 
contribute to the probability of flood event occurrence 
especially in the southwest and northeast monsoon season 
interchange period (September–October) (see Figure 9). 
Besides, the average minimum temperature of may be 
gained from 23.9°C to 26.2°C from the period of 1984 to 
2100 (see Figure 10). The highest average minimum 
temperature is recorded as 27.6°C on June. A similar trend 
was observed for the highest average maximum 
temperature. It is estimated to increase from 
approximately 31.9°C to 34oC. There is also a clear trend of 
the monthly maximum temperature throughout the year. 
The temperature would be increased from January and hit 
the peak in March every year. The maximum temperature 
then reduces to its first crest in May and hit the lowest 
value in August. After that, the temperature is raised again 

until the following year of March and the cycle repeats.

 

Figure 9. Downscaled climate model (rainfall) for station 

5302001 based on RCP 8.5 climate scenarios in different time 

periods. 

 

Figure 10. Downscaled climate model (minimum and maximum 

temperature) for BL station based on RCP 8.5 climate scenarios 

in different time periods. 

5. Conclusion 

This study has successfully developed a regional climate 
model for Penang Island based on representative 
concentration pathway. The outcome shows that selection 
of suitable predictors is important to establish a creditable 
downscaled model. The dominant predictors for rainfall 
model are found to be the 1000 hpa wind speed (p1_ugl), 
850 hpa wind speed (p8_ugl) and 850 hpa wind direction 
(p8thgl) while for the temperature model, they are loaded 
with 1000 hpa wind speed (p1_ugl), 500 hpa geopotential 
(p500gl) and air temperature at 2m (tempgl). Based on the 
reliability analysis outcomes, the possible causes for 
acknowledging that the Penang Island could follow the high 
emission scenario RCP 8.5. It may be due to urbanization 
and rapid growth of human population in the study area. 
The rising population subsequently resulted in the increase 
of industrial production (especially in manufacturing 
sector), transportation needs and storage services as well. 
Furthermore, the tourism of Penang Island is bound to 
increase too as it is one of economy sectors of the State. All 
of these shall contribute to the higher significant 
greenhouse gases (GHGs) emission and deforestation, thus 
causing the inevitable regional climatic change in the area. 
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