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GRAPHICAL ABSTRACT 

 

Abstract 

Urban economic development cannot be separated from energy consumption, and energy 

consumption directly leads to a large number of carbon emissions. It is of great significance to 

study the relationship between carbon dioxide emissions and economic growth for the 

implementation of energy conservation, emission reduction and the development of low-carbon 

economy in cities. A new method of dynamic relationship between urban carbon dioxide 

emission and economic growth is put forward. The carbon dioxide emission data in cities are 

calculated by using urban carbon dioxide emission measurement method. The data of economic 

attributes are obtained by using classification algorithm under uncertain data flow environment. 
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Based on this data, a decoupling model of carbon emission and economic growth is constructed 

to measure economic growth elasticity of urban carbon emissions; Granger causality test model 

is established to analyze the Granger causality between urban carbon dioxide emissions and 

economic growth. The experimental results show that the growth rate of urban economy is 

obviously faster than that of carbon emissions. Economic growth is the Granger causality of 

carbon dioxide emissions. On the contrary, the implementation of carbon emission reduction 

measures will not hinder economic growth. 

Keywords: city, carbon dioxide, emissions, economic growth, decoupling model, Granger, 

causality 

1. Introduction 

With the continuous development of human economy, environmental problems such as global 

warming and ecosystem deterioration caused by the intensification of greenhouse gas emissions 

are becoming increasingly serious (Lee et al., 2017; Dali and Kamarudin, 2018). According to 

the 2007 assessment report of the United Nations Intergovernmental Panel on Climate Change, 

global temperatures have risen by an average of 0.13℃ every 10 years in the past 50 years, it 

is almost twice as much as in the past 100 years. The report also points out that other greenhouse 

emissions from human activities are likely to be the main causes of global temperature rise, 

resulting in more frequent occurrence of extreme climatic phenomena such as drought, 

rainstorms, snowstorms, heat waves and tropical cyclones (Focas, 2017; Singh, 2020). 

Thus, how to effectively reduce greenhouse gas emissions while achieving sustainable 

economic development has become a major issue facing all countries in the world today 

(Schuster et al., 2016). In this context, it is of great academic value and practical significance 

to study the relationship between “economic growth” and “carbon dioxide emissions”. It will 

provide a theoretical analysis and empirical basis for policy authorities to choose and arrange 

future energy and environmental economic policies (Xu et al., 2016; Azhar and Zainuddin, 2020; 

Mozina et al., 2018). This paper puts forward a new method of dynamic relationship between 

carbon dioxide emission and economic growth in cities. Considering the new trend of 

international development of low-carbon economy in the future, this paper makes an empirical 

study on the internal dynamic relationship between carbon emission and economic growth 

through decoupling and Granger causality, which provides a theoretical basis for strengthening 

the construction of low-carbon cities and realizing the sustainable development of economy 

and society (Chaabouni, 2016; Khanchoul et al., 2018). 

2. Dynamic Relationship Between Carbon Dioxide Emissions and Economic Growth In 

Cities 

2.1. Calculating Method of Urban Carbon Dioxide Emission 

According to the IPCC Carbon Emission Computation Guidelines (2006) and the 

characteristics of China’s urban energy statistics, the calculation formula of urban carbon 

emissions is expressed as follows: 
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In the formula, 
itC  is the NO2 emission of city i at time t, ijtZ , ijtD  and ijtR  are the carbon 

emission of the j-th terminal energy consumption at time t in city i, the carbon emission of 

thermal power generation in energy processing conversion, and the carbon emission of heat 

supply in energy processing conversion. 
itO  and 

itI  are respectively the carbon emissions of 

the electricity output of the province and the carbon emissions of the electricity import of the 

other provinces in the city i at time t. ijtZE  , ijtDE   and ijtRE   are respectively the energy 

consumption at the j-th terminal of the cityat time t, the energy consumption of thermal power 

generation in energy processing and conversion, and the energy consumption of heating in 

energy processing and conversion. ijtZ , ijtD  and ijtR  are the corresponding conversion 

coefficients of energy consumption standard quantities, and ijtZ  , ijtD   and ijtR   are the 

corresponding carbon emission coefficients of energy consumption. 
itOE   and 

itIE   are the 

local and the provincial power transfers in time t of city i respectively. 
tE  and 

tE  are the 

standard conversion coefficient and carbon emission coefficient of China’s power consumption 

in time t. 

The conversion coefficients of standard energy consumption in terminal energy consumption, 

thermal power generation and heating process, as well as the conversion coefficients and carbon 

emission coefficients of standard energy consumption in and out of interregional power transfer 

are calculated using the following formulas: 
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In the formula, ijtZ , ijtD and ijtR  are the conversion coefficients of standard quantity. For 

different regions, the conversion coefficients of standard quantity are the same in the same year. 



 

 

jtZEB  and jtZES  are the standard quantity and physical quantity of the j-th terminal energy 

consumption at time t, 
jtDEB and 

jtDES  are the standard quantity and physical quantity of 

the j-th energy consumption in thermal power generation process at time t, 
jtREB  and 

jtRES  

are the standard quantity and physical quantity of the j-th energy consumption in heating 

process at time t, respectively. Quantity and physical quantity. 
tE  is the standard conversion 

coefficient of power terminal energy at time t, 
tZEEB  and 

tZEES  are the standard quantity 

and physical quantity of power terminal energy consumption at time t, respectively. Eit  is 

the carbon emission coefficient of electric power at time t. Thermal power generation in China 

is mainly generated by burning fuel. Its carbon emission coefficient is determined by the 

proportion of energy consumption in the process of thermal power generation (Russo et al., 

2015; Chen and Chen, 2016). Due to the influence of energy consumption structure, power 

production technology and other factors, the carbon emission coefficient of electric power 

varies greatly every year. Therefore, it is necessary to calculate different carbon emission 

coefficients at different time intervals for different regions when power is transferred into and 

out. The total amount of energy carbon emissions consumed by thermal power generation in 

energy processing and conversion is divided by the end energy consumption as the carbon 

emission coefficient of electric power (Feng et al., 2016; Souse et al., 2015). 

The calculation process of urban carbon emissions is shown in Figure 1. 
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Figure 1. Flow chart of urban carbon emission measurement 

2.2. Classification Algorithms in Uncertain Data Stream Environment 

From the data available in China, the data of carbon dioxide emissions from various provinces 



 

 

have been not yet published, so in order to study the dynamic relationship between urban carbon 

dioxide emissions and economic growth, estimating China’s carbon dioxide emissions has 

become a problem that must be taken seriously (Gao, 2015; Wang et al., 2015; Huang et al., 

2015). 
2co  emission sources can be divided into two categories, one is the emission of natural 

environment, the other is the carbon dioxide generated by human production activities. Soil, 

forest, ocean and so on are the sources of natural environment emissions. People’s various 

production activities around the world are the sources of anthropogenic emissions. Economic 

growth can not be separated from anthropogenic factors. Therefore, this paper mainly studies 

the carbon dioxide produced by economy. Before studying the dynamic relationship between 

urban carbon dioxide emissions and economic growth, it is necessary to classify urban carbon 

dioxide emissions data to obtain data on carbon dioxide generated by economic growth (Yu et 

al., 2015; Xie et al., 2017; Zhang et al., 2015). 

Data flow model has a wide range of applications in various fields, such as the Internet of 

Things, finance, the Internet and so on. With the progress of technology, people find that data 

in these areas are generally uncertain due to repeated measurements, privacy protection and 

data loss. The uncertainty of data results in that the values of data items can not be expressed 

by single values, but by multiple values and corresponding probability distributions (Yang et 

al., 2018). 

In this paper, the classification algorithm under uncertain data flow environment is used to 

classify the data of carbon dioxide emissions related to economic attributes of cities in China. 

Uncertainty can be found in the numerical attributes of carbon dioxide emissions, as well as in 

the nominal attributes of economic growth (Mcpherson et al., 2015; Ain et al., 2019; Yasin et 

al., 2018). The uncertainty attribute set of urban carbon dioxide emission data is as follows: 

  1 2, ,...,u u u u

kA A A A=  (3) 

uA  represents the uncertain attribute set of urban carbon dioxide emission data, u

iA  represents 

the i th uncertain attribute of uA , u

itA  represents the attribute value of uncertain attribute u

tA  

in the t -th sampling of urban carbon dioxide emission data, and k  represents the number of 

uncertain attributes of urban carbon dioxide emission data,  1,i k . 

The uncertain attribute value u

itA  of urban carbon dioxide emission data includes a range of 

values and the probability distribution over the range. If u

iA  is a numerical property, its range 

of values is expressed by  ,it ita b , and the probability distribution is expressed by a probability 

density function ( )itg x . 



 

 

In the data of urban carbon dioxide emission under the big data environment, the uncertain data 

stream of carbon dioxide emission is a series of incoming samples of uncertain data on carbon 

dioxide emissions, which is expressed by formula (2): 

  1 2, ,..., ,...u u u u

tD D D D=  (4) 

Where, u

tD  represents the uncertain data sample of carbon dioxide emissions. Each uncertain 

data sample u

tD  contains an attribute vector uA  and a category uy , namely: 

 ( ), yu u u

tD A=  (5) 

Where,  1 2y , ,...,u u u u u

C
C C C C =   indicates the category of sample u

tD   of carbon dioxide 

emission data. 

The purpose of this paper is to construct a classifier for the uncertain data stream uD  of the 

dynamic relationship between urban carbon dioxide emissions and economic growth, and give 

a correct classification for the subsequent carbon dioxide data sample ( )= , y ?u u u

tD A = . In the 

big data environment, in the uncertain data stream system, data continuously arrives at the 

system, but the data cannot be obtained all at once, and only be scanned once. Therefore, this 

paper constructs an incremental classification model, i.e. incremental decision tree model,and 

uses this model to transform the uncertain attribute uA  of urban carbon dioxide emission data 

into a class probability distribution ( ) ( ) 1Pr ,..., Pru u

C
C C , so thatat any time, according to the 

model, the data sample u

tD  under subsequent carbon dioxide emission reduction constraints 

is predicted to belong to the following categories: 

 ( ) 
1,...,

arg max Pru u

c
c C

y C
=

=  (6) 

Where, c  is the quantity words of the categories of urban carbon dioxide emission data. 

Formula (6) can be used to accurately classify and obtain carbon dioxide emission data related 

to economic growth attributes. 

2.3. Construction of a Model for the Relationship between Urban Carbon Emissions and 

Economic Growth 

Based on the data of carbon dioxide emission from economic attributes obtained in the previous 

section, the relationship model between urban carbon emission and economic growth is 

constructed, and the dynamic relationship between urban carbon dioxide emission and 

economic growth is analyzed comprehensively. 



 

 

2.3.1. Construction of Decoupling Model of Carbon Emission and Economic Growth 

(1) Construction of decoupling model 

There are two common decoupling models: Tapio model and OECD model. The division of 

elastic index in Tapio model is more precise, and it reflects the decoupling state of economic 

growth and carbon emissions in different regions at different times or in same region at different 

times. Tapio model has low demand for time base period selection and is not easily affected by 

the dimension of indexes (Wei, 2018; Fikriah et al., 2019). Therefore, on the basis of the data 

of carbon dioxide emissions related to economic growth attributes obtained by formula (6), a 

Tapio model is constructed to study the decoupling relationship between carbon emissions and 

economic growth in four cities, and to measure the economic growth elasticity of urban carbon 

emissions. 
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In this formula, 
nw   is the decoupling elasticity index, R C   is the growth rate of carbon 

emissions, that is, the change rate of carbon emission level in the n-th year relative to the n-1-

thyear, R GDP  is the change rate of a city’s GDP in the n-th year relative to the n-1-thyear, 

and C  is the carbon emission factor. 

(2) Representation of decoupling state 

According to the different characteristics of the decoupling elastic index, Tapio classifies the 

decoupling states into eight types, which are described in Table 1. 

Table 1. Tapio (2005) Elastic Classification of Decoupling 

Decoupling state 2co  GDP  
Elastic 

levele 
Meaning 

Negative 

decoupling 

Strong 

negative 

decoupling 

>0 <0 <0 
Economic Recession and Increased 

Carbon Emissions 

Weakly 

negative 

decoupling 

<0 <0 0<t<0.8 
Carbon emissions fell less than the 

economic downturn 

Extended 

negative 

decoupling 

>0 >0 t>1.2 
Carbon emissions increase more than 

economic growth 

Decoupling 

Strong 

decoupling 
<0 >0 <0 

Economic Growth, Carbon Emissions 

Decline 

Weak 

decoupling 
>0 >0 0<t<0.8 

The increase of carbon emissions is less 

than that of economic growth 



 

 

Recessive 

decoupling 
<0 <0 >1.2 

Carbon emissions have fallen more 

sharply than economic recession 

Link 

Growth link >0 >0 0.8<t<1.2 

The growth rate of carbon emissions is 

basically the same as that of economic 

growth 

Declining 

links 
<0 <0 0.8<t<1.2 

The decline in carbon emissions is 

basically consistent with the extent of 

the economic recession 

China is in the process of rapid economic development, the economic growth rate must be 

greater than zero, so there are four decoupling states: strong decoupling, weak decoupling, 

growth linkage and negative decoupling of expansion (Kuusela and Amacher, 2016; Fang et al., 

2015). 

2.3.2. Granger causality test model 

(1) Unit root test 

The purpose of unit root test is to check the stability of time series and avoid the occurrence of 

pseudo-regression in analysis. It is also the premise of analyzing whether there is co-integration 

relationship and Granger causality among variables. This paper adopts ADF test method, which 

is developed from DF test (Dickey-Fuller test). DF test is only applicable to the first-order 

autoregressive process, and ADF test can be applied to the stationarity test of multi-order 

( )AR p  process (Alshehry and Belloumi, 2015; Vogt et al., 2015). 

The principle of ADF test takes the first order autoregressive sequence as an example: 

1t tx x −= + . 

The characteristic equation of the sequence is 
1 0 − = . 

When the eigenvalue 
1   is in the unit circle, the sequence is stationary; conversely, the 

sequence is non-stationary (Mohajeri et al., 2015). 

Original hypothesis 
0H : sequence 

tx  is nonstationary; alternative hypothesis 
1H : sequence 

tx  is stationary. 

The statistics t is test: ( )
( )

1 1

1

ˆ

1
t

S
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= , where 

1̂  is the least square estimate of parameter 
1̂ : 
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Where, ( )1̂S   eigenvalue estimator and S  represent the parameters of least squares estimate. 



 

 

When 
1 0 =  , the limit distribution of ( )1t    is called standard normal distribution; when 

1 1  , the asymptotic limit distribution of ( )1t   is called standard normal distribution; when 

1 1 = , the asymptotic distribution of ( )1t   is no longer normal distribution. 

We call 
( )
1

1

ˆ 1

ˆS






−
=  the ADF test statistics. When the significant level is  , 

 is called the 

  position point of ADF test. That is, when 
  , we reject the original hypothesis, which 

means that the sequence is remarkably stable. On the contrary, we accept the original hypothesis, 

which means that the sequence is not stable. 

Before the ADF test, we can make a preliminary judgment on the time series. The time series 

diagram can be used to preliminarily judge whether the time series is unstable. In order to avoid 

the fluctuation of the data to a large extent, we can easily get the stationary series. In this paper, 

we take the logarithm of GDP and carbon dioxide emission 
2co  respectively, which can be 

recorded as 
2LNCO  and LNGDP . 

(2) Co-integration test 

Co-integration test is the causality test of non-stationary sequence. Co-integration means that 

there exists a common random trend. Co-integration processing is mainly to test whether there 

is a stable relationship between variables and to prevent pseudo-regression caused by non-

stationary sequence (Bonal et al., 2015). If a linear combination of two random walk variable 

sequences is stable, then the two sequences are co-integrated, and the single integer order of 

the two sequences is the same, which is the necessary condition for the co-integration between 

the two sequences. 

If two sequences of 
tx  and 

ty  are known to be non-stationary, but they are all d-order mono-

integer sequences, then it can use the stationary test of residual 
t  of co-integration regression 

equation ( ) : t t tOLS x y  = + +  to judge the co-integration relationship of 
tx  and 

ty .If 
tx  

and 
ty  do not exist co-integration, then any linear combination of them is non-stationary, that 

is, residual 
t must also be non-stationary. Therefore, if the test shows that the residual 

t  is 

stable, then we can consider that there is a co-integration relationship between 
tx  and 

ty . 

(3) Granger causality test 

Granger test is only a prediction of stationary time series. Assuming that there are two economic 

variables C (carbon emissions) and G (GDP), under the condition that both information are 

included at the same time, the prediction effect of variable C is generally better than that only 

using the past information of C to predict. That is, variable G helps to improve the interpretation 

and prediction accuracy of variable C, then it is considered that there is Granger causality 

between variable X and Y (Ismail et al., 2015; Mi et al., 2019; Ahmad et al., 2015; Yu et al., 



 

 

2018; Wang et al., 2018; Wang, An et al., 2018; Liu et al., 2019; Yu et al., 2019). The two-

variable autoregressive model is as follows: 

 0

1 1

m m

t i t i i t i t

i i

C G G   − −

= =

= + + +   (9) 

 0

1 1

m m

t i t j j t j t

i j

C G G   − −

= =

= + + +   (10) 

The co-integration factor ( )1,2,..., 0i i m = =  should be tested, that is, “G is not the cause of 

C changing”, and the original hypothesis ( )1,2,..., 0i i m = =  should be rejected, that is, the 

Granger causality from G to C should be affirmed; similarly, the Granger causality from Y to 

X should be verified by the hypothesis ( )1,2,..., 0i i m = = . 

3. Results 

3.1. Decoupling Analysis of Carbon Emissions and Economic Growth 

Based on the above decoupling models, the decoupling status of carbon emissions and 

economic growth in Shanghai, Beijing, Tianjin and Chongqing from 1995 to 2014 is calculated 

and described in Figures 2-5. 
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Figure 2. Decoupling of Carbon Emissions and Economic Growth in Shanghai from 1995 to 2014 
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Figure 3. Decoupling of Carbon Emissions and Economic Growth in Beijing from 1995 to 2014 
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Figure 4. Decoupling of Carbon Emissions and Economic Growth in Tianjin from 1994 to 2014 
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Figure 5. Decoupling of Carbon Emissions and Economic Growth in Chongqing from 1995 to 2014 

From the analysis of Figures 2-5, we can see that most of the years in cities are in a weak 



 

 

decoupling state, indicating that the economic growth rate is obviously faster than the increase 

rate of carbon emissions. Among them, Beijing has the best decoupling status, the year of strong 

decoupling is more, and its decoupling elasticity coefficient is small. From the time series, 

decoupling shows a good momentum of development. Since 2008, the number of years of 

strong decoupling has increased, indicating that Beijing’s energy saving and emission reduction 

policy has achieved good results. The decoupling status of Shanghai is similar to that of Beijing. 

Over the years, the decoupling status is located in weak and strong decoupling areas, which 

indicates that the rapid economic growth has not brought about excessive growth of carbon 

emissions. The decoupling status of Tianjin and Chongqing is comparatively consistent, and 

the decoupling status varies greatly from year to year in terms of time series; from the overall 

distribution, the weak decoupling status is not obvious in most years, and the value of 

decoupling coefficient is larger, indicating that economic growth is accompanied by an increase 

in carbon emissions. This is related to the rapid development of the two cities and the important 

position of the secondary industry in the three industries. Secondary industry is the main source 

of energy consumption and the source of increasing carbon emissions. 

3.2. Granger test 

3.2.1. ADF Test: A Case Study of Shanghai 

In order to ensure the stationarity of time series data, the stationarity tests of 
2LNCO   and 

LNGDP   in four mega-cities (Beijing, Shanghai, Tianjin and Chongqing) are carried out 

respectively. The ADF test method is adopted in this paper. The lag period is 2. The test 

principle refers to the above requirements. Table 2 shows the results of ADF test in Shanghai. 

 

 

 

 

Table 2. ADF Unit Root Test Results in Shanghai 

Variable 
ADF test 

value 

Critical value 

(1%) 

Critical value 

(5%) 

Critical value 

(10%) 

Judgement 

conclusion 

LNGDP 0.992746 -4.532598 -3.673616 -3.277364 
Nonstationar

y 

LNGDP first-

order 

difference 

-2.303840 -4.532598 -3.690814 -3.286909 
Nonstationar

y 

LNGDP 

second Order 

Difference 

-5.647835 -4.667883 -3.733200 -3.310349 Stable 



 

 

2LNCO  -0.157.26 -4.532598 -3.673616 -3.277364 
Nonstationar

y 

2LNCO  

first-order 

difference 

-3.984466 -4.571559 -3.690814 -3.286909 
Nonstationar

y 

2LNCO  

second Order 

Difference 

-5.800843 -4.667883 -3.733200 -3.310349 Stable 

The analysis of Table 2 shows that the statistic is 0.992746 at 5% significant level, and its P 

value is greater than the significant level  . Therefore, we accept the original hypothesis that 

the GDP time series data are non-stationary, and the LNGDP first-order difference still accepts 

the original hypothesis. When the second-order difference is used for LNGDP, the statistic at 

the 5% significant level is -5.647835, which is less than the significant level  . The original 

hypothesis is rejected, that is, LNGDP is a second-order mono-integer sequence with a 

significant level of 1%. Similarly, 
2LNCO  is a second-order mono-integer sequence with a 

significant level of 1%. Similarly, LNGDP and 
2LNCO   are second-order mono-integer 

sequences at 1% significant level in Beijing. Tianjin is at 1% significant level, both of them are 

second-order mono-integer sequences. Chongqing’s LNGDP is a second-order mono-integer 

sequence and 
2LNCO  is a first-order mono-integer sequence. 

3.2.2. Co-integration Test Analysis: A Case Study of Shanghai 

Table 3 is the result of co-integration regression between carbon emissions and GDP in 

Shanghai; Table 4 is the ADF test result of co-integration regression residual of carbon 

emissions and GDP in Shanghai. 

 

 

Table 3. Co-integration regression results of carbon emissions and GDP in Shanghai 

Variable  Coefficient  Std. Error  t-Statistic Prob. 

LNGDP 0.348285 0.017059 20.41676 0 

C  6.845602 0.151398 45.21582 0 

R-squared 0.958606 Mean dependent var 9.929445 

Adjusted R- squared 0.956306 S. D. dependent var 0.221274 

S. E. of regression 0.046253 Akaike info criterion -3.214735 

Sum squared resid 0.038508 Schwarz criterion  -3.115162 

Log likelihood 34.14735 Hannan－ Quinn criter -3.195298 



 

 

F-statistic  416.8439 Durbin － Watson stat 0.87566 

Prob (F-statistic) 0       

Table 4. ADF test results of co-integration regression residual of carbon emissions and GDP in Shanghai 

  t-Statistic Prod.* 

Augmented Dickey-Fuller test statistic -4.058087 0.0004 

Test critical values: 1% level -2.699769  

 5% level -1.961409  

  10% level -1.606610   

According to ADF test results, if LNGDP and 
2LNCO  are stationary time series at different 

significance levels, it indicates that there may be a long-term stable equilibrium relationship of 

co-integration. Therefore, co-integration test can be used. The co-integration regression results 

of Shanghai are as Table 3. Eviews software is used to do co-integration analysis of LNGDP 

and 
2LNCO   time series data. Taking 

2LNCO   as dependent variable and LNGDP as 

independent variable, Least Square Estimation regression analysis is carried out to obtain the 

co-integration regression equation as follows: 

 
2 6.845602 0.348285 tLNCO LNgdp u= + +  (11) 

2 0.96, 416.84, 0.875660R F DW= = = . The coefficient of the independent variable has passed the 

test, which shows that the regression equation has a high significance. From the co-integration 

equation, the estimated coefficient of GDP growth is 0.348285, which means that for every unit 

of GDP increase, carbon dioxide emissions will increase by 0.348285. The ADF test of the 

residuals shows that the residuals are stationary. 

3.2.3. Granger causality test 

According to the above principle, Granger causality test is carried out for 
2LNCO  and LNGDP 

in four cities respectively. Complying with SC and AIC minimization criteria, it can determine 

that the lag time of Granger causality test is 2. The test results are shown in Table 5. 

Table 5. Granger causality test results 

  Original hypothesis 

F 

statistical 

value 

Saliency 

probability 

Test 

conclusion 

Shanghai 

City 
LNGDP does not Granger Cause 

2LNCO  0.43285 0.6557 Accept 

 2LNCO  does not Granger Cause LNGDP 3.30919 0.0689 Accept 

Beijing City LNGDP does not Granger Cause 
2LNCO  1.78051 0.2073 Accept 

 2LNCO  does not Granger Cause LNGDP 0.20417 0.8179 Accept 



 

 

Tianjin City LNGDP does not Granger Cause 
2LNCO  9.99341 0.0024 Refuse 

 2LNCO  does not Granger Cause LNGDP 3.07741 0.0805 Accept 

Chongqing 

City 
LNGDP does not Granger Cause 

2LNCO  6.10705 0.0135 Refuse 

  2LNCO  does not Granger Cause LNGDP 0.44601 0.6496 Accept 

The significance probability of the two hypotheses in Shanghai is greater than 0.05, so the 

original hypothesis is accepted, that is, there is no causal relationship between GDP growth and 

carbon dioxide emissions in Shanghai. At the same time, it reflects that Shanghai’s economic 

growth is on the path of sustainable development. Sustained economic growth will not lead to 

an increase in carbon dioxide emissions, nor will carbon dioxide emissions lead to economic 

growth. Beijing’s test results are similar to Shanghai’s, while Tianjin and Chongqing’s test 

results are consistent, that is, there is a one-way Granger causality between economic growth 

and carbon emissions. Economic growth is the Granger cause of carbon dioxide emissions, 

otherwise it is not true. Carbon emission reduction measures will not hinder economic growth 

in the long run. 

4. Discussion 

This paper discusses the relationship between carbon emissions and various factors of urban 

economic development. The details are as follows: 

(1) The first is economic growth. Economic growth is an important indicator to measure the 

level of economic development. Based on experience, in the early stage of industrialization, the 

per capita carbon emissions of a country increase substantially with the economic growth. 

Because economic growth in the early stage of industrialization needs to use more fossil energy. 

After industrialization, the degree of correlation between economic growth and carbon 

emissions will be reduced. Looking from the history of economic development, the first two 

industrial revolutions have made the economy grow at an unprecedented rate. During this 

period, the large use of fossil energy has led to a sharp increase in carbon dioxide emissions. In 

recent years, with the rapid economic growth of developing countries, the demand for fossil 

energy continues to expand. Developing countries are in a period of rapid economic growth, 

and carbon dioxide emissions are also increasing rapidly. In order to achieve the level of 

developed countries’ economic growth in the future, we need enough space for carbon 

emissions in the process of future economic development. With the economic growth, the 

accumulation of carbon emissions is also a long process. 

(2) Factor of industrial structure. Changes in industrial structure in the economy will affect 

carbon dioxide emissions. Secondary industry is the main sector of carbon dioxide emissions. 

The higher the proportion of secondary industry is, the more the carbon dioxide emissions are. 

The theory of industrial structure evolution holds that the industrial structure corresponds to the 

economic development and keeps changing, and the industrial height keeps evolving from the 

lower level to the higher level. With the economic development, the labor force first transfers 



 

 

from the primary industry to the secondary industry; the expansion of the secondary industry: 

with the continuous development of the economy, the tertiary industry is in the dominant 

position, the efficiency of energy utilization gradually improves, and people have a clean 

environment. The per capita carbon emissions may decrease as the demand of the environment 

increases. The expansion of tertiary industry: the scale of primary industry decreases, while the 

scale of secondary and tertiary industry expands. In the more developed countries and regions, 

the proportion of primary industry is relatively small, while the proportion of secondary and 

tertiary industries is relatively large. Generally speaking, the causal relationship between carbon 

dioxide emissions and output may be obvious in countries with a relatively large proportion of 

secondary industry. Empirically, the proportion of secondary industry may be positively 

correlated with carbon emissions. On the contrary, in developing countries and regions, the 

proportion of primary industry is relatively large, while the proportion of secondary and tertiary 

industries is relatively small. The carbon emissions per unit output of the first and third 

industries are lower than that of the second industry. With the development of industrial 

structure, the carbon emissions of the economy may show some regularity. Compared with 

developed countries, China’s industrial structure has a relatively high proportion of secondary 

industry, which will increase carbon emissions to a certain extent. 

(3) Urbanization level. The level of urbanization is also an obvious factor affecting carbon 

dioxide emissions. The level of urbanization is a quantitative index to measure the degree of 

urbanization development, which is expressed by the proportion of urban population in a certain 

region to the total population. The process of urbanization requires a large amount of energy 

input, which will produce a large amount of carbon emissions. A relatively high urbanization 

rate requires a large amount of carbon dioxide emissions. The level of urbanization in a country 

is closely related to its economic development. Compared with developed countries, China is 

in the period of urbanization. In order to reach the level of urbanization in middle-income 

countries, a large amount of energy input is needed and necessary infrastructure construction is 

carried out. A large amount of energy input will bring about an increase in carbon dioxide 

emissions. At the same time, rural residents in China will increase their carbon dioxide 

emissions. In the process of urbanization, a large number of people migrate from rural areas to 

cities. This huge increase in urban population will also increase carbon dioxide emissions. 

5. Conclusions 

Based on the research contents of this paper, the following conclusions and suggestions are 

obtained: 

(1) The dynamic relationship between carbon dioxide emissions and economic growth is 

studied in this paper, which provides a reliable basis for the implementation of energy saving 

and emission reduction and the development of low-carbon economy. Through comparative 

analysis and empirical research, the decoupling status of carbon emissions and economic 

growth in four cities is mainly weak decoupling, among which Beijing has the best decoupling 

status, and the trend of decoupling has gradually changed from weak decoupling to strong 



 

 

decoupling. The decoupling status of Tianjin and Chongqing has changed greatly in each year. 

Through Granger causality test, it is found that the results of Shanghai and Beijing are 

comparatively consistent, indicating that there is no Granger causality between carbon 

emissions and economic growth, while Tianjin and Chongqing show a one-way Granger 

causality between economic growth and carbon emissions, indicating that in the long run, the 

growth of carbon emissions will not lead to economic growth, that is, implementing strong 

energy saving and emission reduction measures will not lead to economic downturn in the long 

run 

Through the analysis of the differences between the economic structure and carbon emissions 

within the city, the rapid economic growth does not necessarily lead to an increase in energy 

consumption, it mainly depends on whether the industrial structure is reasonable or not and 

whether the energy efficiency is constantly improving. Shanghai and Beijing have a relatively 

high level of economic development and pay more attention to the quality of economic 

development. The increase of energy consumption does not necessarily lead to an increase in 

carbon emissions, but mainly depends on the improvement of energy consumption structure. 

Coal-based energy consumption structure in Tianjin and Chongqing will inevitably lead to a 

large increase in carbon emissions. 

(3) Cities are the most concentrated areas in China’s economic development and people’s lives, 

as well as the most concentrated areas in energy consumption and pollutant emissions. 

Therefore, the development of low-carbon economy requires attention to the construction of 

low-carbon cities. Among them, the government plays a main role in the construction of low-

carbon cities, and is also the promoter of fostering low-carbon economy in the transformation 

of economic structure. To achieve low-carbon city, we must strive to implement low-carbon 

economy and realize low-carbon life. To achieve low-carbon urban economic development, 

efforts can be made from four aspects: transformation of economic development mode, 

adjustment of economic development structure, economic development energy and policy 

support for new technologies of energy saving and emission reduction. To achieve low-carbon 

urban social life, it is necessary to actively publicize and popularize the concept of low-carbon 

life, realize low-carbon urban planning, promote building energy saving and realize green 

building, so as tostreng then urban greening construction to improve urban forest coverage. 

(4) China’s mega-cities play a guiding role in leading regional economic and social 

development. Building a low-carbon city is a systematic project, which requires extensive and 

deep participation of the government, enterprises and the public. The super-metropolis should 

make clear its overall orientation of economic development, construct a perfect urban 

development system, scientifically plan the urban development route, actively and reasonably 

construct the transportation system of the super-metropolis, realize the benign economic 

interaction with the surrounding areas, and lead the low-carbon construction of the surrounding 

urban agglomerations. By adjusting the energy consumption structure, optimizing the industrial 

structure and improving the efficiency of resource use, the level of carbon emissions can be 

reduced to the greatest extent. We should continue to strengthen the development and utilization 



 

 

of new energy sources, increase the ratio of renewable energy sources, such as promoting clean 

transformation of heating coal to gas, and encouraging the development and application of 

renewable energy technologies. At the same time, we should improve the relevant policies, 

regulations and standards of energy conservation and emission reduction, establish and improve 

the regulatory and decision-making mechanisms of megacities, such as strengthening the 

assessment and supervision of energy conservation and emission reduction targets, and 

establishing regional energy management linkage mechanism and consumption forecasting and 

early warning mechanism. 
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