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Abstract 

Solid wastes and acid wastewater lead to the enrichment 
of heavy metals in the soil of mining area. Heavy metal 
pollution causes the decline of soil quality, ecosystem 
degradation, crop yield reduction, and even threatens 
human health. For this reason, the real-time detection 
method for heavy metal pollution in mining area is studied. 
Taking a mining area as an example, the data of heavy 
metal content in mining area soil are collected by PLSR 
model. Based on the collected data, the real-time detection 
model of heavy metal pollution in mining area soil based on 
improved analytic hierarchy process and weighted average 
method is adopted to real-time detect the heavy metal 
pollution index in the soil of mining area. The results show 
that the pollution index of Cu, Zn and Pb in the soil of this 
mining area belongs to heavy pollution, and the pollution 
of Cd is relatively small. Among them, the pollution index 
of Pb is the largest among the four heavy metals, and the 
pollution is quite serious. The pollution sources of Pb, Zn 
and Cu in this mining area are the same, and the pollution 
sources of Cd are different from those of other three heavy 
metals. 

Keywords: Mining area, soil, heavy metal, pollution, real-
time detection, analytic hierarchy process. 

1. Introduction 

Mineral resources are one of the basic sources of human 
production and life, but the development of mineral 
resources plays an important role in promoting the 
development of national economy, at the same time, it also 
brings serious environmental problems (Stihi et al., 2017; 
Rahman et al., 2020). In mining, especially in lead-zinc 
deposits and sulphur-containing polymetallic deposits, a 
large amount of heavy metals (Karbassi and Marefat, 2017) 
are enriched in the soil of mining area due to the direct 
discharge of mining wastewater and beneficiation 
wastewater, the stacking and leaching of solid wastes such 
as waste rocks and tailings. Heavy metals pose a great 
threat to the environment and human body. Most of the 
previous mining development work in China only focused 
on economic interests, and the research on heavy metals 
in mining soils was also lagging behind (Chen et al., 2017b; 
Zephania et al., 2019). The activity, bioavailability and 
toxicity of heavy metals in soils are closely related to the 
forms of heavy metals. It is not accurate to assess soil 
pollution in mining areas only by the total amount method 
of heavy metals (Stihi et al., 2017). Therefore, it is gradually 
on the agenda to study the sources, migration and 
transformation of heavy metals in mining soils, try to use a 
variety of soil heavy metal pollution assessment methods, 
accurately assess the grade and degree of soil pollution in 
mining areas, and carry out ecological reconstruction of 
mining areas (Yang et al., 2017; Paneru et al., 2020). 

The results show that acidic mine wastewater and solid 
waste pollution are the main sources of heavy metals in soil 
(Nethaji et al., 2017). In the process of exploitation and 
utilization of primary sulfide deposits, waste sulfide 
minerals undergo long-term natural oxidation and 
rainwater leaching, resulting in a large number of heavy 
metals entering the soil of the mining area, and forming a 
certain range of supergene geochemical anomalies (Liu, 
2017). The oxidation rate of sulfide minerals is related not 
only to reaction time, temperature, sulfide mineral content 
and types, but also to the external environment such as 
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oxygen, water, biological activities, especially 
Ferrobacterium oxide. The production of acid wastewater 
is the result of the oxidation, weathering, decomposition of 
these primary sulfide minerals and the comprehensive 
reaction of water, acid, gas and minerals (Hamad et al., 
2019). In addition, the contents of thallium, arsenic, lead 
and chromium in ores and surrounding rocks are very high. 
Dust pollution is also a source of heavy metals in soil during 
mining, transportation and dumping (Huang, 2017; Laili 
and Amid, 2019). 

Some metals, especially toxic elements, can’t be 
biodegraded once they enter the soil, mainly through a 
series of physical and chemical processes such as ion 
exchange, oxidation-reduction, adsorption/desorption, 

precipitation-dissolution, and finally exist in the soil in 
some form (Ramdani et al., 2018). In fact, toxicological 
effects caused by heavy metals have obvious lagging effect. 
The potential hazards and threats are much more serious 
than the apparent effects. Once pollution is formed, 
remediation will be very difficult and ineffective in the 
short term. The disasters caused by heavy metals are also 
sudden, that is, chemical time bombs. It is particularly 
necessary to monitor and evaluate heavy metals in soils of 
mining areas in time (Li and Shi, 2017). In this paper, a real-
time detection method of heavy metal pollution in mining 
soil is proposed, which has important theoretical value for 
ecological detection of mining environment (Pang et al., 
2017). 

Table 1. Number scale and its description 

Scale Definition (comparative factors I and j) 

1 Factor I is as important as factor j 

3 Factor I is slightly more important than factor H 

5 Factor I is more important than factor H 

7 Factor I is more important than factor H 

9 Factor I is absolutely more important than factor H 

2, 4, 6, 8 The Intermediate Value of Two Neighboring Judgements 

Table 2. Average random consistency index 

Matrix order 1 2 3 4 5 6 7 8 9 

RI 0 0 0.58 0.90 1.21 1.24 1.32 1.41 1.45 

Table 3. Consistency check index of various levels 

Arrangement max CI CR 

→A 2 0 0 

C→B1 4.07347 0.02449 0.2721 

C→B2 4.07347 0.02449 0.2721 

Table 4. Weight of various levels index 

Target Layer Subsystem Weight Monolayer factor Weight Total factor Weight 

Detection of heavy 

metals in soil of 

mining area 

Biotoxicity 0.17 

Pb 0.15144 
Pb 0.3773 

Cd 0.63476 

Cu 0.15144 
Cd 0.4579 

Zn 0.06235 

Limit value of heavy metals in soil and 

food crops 
0.83 

Pb 0.42251 
Cu 0.1122 

Cd 0.42251 

Cu 0.10438 
Zn 0.0526 

Zn 0.05060 

 

2. Materials and methods 

2.1. Data acquisition of heavy metals content in mine soil 
based on PLSR model 

The correlation wavelengths of heavy metal elements in 

mining soils are recorded as [X=X1,X2,X3,,XM] and M = 
150. The PCA method is used to reduce the dimension of 
descriptors of heavy metal elements in mining soils (Chen 
et al., 2017a; Ali et al., 2019). Firstly, standardization is 
carried out: 

( ) /X X D= −
 

(1) 

In the formula, X is a MN matrix; X is the mean of the 
bands related to heavy metals in the soil of the mining area; 
D is the variance matrix of heavy metals in the soil of the 

mining area. The principal component of the set of bands 
related to heavy metals in mining soils can be obtained by 
the following formula: 

( )T TV XX V =
 

(2) 

In the formula,  is a diagonal matrix composed of 

eigenvalues i(i=1,2,3,,M) and 12M of heavy 
metal elements in mining soil, and V is an orthogonal 

matrix composed of eigenvector (i=1,2,3,,M) 
corresponding to eigenvalues of heavy metal elements in 
mining soil (Cheng et al., 2019). The eigenvectors 
corresponding to the eigenvalues of heavy metals in the 
soils of the first three large mining areas are selected as 
independent variables, such as W330, W790 and W1440. 
Then the combinations of these variables are analyzed by 
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multiple linear regression (Leung et al., 2017; Prabal et al., 
2020). The regression equation is derived. 

= −

+ −

76.454 330 2.976 790

23.255 1440 56.232

O W W

W  (3) 

Where, O is the content of heavy metals in the soil of 
mining area. The model of extracting heavy metals from 
soil in mining area is established as follows: 

73.542 345 3.355 760 20.794 1590 0.862O W W W= − + −  (4) 

2.2. Real-time detection model of heavy metal pollution in 
mining soil based on improved analytic hierarchy process 
and weighted average method 

2.2.1. Detection of single factor pollution index 

The pollution index detection formula of single factor Oi is 
as follows: 

/i i i iO P C S=  (5) 

In the formula, Pi is the pollution coefficient of heavy 
metals in the soil of mining area, Ci is the actual value of the 
pollution coefficient of heavy metals in the soil of mining 
area, and Si is the detection standard of heavy metals in the 
soil of mining area. Among them, Oi can be refined into 
various kinds of heavy metals in the soil of the metallogenic 
area according to the detected components. 

2.2.2. Detection of multifactor pollution index 

(1) Establishment of analytical hierarchy process 

The first layer of the hierarchical analysis structure for the 
detection of heavy metal pollution in mining area soil is the 
target layer, that is, to detect the heavy metal pollution in 
a mining area soil, which is defined as layer A; The second 
layer is the standard layer, that is, to select two standards 
of the limit values of heavy metals such as Pb, Cd, Cu and 

Zn in the soil of the mining area (0.2, 0.2, 10 and 50 mgkg−1, 
respectively) and the toxicity response coefficient of heavy 
metals (5, 30, 5 respectively) 1), to be defined as layer B, 
two of which are defined as B1 and B2 respectively; the third 
layer is a specific detection factor, namely four heavy metal 
elements of lead, cadmium, copper and zinc, defined as 
layer C; The analytic hierarchy is a three-layer structure 
(Ramdani et al., 2018; Amjad et al., 2019). 

(2) Construction of judgment matrix 

At each level, the indicators of this layer are compared one 
by one. According to the prescribed scaling method, the 
judgment matrix of heavy metal pollution in mining area 
soil is written. The scaling and its description are shown in 
Table 1. 

According to the prescribed scaling method, the A→B layer 

judgment matrix (6), the B1→C judgment matrix (7) and the 

2→C judgment matrix (8) for the real-time detection of 
heavy metal pollution in mining soils are established. 

1 1 / 5

5 1

 
 
 

 (6) 

1 1 / 5 1 3

5 1 5 7

1 1 / 5 1 3

1 / 3 1 / 7 1 / 3 1

 
 
 
 
 
 

 (7) 

1 1 5 7

1 1 5 7

1 / 5 1 / 5 1 3

1 / 7 1 / 7 1 / 3 1

 
 
 
 
 
 

 (8) 

(3) Computation of matrix eigenvector and maximum 
eigenvalue 

The approximate calculation method for the characteristic 
vector of the O matrix of the heavy metal content in the soil 
of mining area is as follows: firstly, the judgment matrix is 
summed by rows, then the average values of each row are 
obtained, and a column vector of the heavy metal content 
in the soil of mining area is obtained (Khoo et al., 2019). 
Dividing each element of the vector by the sum of all 
elements of the column vector, the column vector thus 
obtained is the eigenvector W of heavy metals in the soil of 
the mining area. (Leung et al., 2018). Based on the 
eigenvectors of heavy metals in mining soils, the algorithm 

of maximum eigenvalue max of heavy metals in mining soils 
is as follows: 

max
1

( )n
i

i i

C W

n
O

w


=


=


  (9) 

In the formula, W is the eigenvector of heavy metals in 
mining area soil, wi is the i-th element in the eigenvector, C 
is the judgment matrix of heavy metals pollution in mining 
area soil, and n is the order of the judgment matrix of heavy 
metals pollution in mining area soil. 

(4) Consistency test 

According to the constructed judgment matrix of heavy 
metal pollution in mining area soil, the weights of all heavy 
metal pollution factors associated with the above level are 
calculated (Li et al., 2017). In order to measure the 
consistency of the judgment matrix of heavy metal 
pollution in mining area, the negative average CI of other 
characteristic roots besides the maximum eigenvalue of 
the judgment matrix is introduced. The formula is as 
follows: 

maxCI
1

n

n

 −
=

−  (10) 

In order to measure the consistency of different judgment 
matrices, the average random consistency index RI is 
introduced. The RI value is shown in Table 2. 

When calculating the random consistency ratio CR=CI/RI, 
when CR<0.10, the matrix is considered to have 
satisfactory consistency. Otherwise, the judgment matrix 
of heavy metal contamination in mining area soil should be 
reconstructed until it has satisfactory consistency. 

(5) Consistency test of hierarchical total sorting 

The total ranking of the hierarchy uses the results of all the 
hierarchical ordering in the same hierarchy, and the 
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weights of all the heavy metal elements in the upper 
hierarchy, to calculate the weight value of all heavy metal 
factors in this level for the detection of heavy metal 
pollution in the mining area (Rosen and Chen, 2018). The 
test is performed from the upper layer to the lower layer. 
For example, the consistency index of the factors in the 
layer B to the single order of the layer A is CIi, and the 
average random consistency index is RIi. The random 
consistency ratio of the total order of the layer B is: 

1

1

CI
CR

RI

n

i ii

n

i ii

a

a

=

=


=






 (11) 

In the formula, ai is the weight value of heavy metal factor 
in layer A. When CR<0.1, the result of total ranking of layers 
is satisfactory. According to formula (11), the judgment 
matrix of soil heavy metal pollution in mining area is 
calculated. The consistency test results of each layer are 
shown in Table 3. 

The consistency test meets the requirements. The 

normalized eigenvector corresponding to max is the weight 
value of heavy metal elements in the soil of mining area. 
The weight of each index is shown in Table 4. 

2.2.3. Establishment of improved weighted average 
method 

The traditional formula of weighted average method is as 
follows: 

/i i iP c S=  (12) 

( / )i i iP A c S=  (13) 

In the formula, Pi is the pollution factor of heavy metal 
pollutants in mining area soil, ci is the average measured 
content of heavy metal pollutants in mining area soil 

(mgkg−1), Si is the reference value of heavy metal 

pollutants in mining area soil (mgkg−1), Ai is the weight of 
a heavy metal element (where the weight is calculated by 
analytic hierarchy process), and P is the comprehensive 
pollution index of heavy metal in mining area soil. There are 
usually two methods to determine the value of Si (Munoz-
Colmenares et al., 2017). One is to adopt the critical value 
of Class III soil standard in the national soil environmental 
quality standard, and the other is to take the arithmetic 
average value of various standard values. Because of the 
difference in the range of standard values of different types 
of soils, there are some deviations between the two 
methods (Shahsavari et al., 2019). In order to solve this 
problem, the weighted method is used to determine the Si 
value. Taking Cd as an example, the soil grade ranges of Cd 
are [0,0.2], [0.2,0.3] and [0.3,1] respectively, and the 
formula for calculating SCd is as follows: 

(0.2 0) 0.1 (0.3 0.2) 0.25 (1 0.3) 0.65
0.5

(0.2 0) (0.3 0.2) (1 0.3)

−  + −  + − 
=

− + − + −  (14) 

Other heavy metal elements are calculated according to 
this method. The results are as follows: the value of Pb is 

250 mgkg−1, the value of Cd is 0.5 mgkg−1, the value of 

Cu is 200 mgkg−1, and the value of Zn is 250 mgkg−1. 

2.2.4. Comprehensive detection 

Based on the above method, a comprehensive detection 
model based on AHP and weighted average is obtained. 
The formula is as follows: 

=  + 

+  + 

Pb Cd

Cu Zn

[Pb] / 250 [Cd] / 0.5

[Cu] / 200 [Zn] / 250

P a a

a a  (15) 

Where, a is the corresponding weight of four heavy metal 
elements calculated based on improved AHP. Here, O 
calculated by formula (4) is refined into [Pb], [Cd], [Cu] and 
[Zn], which is the measured content value of heavy metals, 
and P is the comprehensive pollution index (Shalmashi and 
Khodadadi, 2019). On the basis of the new detection 
model, considering comprehensively the values of each 
grade of the national soil grade standard and the 
background values of the soil in the mining area, the new 
grading criteria are obtained after the calculation of the 

model: P1 means clean, 1<P2 means light pollution, 

2<P3 means medium pollution, and P>3 means heavy 
pollution. 

2.3. Test settings 

Taking the major industrial developed cities in a certain 
area as the research area, this area is one of the most 
developed and fastest growing areas in China. However, 
the rapid development of industrialization and 
urbanization has also produced a large number of industrial 
wastes and domestic wastes, resulting in serious 

environmental problems (Chicalote-Castillo et al., 2017; 

Islam et al., 2020). Among them, the over-standard content 
of heavy metals in the soil of mining areas in this area is 
widespread, with the over-standard rates of Cd, Zn and Cu 
reaching 40.1%, 19.8% and 8.1% respectively, which 
seriously threatens the safety of environmental 
management in mining areas. 

In the sampling area, the heavy metal content of 24 
sampling points is detected. Five points are taken from 

each sampling point in the range of 10m10m. After 
mixing, the samples are sampled by quartering method. 
After air-drying, the impurities are removed and the 0.15 
mm pore size nylon sieve is reserved. The soil samples were 

digested by HNO3−HF−HCIO and the heavy metal 
contamination in the mining area is detected by the 
proposed method (Szentgyrgyi et al., 2017). 

3. Results 

3.1. Statistical analysis of soil heavy metal content data in 
mining area 

Table 5 shows the statistical results of heavy metals in the 
soils of mining areas in this area. 

According to Table 5, the average contents of Pb, Cd, Cu 
and Zn detected by the proposed method are 671, 24, 82 

and 1179 mgkg−1, respectively, which are much higher 

than the background values of the corresponding heavy 
metal contents in the soils of this area, indicating that there 
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is an obvious accumulation phenomenon. Among them, 
the average contents of Cd, Pb and Zn are 301, 24 and 13 
times of the background values of the corresponding soil 
heavy metals content in this area, which indicates that the 
pollution of Cd, Pb and Zn in the soil of this mining area is 

significant and common (Liew et al., 2019). The contents 

of Pb, Cd, Cu and Zn in the soils of the mining area range 

from 60 to 4864 mgkg−1, 2.1 to 924 mgkg−1, 17 to 599 

mgkg−1 and 184 to 8431 mgkg−1, respectively, which 

shows that the pollution situation in different areas varies 
greatly. 

Table 5. Statistical results of heavy metals in soil of mining area in this area 

Heavy metal 
Number of 

samples 
Range Minimum 

Maximum 

value 
Mean value 

Background 

values in this area 
The sum 

Pb 141 4805 60 4864 671 27.3 94599 

Zn 141 8247 184 8431 1197 88.6 168734 

Cu 141 582 17 599 82 25.4 11549 

Cd 141 922 2.1 924 24 0.079 336 

Table 6. Test results of soil heavy metal pollution in mining area 

Number Cu Zn Pb Cd 
Composite 

index 
Pollution Degree 

1 1.38 0.27 0.35 0.23 1.01 Light pollution 

2 0.85 0.23 0.41 0.14 0.67 Clean grade 

3 1.35 0.39 2.56 0.3 1.41 Light pollution 

4 0.83 1.18 0.56 0.41 0.99 Heavy pollution 

5 2.17 0.94 1.28 0.39 1.75 Light pollution 

6 1.01 0.33 1.56 0.13 1.23 Light pollution 

7 2.57 0.27 0.22 0.27 1.91 Light pollution 

8 3.11 0.81 0.8 0.28 1.54 Light pollution 

9 14 0.98 1.97 0.21 10.35 Heavy pollution 

10 18.96 1.87 4.97 0.18 14.17 Heavy pollution 

11 6.88 1.96 3.87 0.52 5.4 Heavy pollution 

12 1.01 1.45 4.98 0.21 3.77 Heavy pollution 

13 9.87 1.23 6.13 0.03 7.61 Heavy pollution 

14 3.58 6.66 6.98 0.34 5.83 Heavy pollution 

15 2.71 14.77 15.92 2.53 12.93 Heavy pollution 

16 3.74 10.03 49.34 1.23 36.7 Heavy pollution 

17 2.34 0.61 0.04 0.29 1.75 Light pollution 

18 3.7 0.26 2.85 0.28 2.9 Medium pollution 

19 21.97 0.32 0.25 0.28 16.05 Heavy pollution 

20 3.11 0.35 1.51 0.79 2.42 Medium pollution 

21 3.34 0.27 0.88 0.37 2.51 Medium pollution 

22 3.47 0.42 2.07 0.28 2.69 Medium pollution 

23 5.37 0.25 1.35 0.78 4.04 Heavy pollution 

24 1.61 0.73 1.47 0.92 1.41 Light pollution 

Composite index 15.93 10.53 35.05 1.82 - - 

Pollution Degree Heavy pollution 
Heavy 

pollution 
Heavy pollution 

Light 

pollution 
- - 

Table 7. Pearson correlation coefficients of four heavy metals 

  Pb Zn Cu Cd 

Pb 1    

Zn 0.646** 1   

Cu 0.737** 0.696** 1  

Cd 0.234** 0.522** 0.448** 1 

Note: ** means significant correlation at level 0.01 (bilateral). 

 

3.2. Detection results of heavy metal pollution in soil of 
mining area 

The results of heavy metal contamination in soils from the 

24 sampling sites are shown in Table 6. 

According to Table 6, it can be seen that the pollution index 
of Cu, Zn and Pb in the soil of the mining area belong to 

heavy pollution, and there are great differences among the 
three heavy metals unidirectional pollution index 

(Qolipour et al., 2019). Among the single pollution index 

of Cu, only two sampling points are less than 1, and 13 

sampling points are heavily polluted, accounting for 54% of 
all samples. 
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Figures 1–4 are pollution index of four heavy metals in the 
soil of the mining area detected by the proposed method. 
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Figure 1. Pollution index of Cu 
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Figure 2. Zn pollution index 
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Figure 3. Pb pollution index 

As can be seen from Figures 1–4, Cu pollution is the most 

common and serious (Figure 1). The comprehensive 

pollution index of Zn is 10.53, the highest single pollution 

index is 15.17, and the number of samples greater than 1 is 

8, accounting for 1/3 of all samples (Figure 2). The Pb 

pollution index is the largest among the four heavy metals, 
and the pollution is quite serious, especially at sampling 
sites 15 and 16, the pollution index is as high as 15.92 and 
49.34, respectively (Figure 3). The Cd pollution index of soil 
in this mining area is the smallest, which is 1.82, and the 
pollution degree is light pollution grade. Except for 
sampling sites 15 and 16, most of the Cd pollution index are 
less than 1, which indicates that the Cd pollution index in 
this mining area are small (Figure 4). 
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Figure 4. Cd pollution index 

3.3. Source analysis of heavy metals in soil of mining area 

Pearson correlation analysis of the four heavy metals 
detected in the above experiments is carried out to study 
the correlation among the four heavy metals and to analyze 
the main sources of heavy metal pollution in the soil of the 
mining area. The analysis results are shown in Table 7. 

Table 7 shows that there is a significant correlation among 
the four heavy metals in the soil of the mining area 
(p<0.01). It can be preliminarily judged that the sources of 
heavy metal pollution in the soil of the mining area have 
certain similarities. The investigation shows that the main 
activities in the local mining area are the beneficiation of 
lead-zinc ore and the smelting of non-ferrous metals. There 
are one beneficiation plant and five smelters in the 
sampling area. The main sources of heavy metals such as 
lead and zinc are the beneficiation wastewater and 
smelting gas. Because the sampling area is mainly around 
the concentrator and smelter, the sources of heavy metals 
in cultivated soil are closely related to the mining activities 
in the local mining area. 

In order to further analyze the pollution sources of heavy 
metals in cultivated soil of this mining area, the principal 
component analysis of four heavy metals in cultivated soil 
of this mining area is carried out by factor analysis method 

(Ng et al., 2018). Through KMO and Bartlett sphericity 

test, the sampling data is suitable for factor analysis. The 
results are shown in Figure 5: 

It can be seen from Figure 5 that Cd has higher load on 

component 2, while Pb, Zn and Cu have higher load on 
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component 1. It can be concluded that Cd is different from 
other three sources of heavy metal pollution. Through 
sampling and investigation in and around the mining area, 
it is known that the main pollution sources of Pb, Zn and Cu 
are the mining and smelting activities of lead-zinc sulfide 
ores in the mining area and the secondary pollution caused 
by slag after mining. In the smelting process of lead-zinc 
ore, Cd is one of the main associated products of lead-zinc 
ore. However, the areas with serious Cd pollution are all 
near the concentrator, which explains the source of 

pollution very well (Osazuwa et al., 2018). Therefore, the 

first principal component of Cd pollution source is mainly 
the mining activities of non-ferrous metal mines, and the 
second principal component is mainly the “three wastes” 
discharge from mining areas. 
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Figure 5. Factorial Load of Heavy Metals in Soil 

4. Discussions 

Real-time detection of heavy metal pollution in mining soils 
can provide the most basic data support for soil 
environmental remediation in mining areas. The following 
suggestions are put forward for the future restoration of 
soil environment in mining areas around the research 
topics in this paper: 

(1) Restoration of soil conditions 

In view of the characteristics of harsh microclimate, 
decrease of biological community and homogenization of 
ecosystem in mining area, bioremediation measures are 
adopted according to local conditions, including vegetation 
reconstruction, introduction and development of 
microorganisms and animals. The core of these measures 
is vegetation construction to form artificial plant 
communities. In general, fast-growing, adaptable, well-
developed roots and strong stress-resistance plants are 
selected, and mixed allocation of grass, shrub and tree is 
adopted to combine short-term, medium-term and long-
term development. Some beneficial soil animals (such as 
earthworms) and soil microorganisms are properly 
introduced and developed to restore the original climate, 
biology and ecosystem conditions. 

(2) Rehabilitation of soil physical and chemical properties 

For acidic mining areas where soil pH is not too low, 
bicarbonate or lime can be used to regulate soil acidity; for 
those with too low or high pH, a small amount of 
bicarbonate or lime should be applied many times, or 
phosphate rock powder can be applied; for land 
reclamation and ecological reconstruction, filling some 
industrial and mining wastes, fly ash and so on can make 
the soil alkaline, generally sulfur, calcium chloride, gypsum, 
sulfuric acid, etc. Most mining soils lack organic matter and 
other nutrients. If reclaimed land is used for agricultural 
production, soil fertility must be restored first. Physical, 
chemical and biological remediation measures can be used 
to improve soil fertility. 

(3) Rehabilitation of soil environmental quality 

Physical repair: including mechanical engineering 
measures, high temperature pyrolysis, steam extraction, 
curing, vitrification, electro-osmotic method, etc. 
Mechanical engineering measures are physical transfer or 
isolation of contaminated soil to reduce pollution 
concentration or contact between pollutants and plant 
roots, such as guest soil, soil exchange, soil dump, surface 
soil removal and isolation. They are generally applicable to 
small and heavily polluted soils. High temperature pyrolysis 
and steam extraction are suitable for soils containing 
volatile and semi-volatile pollutants, which are 
decomposed or separated firstly, and then recycling; 
solidification and vitrification are the addition of solidifying 
agents such as cement, which make the soil granular or 
massive, and the pollutants are relatively stable, suitable 
for soils with low water content and no more than 6 m 
depth of pollutants; electro-osmotic method can clean the 
soil by electroosmotic flow or electrophoresis to bring 
contaminants in the soil to both ends of the electrode. It is 
not suitable for the soil with high permeability and poor 
conductivity, especially for the clayey soil which is difficult 
to be treated by other methods and has poor water 
adaptability.  

Chemical remediation: includes chemical modifier method, 
chemical elution method, chemical grid method, etc. 
Chemical improvers are soils that are not heavily polluted. 
Chemical reactions between pollutants and improvers are 
used to reduce the water solubility, diffusivity and 
bioavailability of pollutants. Commonly used improvers 
include organic wastes (such as sewage sludge, garbage or 
clinker salts), and inorganic improvers (such as gypsum, 
zeolite, calcium chloride, phosphate, carbonate, etc.), 
which convert harmful chemicals into substances with low 
toxicity or poor mobility. Chemical leaching is a method of 
leaching soil with chemical solution. It is more suitable for 
light soil such as sandy soil, sandy loam soil and light loam 
soil, but it is easy to cause groundwater pollution, soil 
nutrient loss and soil denaturation. Chemical grating 
method is to place some solid materials (such as activated 
carbon, peat, macromolecule synthetic materials, etc.) 
which are both permeable and have strong ability to absorb 
or precipitate pollutants in the bottom or subsurface 
aquifers of contaminated deposits, so that organic 
pollutants can be retained in solid materials, so as to 
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achieve the purpose of purification and remediation. It is 
only suitable for the remediation of shallow contaminated 
soil (3-12 m). 

In summary, the main causes of mine pollution in the 
mining process are acid waste water, tailings pond, tailings 
slag and so on. Therefore, regional pollution control mainly 
focuses on these aspects. The treatment methods involve 
physical, chemical and biological fields. Firstly, the forms of 
heavy metals in soil are changed to stabilize and fix them. 
Secondly, various anti-seepage materials are used to 
prevent the migration and diffusion of heavy metals. It uses 
various technologies to remove heavy metals from soil in 
order to recover and reduce the content of heavy metals in 
soil. Phyto remediation technology is the most widely used 
method at present. Compared with other methods, it has 
the advantages of economy, environmental protection, 
simplicity and convenience, less disturbance to the 
environment, and there is no secondary pollution factor. 
Phytoremediation is a treatment technology that uses the 
absorption, volatilization, transformation and degradation 
of plants and their rhizosphere microbial systems to 
remove pollutants. The technology includes plant 
extraction, plant volatilization, rhizosphere filtration and 
plant fixation. Among them, plant extraction is the most 
important method in phytoremediation technology. Plant 
extraction is the removal of heavy metal contamination in 
soil by utilizing the super-enrichment ability of some 
specific plants to heavy metals. At present, it has been 
found that many kinds of plants can be used as hyper 
accumulative plants, and the selection of hyper 
accumulative plants must consider whether they are 
suitable for remediation of heavy metal contaminated 
areas. It is necessary to further strengthen the ecological 
pollution effects of heavy metals in the source-stream-
sediment and soil-plant systems in mining areas, and to 
establish a three-dimensional research system in time and 
space, taking into account various comprehensive factors. 
In addition, on the basis of synthesizing various 
environmental assessment systems, the practical 
application of remediation should be strengthened. At 
present, the most widely used technology is plant 
ecological remediation. 

5. Conclusions 

China is rich in mineral resources. Mining has become an 
important means of production activities and economic 
growth in China. There are nearly 300,000 mining areas in 
China. Due to the neglect of the protection of the 
surrounding environment in the mining process for a long 
time, especially with the rapid development of science and 
technology in recent years, the problem of mine ecological 
environment damage and pollution is very serious in China. 

The total area of land destroyed is nearly 4106hm2 and it 
is still destroying at the rate of hundreds of thousands of 
hectares every year. The inducing factors of soil 
environmental problems in mining areas are complex, and 
the soil barrier factors are complex. The degradation of soil 
production function, environmental function and 
ecological function is prominent. Therefore, it is of great 
significance to study the soil environment and related 

issues in the mining area to scientifically and rationally 
restore the damaged ecological system in the mining area 
and ensure the safety of production, food security, 
ecological security and human settlements in the mining 
area. This paper studies the real-time detection method for 
heavy metal pollution in the soil of mining area, and applies 
it to the test analysis of a mining area. The results show 
that: 

(1) The average contents of Pb, Cd, Cu and Zn are 671, 24, 

82 and 117 mgkg−1, respectively, which are much higher 

than the background values of the corresponding soil heavy 
metal contents in this area, indicating that there is a 
significant accumulation phenomenon. 

(2) The pollution index of Cu, Zn and Pb in the soil of the 

mining area belongs to heavy pollution, and there are great 
differences among the three heavy metals in one-way 

pollution index. The pollution index of Cu, Zn and Pb 

belongs to heavy pollution, and the pollution of Cd is 

relatively small. Among them, the pollution index of Pb is 

the largest among the four heavy metals, and the pollution 
is quite serious, especially at sampling sites 15 and 16. The 
pollution index is as high as 15.92 and 49.34, respectively. 

(3) The main pollution sources of Pb, Zn and Cu are the 
mining and smelting activities of lead-zinc sulphide ores in 
the mining area and the secondary pollution caused by slag 
after mining. The first principal component of Cd pollution 
sources is mainly mining activities of non-ferrous metal 
mines, and the second principal component is mainly 
“three wastes” discharge from mining areas. 

Acknowledgement 

This research is supported by Key Research Projects of Henan 

Provincial Universities (No. 16A170001). 

References 

Ali R., Hossein H., Seyedeh B.F.M., Sara H. and Nima J. (2019), 

Assessment of heavy metals contamination in surface soils in 

meiduk copper mine area, Se Iran, Earth Sciences Malaysia, 3, 

1–8, DOI: 10.26480/esmy.02.2019.01.08 

Amjad H., Hamid S., Niaz Y., Ashraf M., Yasir U., Amna C., Ali A. 

and Daud M.W. (2019), Efficiency assessment of wastewater 

treatment plant: a case study of Pattoki, District Kasur, 

Pakistan, Earth Sciences Pakistan, 3, 1–4 

Chen H., Zhang X. and Zhou X.M. (2017a), Electrochemical 

properties and modification of novel material Na4 MnV (PO4)3, 

Journal of Jilin University (Science Edition), 55, 253–258. 

Chen Y., Liu Y. and Chen X.R. (2017b), Simulation and evaluation 

method for pesticide residue pollution based on visual 

analysis techniques, Computer Simulation, 34, 347–351. 

Cheng Y.W., Ng K.H., Lam S.S., Lim J.W., Wongsakulphasatch S., 

Witoon T., and Cheng C.K. (2019), Syngas from catalytic steam 

reforming of palm oil mill effluent: An optimization study, 

International Journal of Hydrogen Energy, 44, 9220–9236. 

Chicalote-Castillo D., Ramirez-Garcia P. and Macias-Rubalcava 

M.L. (2017), Allelopathic effects among selected species of 

phytoplankton and macrophytes, Journal of Environmental 

Biology, 38, 1221–1227. 

Hamad R., Balzter H. and Kolo K. (2019), Assessment of heavy 

metal release into the soil after mine clearing in Halgurd-



578  YANG et al. 

Sakran National Park, Kurdistan, Iraq, Environmental Science 

and Pollution Research, 26, 1517–1536. 

Huang J., Nie R. and Cao W.Q. (2017), Design of LED driver power 

without electrolytic capacitor, Chinese Journal of Power 

Sources, 41, 138–141. 

Islam M.M., Ahmed A.Z., Kabir S.F., Islam R. and Molla M.A.I. 

(2020), Optimization of photodegradation conditions of 

rhodamine B in water with dye-sensitized titanium dioxide, 

Journal Clean Was, 4, 28–31. 

Karbassi A. and Marefat A. (2017), The impact of increased oxygen 

conditions on heavy metal flocculation in the Sefidrud 

estuary, Marine Pollution Bulletin, 121, 168–175. 

Khoo S.C., Phang X.Y., Ng C.M., Lim K.L., Lam S.S. and Ma N.L. 

(2019), Recent technologies for treatment and recycling of 

used disposable baby diapers, Process Safety and 

Environmental Protection, 123, 116–129. 

Laili I.N. and Amid A. (2019), A review on the identification and 

analysis of heavy metals in herbs using inductively coupled 

plasma mass spectrometry (ICPMS), Environmental 

Contaminants Reviews, 2, 1–5. 

Leung H.M., Duzgoren-Aydin N.S. and Au C.K. (2017), Monitoring 

and assessment of heavy metal contamination in a 

constructed wetland in Shaoguan (Guangdong Province, 

China): bioaccumulation of Pb, Zn, Cu and Cd in aquatic and 

terrestrial components, Environmental Science and Pollution 

Research, 24, 9079–9088. 

Li H.G. and Shi J.S. (2017), Monte Carlo simulation model for 

calculating cascade utilization capacity of power batteries, 

Automation & Instrumentation, 72–74. 

Li X., Meng D. and Li J. (2017), Response of soil microbial 

communities and microbial interactions to Â long-term heavy 

metal contamination, Environmental Pollution, 231, 908–917. 

Liew R.K., Chai C., Yek P.N.Y., Phang X.Y., Chong M.Y., Nam W.L., 

Su M.H., Lam W.H., Ma N.L. and Lam S.S. (2019), Innovative 

production of highly porous carbon for industrial effluent 

remediation via microwave vacuum pyrolysis plus sodium-

potassium hydroxide mixture activation, Journal of Cleaner 

Production, 208, 1436–1445. 

Liu Q.F. (2017), Initial rotor position estimation method for 

interior permanent magnet synchronous motor, Journal of 

Power Supply, 15, 132–137. 

Munoz-Colmenares M.E., Sarma S.S.S. and Nandini S. (2017), 

Seasonal variations of rotifers from the high altitude Llano 

reservoir (State of Mexico, Mexico), Journal of Environmental 

Biology, 38, 1171–1181. 

Nethaji S., Kalaivanan R. and Viswam A. (2017), Ical assessment of 

heavy metals pollution in surface sediments of Vellar and 

Coleroon estuaries, southeast coast of India, Marine Pollution 

Bulletin, 115, 469. 

Ng K.H., Cheng Y.W., Lee Z.S., Khan M.R., Lam S.S. and Cheng C.K. 

(2018), Experimental evaluation and empirical modelling of 

palm oil mill effluent steam reforming, International Journal 

of Hydrogen Energy, 43, 15784–15793. 

Osazuwa O.U., Khan M.R., Lam S.S., Assabumrungrat S. and Cheng 

C.K. (2018), An assessment of the longevity of samarium 

cobalt trioxide perovskite catalyst during the conversion of 

greenhouse gases into syngas, Journal of Cleaner Production, 

185, 576–587. 

Paneru N., Adhikari P. and Tandan P. (2020), Management of 

purple blotch complex of onion (Allium Cepa Cv Red Creole) 

Under field condition in rukum-West, Nepal, Malaysian 

Journal of Sustainable Agriculture, 4, 71–74. 

Pang Y., Gao H. and Wu S. (2017), Facile synthesis the nitrogen 

and sulfur co-doped carbon dots for selective fluorescence 

detection of heavy metal ions, Materials Letters, 193, 236–

239. 

Prabal B., Rahman S.H., Barua S. and Ismail M.M.R. (2020), 

Climate change vulnerability and responses of fisherfolk 

communities in the South-Eastern coast of Bangladesh, Water 

Conservation and Management, 4, 20–31. 

Qolipour M., Mostafaeipour A., Saidi-Mehrabad M. and Arabnia 

H.R. (2019), Prediction of wind speed using a new Grey-

extreme learning machine hybrid algorithm: A case study, 

Energy & Environment, 30, 44–62. 

Rahman M.R., Rahman M.M. and Chowdhury M.A. (2020), 

Assessment of natural regeneration status: the case of 

Durgapur hill forest, Netrokona, Bangladesh, Geology, 

Ecology, and Landscapes, 4, 121–130. 

Ramdani S., Amar A. and Belhsaien K. (2018), Assessment of heavy 

metal pollution and ecological risk of roadside soils in tlemcen 

(algeria) using flame-atomic absorption spectrometry, 

Analytical Letters, 51, 1–20. 

Rosen V. and Chen Y. (2018), Effects of compost application on 

soil vulnerability to heavy metal pollution, Environmental 

Science and Pollution Research, 25, 35221–35231. 

Shahsavari A., Yazdi F.T. and Moosavi Z. (2019), A study on the 

concentration of heavy metals and histopathological changes 

in Persian jirds (Mammals; Rodentia), affected by mining 

activities in an iron ore mine in Iran, Environmental Science 

and Pollution Research, 26, 12590–12604. 

Shalmashi A. and Khodadadi F. (2019), Ultrasound-assisted 

synthesis of biodiesel from peanut oil by using response 

surface methodology, Energy & Environment, 30, 272–291. 

Stihi C., Popescu I.V. and Frontasyeva M. (2017b), 

Characterization of heavy metal air pollution in romania using 

moss biomonitoring, neutron activation analysis, and atomic 

absorption spectrometry, Analytical Letters, 50, 2851–2858. 

Szentgyörgyi H., Moroń D. and Nawrocka A. (2017), Forewing 

structure of the solitary bee Osmia bicornis developing on 

heavy metal pollution gradient, Ecotoxicology, 26, 1031–

1040. 

Yang C.K., Pan Y. and Guo J.G. (2017), Content delivery in wireless 

mesh network based military information system, Journal of 

China Academy of Electronics and Information Technology, 

12, 642–648. 

Zephania N.F, Suiven John P.T. and Martin F. (2019), Eucalyptus 

tree colonization of the Bafut-Ngemba forest reserve, North 

West region, Cameroon, Environment & Ecosystem Science, 3, 

12–16. 


