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Abstract 

With the increasingly prominent problem of agricultural 
non-point source pollution, the process of Rural 
Revitalization Strategy has been seriously affected. 
Studying the relationship between rural human capital 
and agricultural non-point source pollution is helpful to 
form talent bonus, improve rural ecological environment 
and realize the green development of agriculture. This 
paper takes 30 provinces and cities of China as the 
research object and uses Spatial Durbin model for 
empirical analysis. According to the research results, it is 
found that agricultural non-point source pollution has 
significant spatial correlation and the correlation presents 
a fluctuating trend; Rural human capital has obvious direct 
effect (-0.678) and spatial spillover effect (-0.707), which 
helps to alleviate agricultural non-point source pollution. 
After considering different forms of space matrix, the 
result is considered to be robust. The conclusion of this 
paper provides policy enlightenment for promoting the 
construction of rural human capital and improving the 
continuous development of rural ecological environment 
curriculum. 

Keywords: Agricultural non-point source pollution, spatial 
spillover, spatial panel measurement, rural human capital. 

1. Introduction 

Although the 70 year development of China’s rural 
economy has made an important contribution to the 
sustainable development of the whole national economy, 
it has also made a huge loss to the ecological 
environment. Although China has increased the treatment 
of pollution since the 17th National Congress of the 
Communist Party of China, agricultural non-point source 
pollution has become an obstacle to the realization of 
Rural Revitalization Strategy because of its characteristics 
of “scattered source, difficult to monitor and difficult to 
control”. Compared with developed countries, China’s 
agriculture has many problems, such as single 
development form, low technology content, easy to cause 
environmental pollution, serious abuse of pesticides and 
chemical fertilizers in the agricultural production process, 
and unreasonable utilization of agricultural waste 
resources, which all make agricultural non-point source 
pollution intensified. Control and prevention of 
agricultural non-point source pollution has become the 
primary task of rural work. Rural human capital, as an 
important part of agricultural production and 
management, is the first factor of production, which 
directly determines the quality of labor force and the 
mode of production and management. In this paper, the 
impact of rural human capital on agricultural non-point 
source pollution is discussed from the perspective of 
spatial spillover, in order to provide a reference for the 
government to alleviate agricultural non-point source 
pollution (Suhaili et al., 2018; Sajil et al., 2020; Swodesh et 
al., 2020; Humaira et al., 2018). 

At present, there are many literatures about agricultural 
non-point source pollution, among which some scholars 
have studied the measurement (Lai et al., 2004; Qiu et al., 
2018), influencing factors (You, 2016), formation 
mechanism (Lu and Wang, 2008), prevention and control 
measures (Bechmann et al., 2008) of agricultural non-
point source pollution. The existing studies have adopted 
different methods to measure agricultural non-point 
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source pollution, which not only provides an effective way 
to measure the current situation and evolution of 
agricultural non-point source pollution, but also simply 
reveals the reasons for the formation of regional 
agricultural non-point source pollution pattern in China 
(Okoli et al., 2018; Md. Nazmul et al., 2019; Faiza et al., 
2018; Fikriah et al., 2019). 

In addition, the relationship between external factors and 
agricultural non-point source pollution has been discussed 
by some scholars. For example, Xue et al. (2019) made an 
empirical study on the impact of urbanization on 
agricultural non-point source pollution; Xia et al. (2018) 
tried to build a theoretical analysis framework of the 
impact of farmers’ part-time employment on agricultural 
non-point source pollution on the basis of fully 
considering the nature of farmers’ dual identity, and used 
the rice planting experience of Hunan, Jiangxi and Jiangsu 
provinces as evidence for empirical test; Liang et al. (2018) 

analyzed the spatial interaction effect of agricultural non-
point source pollution and agricultural economic growth 
by using spatial simultaneous equation model. 

It can be seen that although experts and scholars have 
done a series of research on the increasingly serious 
agricultural non-point source pollution, there is a lack of 
research on the relationship between rural human capital 
and agricultural non-point source pollution. Therefore, in 
order to test the impact of rural human capital on 
agricultural non-point source pollution in China, this paper 
aims to study whether rural human capital has spatial 
spillover effect and whether it has different effects on the 
growth of surrounding areas. This paper studies the direct 
and indirect effects of rural human capital on agricultural 
non-point source pollution by using spatial econometric 
analysis technology, aiming to provide data support for 
the treatment of agricultural non-point source pollution in 
adjacent areas. 

2. Empirical methods and data sources 

2.1. Test of spatial correlation 

Exploratory spatial analysis can test the existence of 
significant spatial distribution from a statistical point of 
view. At present, there are two commonly used analysis 
methods to measure spatial autocorrelation: global spatial 
autocorrelation and local autocorrelation, and two 
common analysis methods: Moran’s I and Geary’s C. 

2.1.1. Global spatial autocorrelation 

Global spatial autocorrelation is derived from covariance 
of statistical correlation coefficient. 
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In Equation (1), i and j of represent the ith and jth regions 
respectively. Wij is a spatial weight matrix, mainly 
including adjacency matrix, economic matrix and so on. 
This paper selects the spatial adjacency matrix, the 
adjacent area is assigned as 1, otherwise it is 0. The value 

range of I is from -1 to 1. The larger the absolute value of I 
is, the stronger the correlation is. When I > 0, it indicates 
that they are positively correlated. When I<0, it indicates 
that they are negatively correlated. When I approaches 0, 
it indicates that they are not correlated. 

2.1.2. Local spatial autocorrelation 

Global spatial autocorrelation assumes that the space is 
homogeneous and studies the trend of the whole region. 
Local spatial autocorrelation is used to determine the 
specific aggregation area. Taking local Moran index as an 
example, the calculation formula is as follows: 
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( )iY Y  and ( )jY Y  in Equation (2) represent the 

difference between Yi and the mean value and Yj and the 
mean value. When Ii > 0, it indicates that there is local 
spatial agglomeration, and when Ii<0, it indicates that 
there is local spatial exclusion. 

2.2. Spatial panel measurement model 

Spatial panel measurement model has a variety of 
expressions, among which the more common ones are 
Spatial Error Model (SEM), Spatial Autoregressive Model 
(SAR), Spatial Lag Model (SLM) and Spatial Durbin Model 
(SDM). Among them, SDM model is the starting point of 
spatial analysis (Liang et al., 2018). The basic formula of 
SDM model is as follows: 
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(3) 

There will be only one-way spatial correlation between 
adjacent regions when there is no spatial interaction in 
SDM model, that is, SDM model will degenerate into SAR 

model when  is 0. The SAR model is as follows: 
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SDM model will degenerate to SEM model when +=0. 
The expression of SEM model is as follows: 

   

   

   

   

   

 

, 0 1 , 2 , 3 ,

4 , 5 , 6 , ,

, , ,

ln ln ln ln

ln ln ln

i t i t i t i t

i t i t i t i t

i t i t i t

Cap hum pol fin

pop inno Pgdp

W

 (5) 

SDM model will degenerate into traditional OLS model 
when the coefficients of spatial items in SDM model are 
all 0: 
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(6) 

Among Equations (1)-(6), CAP represents the vector of the 
interpreted variable, i and t represent the region and year 
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respectively.  is the spatial autoregressive coefficient, Xi 

is the explanatory variable vector, i is the constant term, 

 and  are the parameters to be estimated,  is the 

residual term, and WYi is the spatial lag term. Hum is 
rural human capital, pol is industrial pollution, fin is rural 
informal finance, pop is population, inno is innovation 
level, pgdp is rural economic development level. 

The explanation of the variable of agricultural non-point 
source pollution (CAP). Agricultural non-point source 
pollution mainly refers to the pollution caused by the total 
nitrogen and phosphorus produced in the process of 
agricultural production through farmland drainage and 
underground infiltration. In this paper, the non-point 
source pollution mainly includes livestock and poultry 
breeding, aquaculture, agricultural waste, domestic 
sewage, fertilizer application. This paper uses the 
inventory method to estimate the load of agricultural non-
point source pollution. The values of pollutant production 
coefficient and emission coefficient of relevant indicators 
in this paper mainly refer to other scholar (Wang et al., 
2011) and the first national pollution source census 
agricultural source coefficient manual. 

In this paper, the core explanatory variable is rural human 
capital (hum), drawing lessons from Wen et al. (2018) and 

Gao (2018). The accounting method is |E=ei,t/Li,t . ei,t is 
the corresponding length of schooling, Li,t is the rural 
population over 6 years old in each region. It sets the 
length of schooling for illiterate and semi illiterate as one 
year, primary school as six years, junior high school as 
nine years, senior high school and secondary school as 
twelve years, junior college and above as 15.5 years to 
measure the level of human capital in various regions. 

Control variable: The level of economic development 
(Pgdp). The level of economic development is expressed 
by the per capita level of rural economic development. 
The level of economic development has an impact on 
residents’ environmental awareness (Horan, 2001), and its 
impact on agricultural non-point source pollution cannot 
be underestimated. 

Scientific and technological innovation (inno). Scientific 
and technological innovation can control agricultural non-
point source pollution by enhancing the efficiency of 
agricultural production and strengthening green 
innovation, which can be measured by comprehensive 
weighted number of patent authorization. 

Population size (POP). The increase of population can 
cause the increase of resource consumption, which is 
measured by the number of rural population in unit 
cultivated land area. 

Rural informal finance (fin). Informal finance develops 
rapidly in rural areas when the formal financial supply in 
rural areas is seriously insufficient, which provides 
favorable financial support for the development of rural 
society and economy. According to the practice of Hu et 
al. (2016), this paper uses the proportion of the sum of 
farmers’ self raised funds and other funds from the fixed 
assets investment of farmers in various provinces and 

cities in the added value of agricultural GDP to 
characterize it. 

Industrial pollution (Pol). Because of the mobility of 
pollutants, the environment of agricultural operation and 
production is easily affected by industrial pollution, thus 
aggravating agricultural non-point source pollution. 

W is the spatial weight matrix, which mainly includes 
geographic feature spatial matrix, economic distance 
matrix, human capital matrix, etc. The geographic feature 
spatial matrix mainly includes the adjacency matrix and 
the geographical distance matrix. The former is (0,1) 
matrix, and the latter is to use the geographical distance 
between provinces and cities to measure the distance 
between them, generally expressed by the reciprocal of 
the linear Euclidean distance between provinces and 
capitals. This paper takes geographic distance matrix as 
spatial matrix and spatial adjacency matrix as robustness 
test. 

2.3. Data source 

Data of provinces and cities (not including Hong Kong, 
Macao, Taiwan and Tibet) from 2004 to 2017 are adopted, 
which mainly come from China Statistical Yearbook, China 
Population Statistical Yearbook, China Yearbook of Fixed-
asset Investment and China Rural Statistical Yearbook. 

3. Spatial correlation test 

The precondition of adopting spatial panel data model is 
that the variables have spatial correlations. In this essay, 
Moran’I is used to conduct correlation test on the 
farmland surface pollution indexes. As shown in Table 1, 
the farmland surface pollution in China from 2004 to 2017 
had spatial correlation. The farmland surface pollution 
within 2004 to 2017 was significant at 1% significance 
level and was of positive value, indicating the farmland 
surface pollution in China has obvious regional 
correlation. In terms of time tendency, it was generally in 
volatility within 2004 to 2017, among which Moran’I value 
was at the peak in 2005 and 2014 and at the valley in 
2009 and 2013. 

Table 1. Global Autocorrelation Index 

Year Moran’s I P value Year Moran’s I P value 

2004 0.457 0.000 2011 0.439 0.000 

2005 0.551 0.000 2012 0.452 0.000 

2006 0.472 0.000 2013 0.412 0.000 

2007 0.477 0.000 2014 0.517 0.000 

2008 0.485 0.000 2015 0.517 0.000 

2009 0.417 0.000 2016 0.498 0.000 

2010 0.460 0.000 2017 0.480 0.000 

The global autocorrelation index can test the whole 
correlation, the spatial correlation of local farmland 
surface pollution in China cannot be observed from it. In 
this essay, local moral’I index is adopted to evaluate the 
spatial correlation between neighboring regions. Moran’I 
index is used to plot Moran scatter diagram of farmland 
surface pollution of provinces and cities in China in 2004 
and 2017, as shown in Figure 1. In 2004, provinces and 
cities in the first quadrant include Anhui, Fujian, 
Chongqing, Gansu, Guangdong, Guangxi, Guizhou, Henan, 
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Hubei, Hunan, Jiangsu, Jiangxi, Shandong, Shanghai and 
Zhejiang, forming the “high-high” cluster region; provinces 
and cities in the second quadrant include Hainan, Tianjin, 
Yunnan, forming the “low-high” cluster region; provinces 
and cities in the third quadrant include Hebei, Heilongjian, 
Jilin, Liaoning, Inner Mongolia, Ningxia, Qinghai, Shaanxi, 
Shanxi and Xinjiang, forming the “low-low” cluster region; 
provinces and cities in the fourth quadrant include Beijing 
and Sichuan, forming the “high-low” cluster region. 
Therefore, it could be seen that the farmland surface 
pollution had great spatial differences between the 
regions in 2004 and had obvious positive correlation and 
clustering features. 

 

Figure 1. Scatter diagram of local moran’i index in 2004 (left) and 

2017 (right) 

Note: 1-anhui 2-beijing 3-chongqing 4-fujian 5-gansu 6-

guangdong 7-guangxi 8-guizhou 9-hainan 10-hebei 11-

heilongjiang 12-henan 13-hubei 14-hunan 15-jiangsu 16-jiangxi 

17-jilin 18-liaoning 19-neimenggu 20-ningxia 21-qinghai 22-

shaanxi 23-shandong 24-shanghai 25-shanxi 26-sichuan 27-

tianjin 28-xinjiang 29-yunnan 30-zhejiang 

In 2017, provinces and cities in the first quadrant include 
Anhui, Fujian, Guangdong, Guangxi, Hainan, Hubei, 
Jiangsu, Shandong, Shanghai, Shanxi and Zhejiang, 
forming the “high-high” cluster region; provinces and 
cities in the second quadrant include Jiangxi, forming the 
“low-high” cluster region; provinces and cities in the third 
quadrant include Chongqin, Gansu, Heilongjiang, Jilin, 
Liaoning, Inner Mongolia, Ningxia, Shaanxi, Xinjiang, 
Yunnan and Qinghai, forming the “low-low” cluster 
region. Beijing and Henan spanned the first and the fourth 
quadrants, Guizhou and Sichuan spanned the second and 
the third quadrants, and Hebei spanned the third and 
fourth quadrants. 

Combining the graphics of 2004 and 2017, it could be seen 
that farmland surface pollution in China is featured as 
“high-high” cluster and “low-low” cluster. In 2004, most of 
the provinces and cities concentrated in the first 
quadrant, which dropped slightly in 2017; meanwhile, 
regions in the third and fourth quadrant shifted gradually 
towards the first and third quadrant, indicating that the 
comprehensive level of farmland surface pollution in 
China was polarized. 

4. Spatial panel data analysis 

Before conducting quantitative analysis of the spatial 
panel data, it is necessary to select and set up the spatial 
panel model. First, it is to determine whether SDM model 
has degraded into SAR model by wald test and whether 
SDM model has degraded into SEM by LR test. The test 
results as shown in Table 2. The test results of whether 
spatial Durbin model (SDM) has degraded into spatial 
auto-regression model (SAR) or spatial error model (SEM) 
all reject the null hypothesis at 5% significance, which 
suggests SDM is suitable. Second, Hausman test is 
conducted to determine whether fixed effect model or 
random effect model should be established. The test 
result is chi2(5)=1393.47, and P<0.001, which rejects the 
null hypothesis at 1% significance; therefore, fixed effect 
SDM model is selected. 

Fixed effect SDM model is divided into spatial fixed effect, 
time fixed effect and spatial-time two-way fixed effect. 
The estimated results are as shown in Table 3. According 
to AIC and BIC minimum principle, two-way fixed effect 
model is selected, under which rho value is -0.167. It is 
significant at 5% significance, indicating Chinese farmland 
surface pollution has significant spatial cluster effect. 

It can be seen from Table 3 that the rural human capital in 
SDM model has significant influences on farmland surface 
pollution. Since the estimation coefficient could not 
accurately reflect the effect of the former on the latter, it 
is decomposed into direct effects, spatial spillover effects 
and total effect. Meanwhile, the above study is mainly 
based on spatial adjacent weight matrix, without taking 
spatial distance into consideration, so, this essay 
constructs spatial distance weight matrix to test the 
robustness of the test results. Specific results are shown in 
Table 4. 

As can be seen from Table 4, the direct effect and spatial 
spillover effect of rural human capital are significantly 
negative, indicating that rural human capital not only has 
significant direct effect, but also can cause spatial spillover 
effect to alleviate farmland surface pollution. The reason 
is that China has laid great emphasis on the development 
of rural education for long. Establishment of physics, 
chemistry and natural sciences has strengthened 
propaganda of environmental awareness, which is helpful 
to alleviate farmland surface pollution in livestock 
breeding and other activities of daily life. Some students 
who have received education are engaging in agriculture-
related work in the countryside, which could alleviate 
farmland surface pollution from fertilizer application and 
agricultural solid waste; meanwhile, students who have 
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received higher education have made contribution to 
green innovative technology and cleaner production, 
which could facilitate alleviation of farmland surface 
pollution. The migration and mobility of regional talents 
can help to enhance the learning and communication of 
sewage capacity and experience, thus inhibiting farmland 
surface pollution in adjacent areas. Through further 
observation, it could be seen that the direct impact 

coefficient of rural human capital on farmland surface 
pollution is -0.678, and the spatial spillover effect is -
0.707, indicating that for every 1% increase of rural 
human capital in the region, the farmland surface 
pollution in this region is reduced by 0.678%. The impact 
of rural human capital on farmland surface pollution in 
the surrounding area is 0.707%. 

Table 2. Inspection results of space panel model 

Test model Fixed or random effect test Whether degenerate into SAR Whether degenerate into SEM 

Test method Hausman wald LR 

Test value 1393.47 103.90 108.04 

P value 0.0000 0.0000 0.0000 

Table 3. Estimation Results of SDM Model 

Variable Space fixed model Period fixed effect Individual and moment fixed effects model 

lnhum -0.671***(0.1720) -0.527***(0.1300) -0.618***(0.1669) 

lnpol -0.0723***(0.0179) 0.0149*(0.0084) -0.0680***(0.0174) 

lnpop 0.878
***

(0.0268) 0.687
***

(0.0210) 0.914
***

(0.0257) 

lnpgdp 0.574***(0.0295) 0.547***(0.0261) 0.621***(0.0279) 

lnfin 0.00363(0.0099) 0.0438***(0.0146) 0.00266(0.0096) 

W*lnhum -0.609**(0.2899) 0.879***(0.2668) -0.856**(0.3640) 

W*lnpol 0.0747**(0.0296) -0.0442**(0.0193) 0.0715*(0.0399) 

W*lnpop -0.0918(0.0660) -0.0479(0.0564) 0.265***(0.0770) 

W*lnpgdp -0.286***(0.0437) -0.366***(0.0703) 0.162**(0.0667) 

W*lnfin 0.0292(0.0178) 0.137
***

(0.0391) 0.0601
***

(0.0231) 

Spatial rho 0.0838(0.0615) 0.0506(0.0699) -0.167
**

(0.0672) 

sigma2_e 0.00537***(0.0004) 0.0222***(0.0015) 0.00446***(0.0003) 

adj. R2 0.8438 0.8817 0.7741 

AIC -978.4 -383.0 -1054.4 

BIC -929.9 -334.5 -1005.9 

N 420 420 420 

Note: Standard errors in parentheses,*, **, *** were significant at 10%, 5% and 1% respectively. 

Table 4. Direct Effect and Spatial Spillover Effect of SDM Model 

Effect category Variable Coefficient (Standard errors) Robust check 

LR_Direct 

Lnhum -0.678***(0.1736) -0.641***(0.1645) 

Lnpol -0.0718
***

(0.0172) -0.0822
***

(0.0171) 

Lnpop 0.880***(0.0257) 0.912***(0.0248) 

Lnpgdp 0.571***(0.0294) 0.620***(0.0276) 

Lnfin 0.00430(0.0095) 0.00825(0.0094) 

LR_Indirect 

Lnedu -0.707**(0.2883) -1.222*(0.6975) 

Lnpol 0.0733**(0.0324) 0.0669(0.0944) 

Lnpop -0.0206(0.0471) 0.268**(0.1187) 

Lnpgdp -0.256
***

(0.0405) 0.0708(0.0945) 

Lnfin 0.0322*(0.0193) 0.121***(0.0459) 

LR_Total 

Lnhum -1.385***(0.2869) -1.863***(0.6975) 

Lnpol 0.00149(0.0340) -0.0153(0.0953) 

Lnpop 0.860***(0.0535) 1.180***(0.1220) 

Lnpgdp 0.315***(0.0359) 0.690***(0.0913) 

Lnffin 0.0365*(0.0210) 0.129***(0.0477) 

Note: Standard errors in parentheses,*, **, *** were significant at 10%, 5% and 1% respectively. 

 

Industrial pollution could restrict farmland surface 
pollution in the region, but it could also intensify farmland 
surface pollution in the adjacent regions, which goes 
against the study of Xu et al. (2019). The reason is that at 
present Chinese industry, especially heavy polluting 

enterprises are undergoing the process of transmitting 
from the east towards the middle west and from the city 
to the rural areas. The government’s emphasis on the 
environmental protection has led industrial companies to 
be established in regional boundaries. In addition, the 
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sewage water is flowing. With the deepening of 
industrialization, demands for agricultural resources and 
agricultural products would cause competition effect. 
Intensified industrialization in surrounding areas has 
increased the demands of the area for agricultural 
resources and agricultural products, which has in turn 
worsened the farmland surface pollution in this area. 

The density of rural population has increased the 
farmland surface pollution in the region, whose indirect 
effect is negative but has not passed the significance test. 
The estimation coefficient of direct effect of rural 
population density is the largest and has passed the 
significance test at 1% level, suggesting population factor 
is still the main reason for farmland surface pollution. The 
reason is that agricultural production and operation 
requires plenty of manpower and the population, as the 
active subject of the development of agricultural 
economy, has provided sufficient laborers for traditional 
agriculture. Generally, the more people there are, the 
more frequently they engage in production and 
consumption, and the more direct and indirect pollutant 
emissions would be caused. However, rural population 
density has no significant influences on the farmland 
surface pollution in the adjacent regions, indicating that 
no large-scale population mobility could be caused 
between adjacent regions and therefore, no influences 
would be caused to on the farmland surface pollution in 
the neighboring regions. This has partially verified the 
opinions of Wu et al. (2017) and Ge et al. (2011).  

The direct effect and the spatial spillover effect of rural 
economic development level on agricultural non-point 
source pollution have passed the significance test at the 
level of 1%, but the direct effect estimation coefficient is 
positive and the spatial spillover effect estimation 
coefficient is negative. The reason is that continuous 
increase of the level of economic development has 
affected to some degree the farmers’ behaviors, who 
increase application amount of fertilizer and pesticide in 
agricultural production, which has destroyed the 
environment to some degree. Meanwhile, small-scale 
agricultural production modes also intensify the difficulty 
of governing agricultural contamination. When the 
economy in the adjacent regions develops to a higher 
degree, it would consciously increase investment in 
environmental pollution control in the region while 
uniting the adjacent regions in governing pollution. 

The direct and indirect effects of rural informal finance on 
farmland surface pollution are positive, but the direct 
effect fails to pass the significance test. The reason is that 
as the substitution of formal finance, rural informal 
finance is still in disorder at the present, and there are still 
poor guidance and overlapping investment. Since the 
financial controlling authority lacks regulatory basis, 
informal financial funds flow into polluting agricultural 
production, which has aggravated farmland surface 
pollution. 

In addition, robustness test has shown that though the 
sizes of the estimation coefficients vary, there is no large 
change, so the results are robust and reliable. 

5. Conclusion and countermeasures 

With gradual implementation of the rural revitalization 
strategy, all the provinces and cities have increased the 
input of rural human capital so as to improve the human 
capital level of rural residents in the region. This essay 
studies the flow of rural human capital factors between 
the regions and whether the farmland surface pollution 
could be improved through spatial spillover effects and 
measure its direct effects and spatial spillover effects. 
Based on the panel data of 30 provinces and cities in 
China (not including Hong Kong, Macao, Taiwan and Tibet) 
from 2004 to 2017, this essay conducts empirical analysis 
of the influences of rural human capital on farmland 
surface pollution by spatial panel data model. The 
research finds that: 

(1) The farmland surface pollution between different 
regions has significant spatial correlation, the farmland 
surface pollution between the regions does not exist 
independently, the Moran’I indexes of the farmland 
surface pollution of the years in China are all significantly 
positive and the correlation shows volatility. Therefore, 
when making policies, relevant governmental 
departments should take full consideration of the 
conditions as well as the governance of farmland surface 
pollution of their regions and the adjacent regions, 
strengthen communication and cooperation of the factors 
between the regions, and alleviate jointly the farmland 
surface pollution in the regions, which is helpful to 
improve the overall level of farmland surface pollution in 
China. 

(2) The direct effect and spatial spillover effect of rural 
human capital on farmland surface pollution are 
significantly negative, indicating that rural human capital 
not only can inhibit farmland surface pollution in the 
region effectively, but also can help to reduce the 
farmland surface pollution in the adjacent areas. The 
revelation of this conclusion is that, as an important 
power of farmland surface pollution control, flow of rural 
human capital between the regions has significant spatial 
spillover effect. Therefore, it is necessary to strengthen 
cooperation in rural education between the regions, break 
spatial barriers between the regions, accelerate the 
development of regional integration and reinforce 
cooperation in green and clean technologies so as to 
achieve green development of agriculture. 
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