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Abstract 

Urban economic development cannot be separated from 
energy consumption, and energy consumption directly 
leads to a large number of carbon emissions. It is of great 
significance to study the relationship between carbon 
dioxide emissions and economic growth for the 
implementation of energy conservation, emission 
reduction and the development of low-carbon economy in 
cities. A new method of dynamic relationship between 
urban carbon dioxide emission and economic growth is put 
forward. The carbon dioxide emission data in cities are 
calculated by using urban carbon dioxide emission 
measurement method. The data of economic attributes are 
obtained by using classification algorithm under uncertain 
data flow environment. Based on this data, a decoupling 
model of carbon emission and economic growth is 
constructed to measure economic growth elasticity of 
urban carbon emissions; Granger causality test model is 
established to analyze the Granger causality between 
urban carbon dioxide emissions and economic growth. The 
experimental results show that the growth rate of urban 
economy is obviously faster than that of carbon emissions. 

Economic growth is the Granger causality of carbon dioxide 
emissions. On the contrary, the implementation of carbon 
emission reduction measures will not hinder economic 
growth. 

Keywords: City, carbon dioxide, emissions, economic 
growth, decoupling model, Granger, causality. 

1. Introduction 

With the continuous development of human economy, 
environmental problems such as global warming and 
ecosystem deterioration caused by the intensification of 
greenhouse gas emissions are becoming increasingly 
serious (Dali and Kamarudin, 2018; Lee et al., 2017). 
According to the 2007 assessment report of the United 
Nations Intergovernmental Panel on Climate Change, 
global temperatures have risen by an average of 0.13°C 
every 10 years in the past 50 years, it is almost twice as 
much as in the past 100 years. The report also points out 
that other greenhouse emissions from human activities are 
likely to be the main causes of global temperature rise, 
resulting in more frequent occurrence of extreme climatic 
phenomena such as drought, rainstorms, snowstorms, 
heat waves and tropical cyclones (Focas, 2017; Singh, 
2020). 

Thus, how to effectively reduce greenhouse gas emissions 
while achieving sustainable economic development has 
become a major issue facing all countries in the world 
today (Schuster et al., 2016). In this context, it is of great 
academic value and practical significance to study the 
relationship between “economic growth” and “carbon 
dioxide emissions”. It will provide a theoretical analysis and 
empirical basis for policy authorities to choose and arrange 
future energy and environmental economic policies (Azhar 
and Zainuddin, 2020; Mozina et al., 2018; Xu et al., 2016). 
This paper puts forward a new method of dynamic 
relationship between carbon dioxide emission and 
economic growth in cities. Considering the new trend of 
international development of low-carbon economy in the 
future, this paper makes an empirical study on the internal 
dynamic relationship between carbon emission and 
economic growth through decoupling and Granger 
causality, which provides a theoretical basis for 
strengthening the construction of low-carbon cities and 
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realizing the sustainable development of economy and 
society (Chaabouni, 2016; Khanchoul et al., 2018). 

2. Dynamic relationship between carbon dioxide 
emissions and economic growth in cities 

2.1. Calculating method of urban carbon dioxide emission 

According to the IPCC Carbon Emission Computation 
Guidelines (2006) and the characteristics of China’s urban 
energy statistics, the calculation formula of urban carbon 
emissions is expressed as follows: 
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In the formula, Cit is the NO2 emission of city i at time t, Zijt, 
Dijt and Rijt are the carbon emission of the j-th terminal 
energy consumption at time t in city i, the carbon emission 
of thermal power generation in energy processing 
conversion, and the carbon emission of heat supply in 
energy processing conversion. Oit and Iit are respectively 
the carbon emissions of the electricity output of the 
province and the carbon emissions of the electricity import 
of the other provinces in the city i at time t. ZEijt, DEijt and 
REijt are respectively the energy consumption at the j-th 
terminal of the cityat time t, the energy consumption of 
thermal power generation in energy processing and 
conversion, and the energy consumption of heating in 

energy processing and conversion. Zijt, Dijt and Rijt are 
the corresponding conversion coefficients of energy 

consumption standard quantities, and Zijt, Dijt and Rijt 
are the corresponding carbon emission coefficients of 
energy consumption. OEit and IEit are the local and the 

provincial power transfers in time t of city i respectively. Et 

and Et are the standard conversion coefficient and carbon 
emission coefficient of China’s power consumption in 
time t. 

The conversion coefficients of standard energy 
consumption in terminal energy consumption, thermal 
power generation and heating process, as well as the 
conversion coefficients and carbon emission coefficients of 
standard energy consumption in and out of interregional 
power transfer are calculated using the following formulas: 
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(2) 

In the formula, Zijt, Dijt and Rijt are the conversion 
coefficients of standard quantity. For different regions, the 
conversion coefficients of standard quantity are the same 

in the same year. ZEBjt and ZESjt are the standard quantity 
and physical quantity of the j-th terminal energy 
consumption at time t, DEBjt and DESjt are the standard 
quantity and physical quantity of the j-th energy 
consumption in thermal power generation process at time 
t, REBjt and RESjt are the standard quantity and physical 
quantity of the j-th energy consumption in heating process 

at time t, respectively. Quantity and physical quantity. Et 
is the standard conversion coefficient of power terminal 
energy at time t, ZEEBt and ZEESt are the standard quantity 
and physical quantity of power terminal energy 

consumption at time t, respectively. Eit is the carbon 
emission coefficient of electric power at time t. Thermal 
power generation in China is mainly generated by burning 
fuel. Its carbon emission coefficient is determined by the 
proportion of energy consumption in the process of 
thermal power generation (Chen and Chen, 2016; Russo et 
al., 2015). Due to the influence of energy consumption 
structure, power production technology and other factors, 
the carbon emission coefficient of electric power varies 
greatly every year. Therefore, it is necessary to calculate 
different carbon emission coefficients at different time 
intervals for different regions when power is transferred 
into and out. The total amount of energy carbon emissions 
consumed by thermal power generation in energy 
processing and conversion is divided by the end energy 
consumption as the carbon emission coefficient of electric 
power (Feng et al., 2016; Souse et al., 2015). 

The calculation process of urban carbon emissions is shown 
in Figure 1. 

 

Figure 1. Flow chart of urban carbon emission measurement 

2.2. Classification algorithms in uncertain data stream 
environment 

From the data available in China, the data of carbon dioxide 
emissions from various provinces have been not yet 
published, so in order to study the dynamic relationship 
between urban carbon dioxide emissions and economic 
growth, estimating China’s carbon dioxide emissions has 
become a problem that must be taken seriously (Gao, 
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2015; Huang et al., 2015; Wang et al., 2015). co2 emission 
sources can be divided into two categories, one is the 
emission of natural environment, the other is the carbon 
dioxide generated by human production activities. Soil, 
forest, ocean and so on are the sources of natural 
environment emissions. People’s various production 
activities around the world are the sources of 
anthropogenic emissions. Economic growth can not be 
separated from anthropogenic factors. Therefore, this 
paper mainly studies the carbon dioxide produced by 
economy. Before studying the dynamic relationship 
between urban carbon dioxide emissions and economic 
growth, it is necessary to classify urban carbon dioxide 
emissions data to obtain data on carbon dioxide generated 
by economic growth (Xie et al., 2017; Yu et al., 2015; Zhang 
et al., 2015). 

Data flow model has a wide range of applications in various 
fields, such as the Internet of Things, finance, the Internet 
and so on. With the progress of technology, people find 
that data in these areas are generally uncertain due to 
repeated measurements, privacy protection and data loss. 
The uncertainty of data results in that the values of data 
items can not be expressed by single values, but by multiple 
values and corresponding probability distributions (Yang et 
al., 2018). 

In this paper, the classification algorithm under uncertain 
data flow environment is used to classify the data of carbon 
dioxide emissions related to economic attributes of cities 
in China. Uncertainty can be found in the numerical 
attributes of carbon dioxide emissions, as well as in the 
nominal attributes of economic growth (Ain et al., 2019; 
Mcpherson et al., 2015; Yasin et al., 2018). The uncertainty 
attribute set of urban carbon dioxide emission data is as 
follows: 

1 2{ , ,..., }u u u u
kA A A A=  

(3) 

Au represents the uncertain attribute set of urban carbon 

dioxide emission data, u
iA  represents the ith uncertain 

attribute of Au, u
itA  represents the attribute value of 

uncertain attribute u
tA  in the t-th sampling of urban carbon 

dioxide emission data, and k represents the number of 
uncertain attributes of urban carbon dioxide emission data, 

i[1,k]. 

The uncertain attribute value u
itA  of urban carbon dioxide 

emission data includes a range of values and the probability 

distribution over the range. If u
iA  is a numerical property, 

its range of values is expressed by [ait, bit], and the 
probability distribution is expressed by a probability 
density function git(x). 

In the data of urban carbon dioxide emission under the big 
data environment, the uncertain data stream of carbon 
dioxide emission is a series of incoming samples of 
uncertain data on carbon dioxide emissions, which is 
expressed by formula (2): 

1 2{ , ,..., ,...}u u u u
tD D D D=  

(4) 

Where, u
tD  represents the uncertain data sample of carbon 

dioxide emissions. Each uncertain data sample u
tD  contains 

an attribute vector Au and a category yu, namely: 

( ,y )u u u
tD A=  

(5) 

Where, 1 2y { , ,..., }u u u u u

C
C C C C =  indicates the category of 

sample u
tD  of carbon dioxide emission data. 

The purpose of this paper is to construct a classifier for the 
uncertain data stream Du of the dynamic relationship 
between urban carbon dioxide emissions and economic 
growth, and give a correct classification for the subsequent 

carbon dioxide data sample =( ,y ?)u u u
tD A = . In the big data 

environment, in the uncertain data stream system, data 
continuously arrives at the system, but the data cannot be 
obtained all at once, and only be scanned once. Therefore, 
this paper constructs an incremental classification model, 
i.e. incremental decision tree model,and uses this model to 
transform the uncertain attribute Au of urban carbon 
dioxide emission data into a class probability distribution 

1{Pr( ),...,Pr( )}u u

C
C C , so thatat any time, according to the 

model, the data sample u
tD  under subsequent carbon 

dioxide emission reduction constraints is predicted to 
belong to the following categories: 

1,...,
arg max {Pr( )}u u

c
c C

y C
=

=  (6) 

Where, c is the quantity words of the categories of urban 
carbon dioxide emission data. 

Formula (6) can be used to accurately classify and obtain 
carbon dioxide emission data related to economic growth 
attributes. 

2.3. Construction of a model for the relationship between 
urban carbon emissions and economic growth 

Based on the data of carbon dioxide emission from 
economic attributes obtained in the previous section, the 
relationship model between urban carbon emission and 
economic growth is constructed, and the dynamic 
relationship between urban carbon dioxide emission and 
economic growth is analyzed comprehensively. 

2.3.1. Construction of decoupling model of carbon emission 
and economic growth 

(1) Construction of decoupling model 

There are two common decoupling models: Tapio model 
and OECD model. The division of elastic index in Tapio 
model is more precise, and it reflects the decoupling state 
of economic growth and carbon emissions in different 
regions at different times or in same region at different 
times. Tapio model has low demand for time base period 
selection and is not easily affected by the dimension of 
indexes (Fikriah et al., 2019; Wei, 2018). Therefore, on the 
basis of the data of carbon dioxide emissions related to 
economic growth attributes obtained by formula (6), a 
Tapio model is constructed to study the decoupling 
relationship between carbon emissions and economic 
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growth in four cities, and to measure the economic growth 
elasticity of urban carbon emissions. 

1 1

1 1
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In this formula, wn is the decoupling elasticity index, RC is 
the growth rate of carbon emissions, that is, the change 
rate of carbon emission level in the n-th year relative to the 

n-1-thyear, RGDP is the change rate of a city’s GDP in the 
n-th year relative to the n-1-thyear, and C is the carbon 
emission factor. 

(2) Representation of decoupling state 

According to the different characteristics of the decoupling 
elastic index, Tapio classifies the decoupling states into 
eight types, which are described in Table 1. 

China is in the process of rapid economic development, the 
economic growth rate must be greater than zero, so there 
are four decoupling states: strong decoupling, weak 
decoupling, growth linkage and negative decoupling of 
expansion (Fang et al., 2015; Kuusela and Amacher, 2016). 

Table 1. Tapio (2005) elastic classification of decoupling 

Decoupling state co2 GDP Elastic levele Meaning 

Negative 

decoupling 

Strong negative 

decoupling 
>0 <0 <0 

Economic Recession and Increased Carbon 

Emissions 

Weakly negative 

decoupling 
<0 <0 0<t<0.8 

Carbon emissions fell less than the economic 

downturn 

Extended negative 

decoupling 
>0 >0 t>1.2 

Carbon emissions increase more than economic 

growth 

Decoupling 

Strong decoupling <0 >0 <0 Economic Growth, Carbon Emissions Decline 

Weak decoupling >0 >0 0<t<0.8 
The increase of carbon emissions is less than that of 

economic growth 

Recessive 

decoupling 
<0 <0 >1.2 

Carbon emissions have fallen more sharply than 

economic recession 

Link 

Growth link >0 >0 0.8<t<1.2 
The growth rate of carbon emissions is basically the 

same as that of economic growth 

Declining links <0 <0 0.8<t<1.2 

The decline in carbon emissions is basically 

consistent with the extent of the economic 

recession 

 

2.3.2. Granger causality test model 

(1) Unit root test 

The purpose of unit root test is to check the stability of time 
series and avoid the occurrence of pseudo-regression in 
analysis. It is also the premise of analyzing whether there is 
co-integration relationship and Granger causality among 
variables. This paper adopts ADF test method, which is 
developed from DF test (Dickey-Fuller test). DF test is only 
applicable to the first-order autoregressive process, and 
ADF test can be applied to the stationarity test of multi-
order AR(p) process (Alshehry and Belloumi, 2015; Vogt et 
al., 2015). 

The principle of ADF test takes the first order 

autoregressive sequence as an example: xt=xt−1+. 

The characteristic equation of the sequence is −1=0. 

When the eigenvalue 1 is in the unit circle, the sequence 
is stationary; conversely, the sequence is non-stationary 
(Mohajeri et al., 2015). 

Original hypothesis H0: sequence xt is nonstationary; 
alternative hypothesis H1: sequence xt is stationary. 

The statistics t is test: 1 1 1 1
ˆ( ) ( ) / ( )t S   = − , where 

1̂  is 

the least square estimate of parameter 
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Where, 1̂( )S   eigenvalue estimator and S represent the 

parameters of least squares estimate. When 1=0, the limit 

distribution of t(1) is called standard normal distribution; 

when |1|<1, the asymptotic limit distribution of t(1) is 

called standard normal distribution; when |1|=1, the 

asymptotic distribution of t(1) is no longer normal 
distribution. 

We call 
1

1

ˆ 1

ˆ( )S






−
=  the ADF test statistics. When the 

significant level is ,  is called the  position point of ADF 

test. That is, when , we reject the original hypothesis, 
which means that the sequence is remarkably stable. On 
the contrary, we accept the original hypothesis, which 
means that the sequence is not stable. 

Before the ADF test, we can make a preliminary judgment 
on the time series. The time series diagram can be used to 
preliminarily judge whether the time series is unstable. In 
order to avoid the fluctuation of the data to a large extent, 
we can easily get the stationary series. In this paper, we 
take the logarithm of GDP and carbon dioxide emission co2 
respectively, which can be recorded as LNCO2 and LNGDP. 

(2) Co-integration test 
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Co-integration test is the causality test of non-stationary 
sequence. Co-integration means that there exists a 
common random trend. Co-integration processing is 
mainly to test whether there is a stable relationship 
between variables and to prevent pseudo-regression 
caused by non-stationary sequence (Bonal et al., 2015). If a 
linear combination of two random walk variable sequences 
is stable, then the two sequences are co-integrated, and 
the single integer order of the two sequences is the same, 
which is the necessary condition for the co-integration 
between the two sequences. 

 

Figure 2. Decoupling of Carbon Emissions and Economic Growth 

in Shanghai from 1995 to 2014 

 

Figure 3. Decoupling of Carbon Emissions and Economic Growth 

in Beijing from 1995 to 2014 

If two sequences of xt and yt are known to be non-
stationary, but they are all d-order mono-integer 

sequences, then it can use the stationary test of residual t 

of co-integration regression equation (OLS):xt=+yt+t to 
judge the co-integration relationship of xt and yt. If xt and yt 
do not exist co-integration, then any linear combination of 

them is non-stationary, that is, residual tmust also be non-

stationary. Therefore, if the test shows that the residual t 

is stable, then we can consider that there is a co-integration 
relationship between xt and yt. 

(3) Granger causality test 

Granger test is only a prediction of stationary time series. 
Assuming that there are two economic variables C (carbon 
emissions) and G (GDP), under the condition that both 
information are included at the same time, the prediction 
effect of variable C is generally better than that only using 
the past information of C to predict. That is, variable G 
helps to improve the interpretation and prediction 
accuracy of variable C, then it is considered that there is 
Granger causality between variable X and Y (Ahmad et al., 
2015; Ismail et al., 2015; Liu et al., 2019; Mi et al., 2019; 
Wang et al., 2018; Yu et al., 2018, 2019). The two-variable 
autoregressive model is as follows: 

0
1 1

m m

t i t i i t i t
i i

C G G   − −

= =

= + + +   (9) 

0
1 1

m m

t i t j j t j t
i j
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= =

= + + +   (10) 

The co-integration factor i(i=1,2,,m)=0 should be 
tested, that is, “G is not the cause of C changing”, and the 

original hypothesis i(i=1,2,,m)=0 should be rejected, 
that is, the Granger causality from G to C should be 
affirmed; similarly, the Granger causality from Y to X should 

be verified by the hypothesis i(i=1,2,,m)=0. 

3. Results 

3.1. Decoupling analysis of carbon emissions and economic 
growth 

Based on the above decoupling models, the decoupling 
status of carbon emissions and economic growth in 
Shanghai, Beijing, Tianjin and Chongqing from 1995 to 2014 
is calculated and described in Figures 2-5. 

 

Figure 4. Decoupling of Carbon Emissions and Economic Growth 

in Tianjin from 1994 to 2014 

From the analysis of Figures 2-5, we can see that most of 
the years in cities are in a weak decoupling state, indicating 
that the economic growth rate is obviously faster than the 
increase rate of carbon emissions. Among them, Beijing has 
the best decoupling status, the year of strong decoupling is 
more, and its decoupling elasticity coefficient is small. From 
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the time series, decoupling shows a good momentum of 
development. Since 2008, the number of years of strong 
decoupling has increased, indicating that Beijing’s energy 
saving and emission reduction policy has achieved good 
results. The decoupling status of Shanghai is similar to that 
of Beijing. Over the years, the decoupling status is located 
in weak and strong decoupling areas, which indicates that 
the rapid economic growth has not brought about 
excessive growth of carbon emissions. The decoupling 
status of Tianjin and Chongqing is comparatively 
consistent, and the decoupling status varies greatly from 
year to year in terms of time series; from the overall 
distribution, the weak decoupling status is not obvious in 
most years, and the value of decoupling coefficient is 
larger, indicating that economic growth is accompanied by 
an increase in carbon emissions. This is related to the rapid 
development of the two cities and the important position 
of the secondary industry in the three industries. 
Secondary industry is the main source of energy 
consumption and the source of increasing carbon 
emissions. 

3.2. Granger test 

3.2.1. ADF test: A case study of shanghai 

In order to ensure the stationarity of time series data, the 
stationarity tests of LNCO2 and LNGDP in four mega-cities 
(Beijing, Shanghai, Tianjin and Chongqing) are carried out 
respectively. The ADF test method is adopted in this paper. 
The lag period is 2. The test principle refers to the above 
requirements. Table 2 shows the results of ADF test in 
Shanghai. 

 

Figure 5. Decoupling of Carbon Emissions and Economic Growth 

in Chongqing from 1995 to 2014 

Table 2. ADF Unit Root Test Results in Shanghai 

Variable ADF test value Critical value 

(1%) 

Critical value 

(5%) 

Critical value (10%) Judgement 

conclusion 

LNGDP 0.992746 -4.532598 -3.673616 -3.277364 Nonstationary 

LNGDP first-order 

difference 
-2.303840 -4.532598 -3.690814 -3.286909 Nonstationary 

LNGDP second Order 

Difference 
-5.647835 -4.667883 -3.733200 -3.310349 Stable 

LNCO2 -0.157.26 -4.532598 -3.673616 -3.277364 Nonstationary 

LNCO2 first-order 

difference 
-3.984466 -4.571559 -3.690814 -3.286909 Nonstationary 

LNCO2 second Order 

Difference 
-5.800843 -4.667883 -3.733200 -3.310349 Stable 

The analysis of Table 2 shows that the statistic is 0.992746 
at 5% significant level, and its P value is greater than the 

significant level . Therefore, we accept the original 
hypothesis that the GDP time series data are non-
stationary, and the LNGDP first-order difference still 
accepts the original hypothesis. When the second-order 
difference is used for LNGDP, the statistic at the 5% 
significant level is -5.647835, which is less than the 

significant level . The original hypothesis is rejected, that 
is, LNGDP is a second-order mono-integer sequence with a 
significant level of 1%. Similarly, LNCO2 is a second-order 
mono-integer sequence with a significant level of 1%. 
Similarly, LNGDP and LNCO2 are second-order mono-integer 
sequences at 1% significant level in Beijing. Tianjin is at 1% 
significant level, both of them are second-order mono-
integer sequences. Chongqing’s LNGDP is a second-order 
mono-integer sequence and LNCO2 is a first-order mono-
integer sequence. 

3.2.2. Co-integration test analysis: A case study of Shanghai 

Table 3 is the result of co-integration regression between 
carbon emissions and GDP in Shanghai; Table 4 is the ADF 
test result of co-integration regression residual of carbon 
emissions and GDP in Shanghai. 

According to ADF test results, if LNGDP and LNCO2 are 
stationary time series at different significance levels, it 
indicates that there may be a long-term stable equilibrium 
relationship of co-integration. Therefore, co-integration 
test can be used. The co-integration regression results of 
Shanghai are as Table 3. Eviews software is used to do co-
integration analysis of LNGDP and LNCO2 time series data. 
Taking LNCO2 as dependent variable and LNGDP as 
independent variable, Least Square Estimation regression 
analysis is carried out to obtain the co-integration 
regression equation as follows: 

2LNCO 6.845602 0.348285LNgdp tu= + +  (11) 

R2=0.96, F=416.84, DW=0.875660. The coefficient of the 
independent variable has passed the test, which shows 
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that the regression equation has a high significance. From 
the co-integration equation, the estimated coefficient of 
GDP growth is 0.348285, which means that for every unit 
of GDP increase, carbon dioxide emissions will increase by 
0.348285. The ADF test of the residuals shows that the 
residuals are stationary. 

3.2.3. Granger causality test 

According to the above principle, Granger causality test is 
carried out for LNCO2 and LNGDP in four cities respectively. 
Complying with SC and AIC minimization criteria, it can 
determine that the lag time of Granger causality test is 2. 
The test results are shown in Table 5. 

The significance probability of the two hypotheses in 
Shanghai is greater than 0.05, so the original hypothesis is 

accepted, that is, there is no causal relationship between 
GDP growth and carbon dioxide emissions in Shanghai. At 
the same time, it reflects that Shanghai’s economic growth 
is on the path of sustainable development. Sustained 
economic growth will not lead to an increase in carbon 
dioxide emissions, nor will carbon dioxide emissions lead to 
economic growth. Beijing’s test results are similar to 
Shanghai’s, while Tianjin and Chongqing’s test results are 
consistent, that is, there is a one-way Granger causality 
between economic growth and carbon emissions. 
Economic growth is the Granger cause of carbon dioxide 
emissions, otherwise it is not true. Carbon emission 
reduction measures will not hinder economic growth in the 
long run. 

Table 3. Co-integration regression results of carbon emissions and GDP in Shanghai 

Variable Coefficient Std. error t-Statistic Prob. 

LNGDP 0.348285 0.017059 20.41676 0 

C  6.845602 0.151398 45.21582 0 

R-squared 0.958606 Mean dependent var 9.929445  

Adjusted R- squared 0.956306 S. D. dependent var 0.221274  

S. E. of regression 0.046253 Akaike info criterion -3.214735  

Sum squared resid 0.038508 Schwarz criterion  -3.115162  

Log likelihood 34.14735 Hannan－ Quinn criter -3.195298  

F-statistic  416.8439 Durbin － Watson stat 0.87566  

Prob (F-statistic) 0       

Table 4. ADF test results of co-integration regression residual of carbon emissions and GDP in Shanghai 

 t-Statistic Prod.* 

Augmented Dickey-Fuller test statistic -4.058087 0.0004 

Test critical values: 1% level -2.699769 

 5% level -1.961409 

 10% level -1.606610 

Table 5. Granger causality test results 

 Original hypothesis F statistical value Saliency probability Test conclusion 

Shanghai City 
LNGDP does not Granger Cause LNCO2 0.43285 0.6557 Accept 

LNCO2 does not Granger Cause LNGDP 3.30919 0.0689 Accept 

Beijing City 
LNGDP does not Granger Cause LNCO2 1.78051 0.2073 Accept 

LNCO2 does not Granger Cause LNGDP 0.20417 0.8179 Accept 

Tianjin City 
LNGDP does not Granger Cause LNCO2 9.99341 0.0024 Refuse 

LNCO2 does not Granger Cause LNGDP 3.07741 0.0805 Accept 

Chongqing City 
LNGDP does not Granger Cause LNCO2 6.10705 0.0135 Refuse 

LNCO2 does not Granger Cause LNGDP 0.44601 0.6496 Accept 

 

4. Discussion 

This paper discusses the relationship between carbon 
emissions and various factors of urban economic 
development. The details are as follows: 

(1) The first is economic growth. Economic growth is an 
important indicator to measure the level of economic 
development. Based on experience, in the early stage of 
industrialization, the per capita carbon emissions of a 
country increase substantially with the economic growth. 
Because economic growth in the early stage of 
industrialization needs to use more fossil energy. After 
industrialization, the degree of correlation between 
economic growth and carbon emissions will be reduced. 
Looking from the history of economic development, the 

first two industrial revolutions have made the economy 
grow at an unprecedented rate. During this period, the 
large use of fossil energy has led to a sharp increase in 
carbon dioxide emissions. In recent years, with the rapid 
economic growth of developing countries, the demand for 
fossil energy continues to expand. Developing countries 
are in a period of rapid economic growth, and carbon 
dioxide emissions are also increasing rapidly. In order to 
achieve the level of developed countries’ economic growth 
in the future, we need enough space for carbon emissions 
in the process of future economic development. With the 
economic growth, the accumulation of carbon emissions is 
also a long process. 

(2) Factor of industrial structure. Changes in industrial 
structure in the economy will affect carbon dioxide 
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emissions. Secondary industry is the main sector of carbon 
dioxide emissions. The higher the proportion of secondary 
industry is, the more the carbon dioxide emissions are. The 
theory of industrial structure evolution holds that the 
industrial structure corresponds to the economic 
development and keeps changing, and the industrial height 
keeps evolving from the lower level to the higher level. 
With the economic development, the labor force first 
transfers from the primary industry to the secondary 
industry; the expansion of the secondary industry: with the 
continuous development of the economy, the tertiary 
industry is in the dominant position, the efficiency of 
energy utilization gradually improves, and people have a 
clean environment. The per capita carbon emissions may 
decrease as the demand of the environment increases. The 
expansion of tertiary industry: the scale of primary industry 
decreases, while the scale of secondary and tertiary 
industry expands. In the more developed countries and 
regions, the proportion of primary industry is relatively 
small, while the proportion of secondary and tertiary 
industries is relatively large. Generally speaking, the causal 
relationship between carbon dioxide emissions and output 
may be obvious in countries with a relatively large 
proportion of secondary industry. Empirically, the 
proportion of secondary industry may be positively 
correlated with carbon emissions. On the contrary, in 
developing countries and regions, the proportion of 
primary industry is relatively large, while the proportion of 
secondary and tertiary industries is relatively small. The 
carbon emissions per unit output of the first and third 
industries are lower than that of the second industry. With 
the development of industrial structure, the carbon 
emissions of the economy may show some regularity. 
Compared with developed countries, China’s industrial 
structure has a relatively high proportion of secondary 
industry, which will increase carbon emissions to a certain 
extent. 

(3) Urbanization level. The level of urbanization is also an 
obvious factor affecting carbon dioxide emissions. The level 
of urbanization is a quantitative index to measure the 
degree of urbanization development, which is expressed by 
the proportion of urban population in a certain region to 
the total population. The process of urbanization requires 
a large amount of energy input, which will produce a large 
amount of carbon emissions. A relatively high urbanization 
rate requires a large amount of carbon dioxide emissions. 
The level of urbanization in a country is closely related to 
its economic development. Compared with developed 
countries, China is in the period of urbanization. In order to 
reach the level of urbanization in middle-income countries, 
a large amount of energy input is needed and necessary 
infrastructure construction is carried out. A large amount 
of energy input will bring about an increase in carbon 
dioxide emissions. At the same time, rural residents in 
China will increase their carbon dioxide emissions. In the 
process of urbanization, a large number of people migrate 
from rural areas to cities. This huge increase in urban 
population will also increase carbon dioxide emissions. 

 

5. Conclusions 

Based on the research contents of this paper, the following 
conclusions and suggestions are obtained: 

(1) The dynamic relationship between carbon dioxide 
emissions and economic growth is studied in this paper, 
which provides a reliable basis for the implementation of 
energy saving and emission reduction and the 
development of low-carbon economy. Through 
comparative analysis and empirical research, the 
decoupling status of carbon emissions and economic 
growth in four cities is mainly weak decoupling, among 
which Beijing has the best decoupling status, and the trend 
of decoupling has gradually changed from weak decoupling 
to strong decoupling. The decoupling status of Tianjin and 
Chongqing has changed greatly in each year. Through 
Granger causality test, it is found that the results of 
Shanghai and Beijing are comparatively consistent, 
indicating that there is no Granger causality between 
carbon emissions and economic growth, while Tianjin and 
Chongqing show a one-way Granger causality between 
economic growth and carbon emissions, indicating that in 
the long run, the growth of carbon emissions will not lead 
to economic growth, that is, implementing strong energy 
saving and emission reduction measures will not lead to 
economic downturn in the long run 

Through the analysis of the differences between the 
economic structure and carbon emissions within the city, 
the rapid economic growth does not necessarily lead to an 
increase in energy consumption, it mainly depends on 
whether the industrial structure is reasonable or not and 
whether the energy efficiency is constantly improving. 
Shanghai and Beijing have a relatively high level of 
economic development and pay more attention to the 
quality of economic development. The increase of energy 
consumption does not necessarily lead to an increase in 
carbon emissions, but mainly depends on the improvement 
of energy consumption structure. Coal-based energy 
consumption structure in Tianjin and Chongqing will 
inevitably lead to a large increase in carbon emissions. 

(3) Cities are the most concentrated areas in China’s 
economic development and people’s lives, as well as the 
most concentrated areas in energy consumption and 
pollutant emissions. Therefore, the development of low-
carbon economy requires attention to the construction of 
low-carbon cities. Among them, the government plays a 
main role in the construction of low-carbon cities, and is 
also the promoter of fostering low-carbon economy in the 
transformation of economic structure. To achieve low-
carbon city, we must strive to implement low-carbon 
economy and realize low-carbon life. To achieve low-
carbon urban economic development, efforts can be made 
from four aspects: transformation of economic 
development mode, adjustment of economic development 
structure, economic development energy and policy 
support for new technologies of energy saving and 
emission reduction. To achieve low-carbon urban social 
life, it is necessary to actively publicize and popularize the 
concept of low-carbon life, realize low-carbon urban 
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planning, promote building energy saving and realize green 
building, so as tostreng then urban greening construction 
to improve urban forest coverage. 

(4) China’s mega-cities play a guiding role in leading 
regional economic and social development. Building a low-
carbon city is a systematic project, which requires 
extensive and deep participation of the government, 
enterprises and the public. The super-metropolis should 
make clear its overall orientation of economic 
development, construct a perfect urban development 
system, scientifically plan the urban development route, 
actively and reasonably construct the transportation 
system of the super-metropolis, realize the benign 
economic interaction with the surrounding areas, and lead 
the low-carbon construction of the surrounding urban 
agglomerations. By adjusting the energy consumption 
structure, optimizing the industrial structure and improving 
the efficiency of resource use, the level of carbon emissions 
can be reduced to the greatest extent. We should continue 
to strengthen the development and utilization of new 
energy sources, increase the ratio of renewable energy 
sources, such as promoting clean transformation of heating 
coal to gas, and encouraging the development and 
application of renewable energy technologies. At the same 
time, we should improve the relevant policies, regulations 
and standards of energy conservation and emission 
reduction, establish and improve the regulatory and 
decision-making mechanisms of megacities, such as 
strengthening the assessment and supervision of energy 
conservation and emission reduction targets, and 
establishing regional energy management linkage 
mechanism and consumption forecasting and early 
warning mechanism. 
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