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Abstract 

The present study analyses the various uncertainties and 
nonstationarity in the streamflow projections of 
Subarnarekha river basin in Eastern India using two widely  
used hydrological climate models: 1) general circulation 
model (GCM), and 2) forcing climate change scenarios. 
These two climate models are used to force the ArcSWAT 
model. Subsequently this model is calibrated using SUFI-2 
optimization technique. The downscaled and 
bias-corrected data from an ensemble of 10 climate 
projections with representative concentration pathways 
(RCP) 4.5 and 8.5 scenarios (five each) were used in first 
model, whereas in second model a total of 63 (7 
perturbed precipitations and 9 perturbed temperatures) 
combinations of hypothetical climate change scenarios 
were used. The results show very good correlation 
during monthly calibration time steps and relatively good 
agreement between the observed and simulated 
streamflows in daily calibration time steps. The 
uncertainties are expressed in probabilistic terms 
using probability density function (PDF) and cumulative 
distribution function (CDF) as they provide significant 
information for decision process in climate 
change adaptation in the river basin. The uncertainties 
associated with climate models, return periods and 

streamflow extremes are also analysed in the 
present work. The RCP 8.5 scenarios seem more 
appropriate than RCP 4.5 scenarios in quantifying the 
uncertainties under nonstationarity assumptions.  
The mean values of water balance components and 
their percentage variation for both historic and future 
periods reveal that the water balance components get 
affected significantly due to climate change in a future 
period. Consequently, the streamflows are likely to 
decline in the river basin. The present study also 
highlights the comprehensive approaches that are being 
planned to facilitate adaptation to climate change as well 
as those that are specific to the water resources 
management in the study region. The findings in this work 
are useful for overall well-being of people in the study 
area. 

Keywords: Uncertainty, nonstationary, forcing climate 
change, GCM, ArcSWAT, SUFI-2, streamflows. 

1. Introduction 

According to the 4
th

 climate report from the 
Intergovernmental Panel on Climate Change (IPCC, 2007), 
there is at least 90% certainty that human activities are 
causing global warming. The warming of global climate is 
unequivocal and is evidenced by numerous observations 
of increasing air and ocean temperatures, melting of snow 
and ice, and rising global average sea level (Joseph, 2009). 
To deal with the future global warming, reliable estimates 
of regional patterns and amplitudes of climate changes 
are required. The reliable estimates can be made  
through the widely used climate models e.g., general 
circulation models (GCM) and forcing climate change 
scenarios that account for a variety of processes and 
interactions in the Earth’s climate system. The processes 
viz., downscaling techniques, climate projections and 
techniques for hydrological simulations with their 
associated discrepancies introduce uncertainty in impact 
analysis (Mujumdar and Ghosh, 2008; Kure et al., 2013). 

In the changing climate context, it is presumed that 
uncertainties arise from (i) approximations and omissions 
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required when representing the real-world process in 
climate models (Paeth et al., 2013), (ii) multi scale interval 
variability and inaccurate initial conditions (Palmer and 
Anderson, 1994), and (iii) observational data that are 
subject to gaps or inhomogeneity and measurement 
errors (Brohan et al., 2006; Hunt, 2011). 

This implies that the climate change impact assessment 
research and decision making using climate models in 
adaptation and mitigation processes have to  
cope with these uncertainties. The climate models still 
have significant deficiencies and differ in terms of their 
anticipated climate change, particularly at a regional  
scale (Paeth et al., 2010; 2013). Therefore, the claim for 
exact predictions on one side and uncertain model  
results on the other side is typical for scientific issues 
dealing with complex systems like river basins. 

In recent research, an emerging feature of all aspects of 
climate change scenarios is the growing use of 
probabilistic terms such as probability density  
function (PDF) and cumulative distribution function (CDF) 
which can provide detailed quantitative descriptions of 
uncertainties of climate change scenarios. Many  
studies (e.g., Giorgi and Mearns, 2003; Wilby and Harris, 
2006; Kay et al., 2009; Prudhomme and Davies, 2009; 
Paeth et al., 2013; Gillingham et al., 2015; Das and 
Umamahesh, 2017; Sung et al., 2018; Mackay et al., 2019) 
have carried out the quantification of uncertainties in 
climate change impact assessment using meteorological 
parameters and expressed in probabilistic terms. 
Sometimes, an ensemble approach is also applied to deal 
with the uncertainty in climate scenarios because a 
specific scenario cannot represent all future climate 
conditions (Sung et al., 2018). But, it is still questionable 
that, which scenarios needed to include in the climate 
change impact assessment procedure for capturing future 
climate variability. 

Most studies have selected appropriate scenarios based 
on the performance in reproducing historical climate. 
However, it has the limitation that performance during a 
historical period cannot guarantee consistent 
performance during a future period (Lee et al., 2016). In 
this context, it is suggested to use as many climate 
scenarios as possible in climate change assessment (IPCC, 
2014). In other words, employing multiple scenarios in 
climate change impact assessment may take the 
uncertainties into account. 

In river basin studies, it is certain that there remains a 
considerable uncertainty in future predictions of 
streamflows because of the forcing climate change 
scenarios (Ramadan et al., 2013). Generally, forcing 
climate change scenarios represent the perturbed 
precipitations (∆P=0, ±10 to ±30%) and perturbed 
temperatures (∆T=0 to 4

o
C) adding the prescribed changes 

to the baseline or 0-line (observational) dataset i.e., 
precipitations and temperatures. The use of these climate 
change scenarios involves a vast array of uncertainties 
that complicate the correct assessment of water 
resources potential in river basins. 

Further, in climate change scenarios the risk and 
streamflow assessment is generally carried out through 
return periods under nonstationarity assumptions, as 
these assumptions enable to introduce time-varying 
concepts for better assessment (Cooley, 2013; Mondal 
and Mujumdar, 2016). The analysis of nonstationary 
approximations of the return levels under lower return 
periods may be more beneficial to design low-capacity 
hydraulic structures (Das and Umamahesh, 2017). The low 
flows are also significant parameters in hydrology (Kiely, 
2007). Traditionally, hydrologists were preoccupied with 
flood alleviation and so analysis for high flows is more 
commonplace than that of low flow analysis. However, 
analysis of low flows is of significant interest, particularly 
in relation to water abstractions for water supply and 
hydroelectricity. 

Evaluation of changing climate related impact on future 
streamflows in a river basin is normally handled by 
simulating the hydrologic behaviour of the basin under 
projected climate conditions (Jana et al., 2018). This in 
turn requires developing a hydrological model i.e., 
depicting the hydrological response for the basin under 
consideration. In order to know the hydrological 
behaviour of river basins for the effective planning and 
management of soil and water resources, the applications 
of Soil and Water Assessment Tool (ArcSWAT) (Arnold et 
al., 1998) have been increased invariably across the world 
(Gassman et al., 2007; Shawul et al., 2013; Narsimlu et al., 
2013; 2015). ArcSWAT model could be effectively used for 
daily and monthly streamflow predictions and also for 
estimating water budgets at river basin-scales 
(Chintalacheruvu et al., 2020). 

In addition, some researchers (e.g., Xu et al., 2003; Huang 
et al., 2006; Das and Umamahesh, 2017) have used a 3-
layer variable infiltration capacity (VIC-3L) model for 
hydrological modelling to forecast the future streamflows 
of river basins. However, running the VIC model may seem 
to be a formidable task (https://vic.readthedocs.io/ 
en/master/Documentation/UserGuide/) as it involves 
complex process to follow. 

Alternatively, it is felt that the ArcSWAT model may be 
applied in place of VIC model. The inputs from the 
downscaled GCM and bias-corrected datasets, and forcing 
climate change scenarios are used separately to force the 
ArcSWAT model and subsequently this model can be 
calibrated using SUFI-2 optimization technique. Upon 
satisfactory performance, the calibrated model is used for 
prediction of streamflows in the river basin under the 
climate change scenarios. 

In this context, in the present study an effort is made to 
verify the use of downscaled GCM and bias-corrected 
datasets, and also forcing climate change scenarios as 
inputs in the ArcSWAT model for prediction of 
streamflows of Subarnarekha river basin in Eastern India 
under climate change scenarios as this river basin is 
frequently affected by climate change in recent years. 

In order to provide detailed quantitative descriptions of 
uncertainties of climate change scenarios in the 
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Subarnarekha river basin the probability density function 
(PDF) and cumulative distribution function (CDF) are 
planned to assess. Further, in this river basin the 
estimation of low flow duration frequency curves for 
recurrence interval in years considering the lower 
return periods for uncertainty analysis are more 
susceptible to climate change and most likely to vary in 
terms of magnitudes i.e., return level. Similarly, to carry 
the high flow analysis it is essential to know the extreme 
events occurring in the Subarnarekha river basin. 

In previous studies, (e.g., Dessai et al., 2005; Wilks, 2006; 
Paeth et al., 2013; Vanem, 2015; Das and Umamahesh, 

2017; Mandal and Simonovic, 2017; Mohammed et al., 
2017; Jobst et al., 2018; Mackay et al., 2019; 
Rai et al., 2019; Spafford et al., 2020) the uncertainties in 
precipitation, temperature and streamflows of 
river basins are expressed in probabilistic terms, typically 
using PDF and sometimes PDF and CDF both. But in most 
of the previous studies, the uncertainties in low flows 
and high flows are not expressed in probabilistic terms 
such as PDF and CDF, even though they 
are very important for developing adaptation 
strategies in the river basins. 

 

Figure 1. Location map of Subarnarekha river basin with Ghatsila gauging station. 

This persisting research gap is filled as a novel attempt in 
the present study by expressing the uncertainties in low 
flows and high flows of Subarnarekha river basin in both 
PDF and CDF. No such work is seen in reviewed literature 
on this river basin. Though the Subarnarekha river basin is 
a major river basin in India, significant research work is 
not done on this river basin. Few research works (e.g., 
Jana, et al., 2015; Yaduvanshi, et al., 2017; Yaduvanshi, et 
al., 2019; Kumar and Joshi, 2019; Banerji and 
Mukhopadhyay, 2018) are available in literature, but they 
failed to explain the uncertainties in streamflow 
projections under the climate change scenarios, even 
though they are very important for water management 
and agricultural practices in the river basin. This research 
gap motivated us to select this river basin for present 
study. 

The assessment of uncertainties in low flows and high 
flow events play a significant role in identifying the 
drought (low flow) and flood (high flow) effected regions 
in this river basin to prepare the ensuing adaptation 

strategies. Therefore, it is proposed to develop PDF and 
CDF for low flows and high flows along with the monthly 
and daily streamflows in the present study under climate 
change scenarios. In order to know the 
climate change impact on the future streaflows in the 
Subarnarekha river basin, the mean water balance 
components for historic and future periods are  
assessed for the first time for this basin in the present 
study. 

The water sector and its resources in the Subarnarekha 
river basin are facing threat due to industrial and uneven 
urban growth, both temporally and spatially. Hence the 
challenge of climate change calls for suitable 
comprehensible policy response that can help  
to reduce its vulnerability and build resilience of the water 
sector of Subarnarekha river basin (Government of 
Jharkhand (2013). The overall water sector vision, 
adaptation policy framework and assurance will be to 
improve water management practices through several 
strategies and initiatives in the study area to minimize the 
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impacts of climate change and for the overall comfort of 
people in the study area. 

Further, assessment of uncertainties in future 
streamflows of Subarnarekha river basin using 
nonstationarity assumptions under climate changing 

conditions will help the water resources professionals to 
develop water management strategies and climate 
change adaptations in the river basin, as it is significantly 
affected by climate change in recent years and it urgently 
requires reliable hydrological estimates. 

Table 1. Show the spatial data description and their sources 

Sl. No. Spatial data Description/resolution Source 

1. Digital Elevation Model 

30 m x 30 m grid resolution 

DEM to represent the 

topography 

Shuttle Radar Topography 

Mission 

(SRTM) of USGS    

2. Land use and land cover 

1 km x 1 km grid resolution 

LU/LC map to represent the 

crops and urban specific digital 

layers 

Nation Remote Sensing Centre, 

India/Water Resources 

information System 

(http://www.india-

wris.nrsc.gov.in) and Texas A & 

M University 

(http://swat.tamu.edu/) 

3. Soil 

1 km x 1 km grid resolution soil 

map to demonstrate the soil 

layer 

Food and Agriculture 

Organization (FAO) 

4. Hydrological data 

Gauged daily discharge data at 

Ghatsila gauging station of 

Subarnarekha river (Year, 2000 

to 2013) 

Central Water Commission 

(CWC), New Delhi, India 

5. 
Weather inputs (for model 

simulation) 

0.25° x 0.25° grid resolution 

daily precipitation data and 

0.5° X 0.5° grid resolution data 

of other weather inputs 

Indian Meteorological 

Department (IMD), Pune, India 

6. Climate change data 

0.5° x 0.5° grid resolution 

precipitation and temperature 

(maximum and minimum) data 

CORDEX-South Asia data set 

from IITM 

 

2. Study area 

The present study is carried out on Subarnarekha river 
basin, the smallest river basin of the 14 major river basins 
in India. This river basin is situated between latitudes 21° 
33' to 23° 32' N and longitudes 85° 09' to 87° 27' E. The 
location map of the study area is given in Figure 1. The 
total catchment area of the river basin is 14140 km

2 
with 

high topographical variations ranging from 49 m to 1049 
m above mean sea level. The Subarnarekha river stretches 
to a length of 395 km through Jharkhand, West Bengal 
and Orissa states of Eastern India. The Ghatsila, a gauging 
station of the Subarnarekha river basin situated in the 
Jharkhand state levers all the upstream runoff in the 
Jharkhand state. The tail river reach which is located down 
below the Ghatsila gauging station is passing through 
West Bengal and Orissa states and is not considered in the 
present work. 

The climate is tropical with hot summer and mild winters 
in the study area. The annual average maximum and 
minimum temperatures vary from 32.40 °C to 18.00 °C 
and the mean monthly temperatures vary from 40.5 °C in 
the month of May to 9.00 °C in the month of December. 
The Subarnarekha river is mostly a rain fed peninsular 
river with the wet months being June to September and 
during dry period the river flow is almost nil. This river 

basin is influenced by the South-West monsoon (June to 
October) and the annual average precipitation is about 
1800 mm. 

The comprehensive summaries from the recent studies 

conducted on Subarnarekha river basin (e.g., Jana et al., 

2015; Yaduvanshi, et al., 2017 & 2019; Kumar 

and Joshi, 2019) demonstrated that this river basin is 

found to be prone to climate change. There is decrease in 
rainfall and ensuing decreased streamflows of the river 
basin mostly in June to September period for 
almost half of the future years. The water balance 
components are affected due to climate change impact. 
The surface runoff shows an average annual decrease by 
18.4%. There is an increasing trend of actual 
evapotranspiration in the recent 20 years period, 
which is an alarming situation for the agricultural in the 
study region. Increase of annual 24-h maximum 
rainfall and associated increase in the annual 
flood maxima with time of occurrence of peak 
rainfall and peak flow shifting from monsoon period to 
the month of May were also apparent in the study area. 

The inferences from these studies show that, this river 
basin is on the front line of climate change in recent years, 
and is affected by uncertain streamflows, frequent 
droughts and water crises for agriculture, drinking water 



UNCORRECTED PROOFS

UNCERTAINTIES AND NONSTATIONARITY IN STREAMFLOW PROJECTIONS  5 

and other purposes that necessitate the reliable 
hydrological estimates for the study region. 

3. Methods and materials 

Two hydrological climate models: 1) general circulation 
model (GCM), and 2) forcing climate change scenarios are 
used to analyse various uncertainties and nonstationarity 
in the streamflow projections of Subarnarekha river basin. 
These two climate models are later used to force the 
ArcSWAT hydrological model simulation. In the first 
model, downscaled and bias-corrected data from an 
ensemble of 10 climate projections with representative 
concentration pathways (RCP) 4.5 and 8.5 scenarios (five 
each) were used as input. Whereas, in the second model, 
a total of 63 (9 perturbed temperatures and 7 
precipitations) anticipated hypothetical climate change 
scenarios such as combinations of temperature change 
∆T=0 to 4

o
C with an interval of 0.5

o
C and precipitation 

change ∆P=0, ± 10, ± 20 and ± 30% were considered as 
input. The procedure as used by Ramadan et al., 2013; 
Chintalacheruvu et al., 2020 is followed herein to develop 
these forcing climate changing scenarios. 

The major inputs, viz. digital elevation model (DEM) to 
represent the topography, soil maps to show the soil 
layers in the study region, land use/land cover (LU/LC) 
characteristics and hydro-meteorological data like daily 
rainfall in mm, minimum and maximum daily temperature 
in 

o
C, relative humidity, solar radiation and wind speed are 

used for the initial ArcSWAT model setup. The grid 
resolutions and the sources of major inputs i.e., spatial 
data are summarized in Table 1. The observed streamflow 
data for a period of 14 years (2000 to 2013) pertaining to 
the Ghatsila gauging station of the Subarnarekha river 
basin is obtained from central water commission (CWC), 
New Delhi, India. 

In this study, the regional climate model namely 
Conformal-Cubic Atmospheric Model (CCAM) is based on 
Coupled Model Intercomparison Phase 5 (CMIP5) used for 
RCP4.5 and RCP8.5 scenarios. Five (ACCESS1-0, CCSM4, 

CNRM-CM5, MPI-ESM-LR, and NorESM1-M) historical and 
future simulated high-resolution GCM datasets for the 
RCP 4.5 and 8.5 scenarios were collected from high 
resolution coordinated regional climate downscaling 
experiment (CORDEX)-South Asia of Indian institute of 
tropical meteorology, Pune (IITM, 2016). The GCM 
outputs were downscaled through CORDEX. These 
downscaled GCM datasets are bias-corrected through R-
software. 

The bias-correction approach corrects the projected raw 
(uncorrected) daily GCM output using the differences in 
the statistics values such as mean, standard deviation and 
variance between GCM and observations of 
meteorological parameters (precipitation, maximum and 
minimum temperatures) in a reference period. Here, the 
period considered for the bias-correction is 1970 - 2005 
for precipitation and maximum and minimum 
temperatures. The bias-correction includes model 
simulations during calibration to ensure their statistics 
values are similar to those of the corresponding observed 
values. The linear and non-linear correction techniques 
are widely practiced to correct the existing biases in 
climate datasets (Leander and Buishand, 2007). 

In the present study, the procedure as suggested by 
Leander and Buishand (2007) is adopted and thus the 
non-linear correction technique for precipitation and 
linear correction technique for maximum and minimum 
temperatures are applied to correct the existing biases in 
climate datasets. Typically, in the meteorological 
parameters the precipitation variability is high and the 
temperature variability is consistent. On the basis of these 
characteristics, the use of non-linear correction procedure 
for precipitation and linear correction procedure for 
temperatures is appropriate (Shabalova et al., 2003). 
Table 2 demonstrates the obtained statistics values of 
observed, uncorrected (raw) and bias-corrected 
meteorological parameters. This bias-corrected data is 
used in the ArcSWAT hydrological model as an input. 

Table 2. The statistics values of observed, uncorrected and bias-corrected meteorological parameters. 

Parameters Precipitation Maximum Temperature Minimum Temperature 

Mean 

Observed 8.04 Observed 32.43 Observed 19.95 

Uncorrected 3.75 Uncorrected 32.18 Uncorrected 20.03 

Corrected 8.20 Corrected 32.55 Corrected 19.71 

Standard Deviation 

Observed 10.76 Observed 6.42 Observed 5.87 

Uncorrected 8.08 Uncorrected 6.47 Uncorrected 5.75 

Corrected 10.95 Corrected 6.40 Corrected 6.03 

Coefficient of Variation 

Observed 1.34 Observed 0.20 Observed 0.29 

Uncorrected 2.15 Uncorrected 0.20 Uncorrected 0.29 

Corrected 1.33 Corrected 0.20 Corrected 0.31 

 

In ArcSWAT, the Subarnarekha river basin is delineated 
into 21 sub-basins, which are then further subdivided in to 
251 HRUs (hydrological response units) that acceptably 
characterize the heterogeneity in this river basin. 
Threshold refinements for HRU definition are not 
employed in the present study. This ArcSWAT model is 
used for simulation of hydrological data on daily and 

monthly time scales for the observed data period from 
the year 2000 to 2013 (14 years). The starting two years 
data during 2000 to 2001 are used as warming periods for 
initial model set-up. The data during the years 2002 to 
2009 (8 years), and 2010 to 2013 (4 years) are analysed 
for streamflow calibration and validation, respectively. 
The quantification of the uncertainty in ArcSWAT model 
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output was assessed using a sequential uncertainty fitting 
algorithm (SUFI-2). 

Using historic period 1976 to 2005 dataset in the 
calibrated ArcSWAT model, the future streamflow 
predictions are obtained for near future period  
2014 to 2040 under the RCP 4.5 and 8.5 scenarios. Here, 
the cut off year 2013 is the end of available data. 

Therefore, the simulation is planned to end for the year 
2013. Subsequently, the starting year of the near future 
period begins from the year 2014. This type of  
assumption is well practiced in many earlier  
research works (e.g., Mishra and Lilhare, 2016; 
Mudbhatkal et al., 2017; Kumar et al., 2017; 
Chintalacheruvu, et al., 2020). 

Table 3. Show the streamflows calibration and validation results on daily and monthly basis 

Sl. No. Indices Daily time step Monthly time step 

  Calibration Validation Calibration Validation 

1 R
2
 0.84 0.76 0.98 0.94 

2 NSE 0.84 0.76 0.97 0.94 

3 PBIAS 1.10 11.30 7.30 3.50 

4 RSR 0.40 0.49 0.17 0.25 

5 p-factor 0.58 0.42 0.85 0.44 

6 r-factor 0.58 0.41 0.81 0.62 

 

 

 

Figure 2(a). Daily streamflows during calibration and validation 

periods. 

In the present study, various uncertainties and 
nonstationarity in the streamflow projections of 
Subarnarekha river basin are calculated using RCP 4.5 and 
8.5. The uncertainties are expressed in probabilistic term 
using PDF and they can be estimated by representing the 
climate model results as random samples from climate 
change scenarios (IPCC, 2007). The PDF span various 
amplitudes of climate change in terms of probability space 
associated with uncertain climate change. The 
probabilistic predictions allow for quantification of 
uncertainty and they provide important information for 
decision process in climate change adaptation (Collins et 
al., 2006). Many studies (e.g., Wilks, 2006; Hingray et al., 
2007; Paeth et al., 2013; Das and Umamahesh, 2017; Sung 

et al., 2018) have concluded that the probabilistic 
assessments resulting from the comparison between the 
PDF of current and future under regional changing climate 
scenarios are useful tools to study climate change. In 
addition, the other probability term CDF can also be 
worked out for calculation of occurrence of extreme 
events of floods in the river basin studies. 

Further, the quantification of risk and reliability is made 
on stationary and nonstationarity assumptions. In 
stationary assumptions the moments and parameters are 
considered to be time independent (Read and Vogel, 
2015), whereas, in the case of nonstationarity 
assumptions they are considered to be time-varying (IPCC, 
2007; Milly et al., 2008; Cooley, 2013). The nonstationarity 
is investigated by calculating the mean, standard 
deviation (SD), Coefficient of Variation (CV) and 
Covariance (CoV) values obtained for different climate 
change scenarios, such as historical and future periods 
using RCP 4.5 and RCP 8.5. These nonstationarity 
assumptions have become important to the researchers 
for better planning and risk management under climate 
change scenarios (Das and Umamahesh, 2017). 

Furthermore, in order to know the maximum flows in the 
river basin, the high flows against their recurrence periods 

7-day, 30-day, and 60-day values are estimated 
using Gumbels extreme value distribution approach under 
nonstationarity assumptions. The low flow characteristics 
against their recurrence periods 7-day, 30-day, and 60-day 
values are also estimated under nonstationarity 
assumptions for drought determination and aquatic 
ecosystems in Subarnarekha river basin. 

3.1. Performance evaluation criteria 

In the present study, the ArcSWAT model performance 
during calibration and validation is evaluated with 
reference to six selected statistical indicators, namely 
coefficient of determination (R

2
), Nash-Sutcliff Efficiency 

(NSE), percentage bias (PBIAS), and RMSE (Root Mean 
Square Error)-observations standard deviation ratio (RSR), 
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p-factor (observations bracketed by the prediction 
uncertainty), and r-factor (achievement of small 
uncertainty band). 

The goodness of fit can be quantified by the R
2
, NSE (Nash 

and Sutcliffe, 1970) and PBIAS (Yapo et al., 1996) between 
the observed and the simulated data. The closer the value 
of R

2
 to 1, the simulated and observed values are very 

close, which means that the performance of the model is 
above satisfactory level. NSE indicates 1:1 line fit between 
observed and simulated data (Narsimlu et al., 2013). NSE 
values ranges between -∞ to 1 (perfect fit), with optimal 
value of 1 (ASCE, 1993). 

The PBIAS determines the tendency of simulated flows to 
be larger or smaller than their observed counterparts 
(Fiseha et al., 2012). The optimum value is zero, positive 
value indicates a tendency to underestimation and 
negative value indicates a tendency to overestimation 
(Gupta et al., 1999; Verma and Jha, 2015). 

 

 

Figure 2(b). Monthly streamflows during calibration and 

validation periods. 

The RSR is one of the commonly used error index statistics 
(Singh et al., 2004; Moriasi et al., 2007). It is calculated as 
the ratio of the RMSE and standard deviation of the 
observed data. The RSR varies from the value of 0, 
indicating zero RMSE or residual variation (perfect model 
simulation) to a large positive value. The lower the RSR 
the better is the model fit (Moriasi et al., 2007). 

The p-factor signifies the percentage of observed data 
bracketed by 95% prediction uncertainty (95PPU) band 
and the r-factor denotes the thickness of 95PPU band. The 
value of p-factor very close to 1 and the value of r-factor 

nearly to zero signify excellent model performance with 
higher probability and lower uncertainty (Abbaspour et 
al., 2007; 2011; Uniyal et al., 2015). 

The formulae used for calculation of R
2
, NSE, PBIAS, and 

RSR are given in Equations (1), (2), and (3), respectively as 
follows: 
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where Q is a variable (i.e. discharge), 
oQ and 

sQ denote 

the average values of Q and suffixes “o” and “s” stand for 
observed and simulated data. Here, “i” stands for i

th
 

observed or simulated data. 

4. Results and discussion 

The values of statistical indicators, viz. R
2
, NSE, PBIAS, RSR, 

p-factor and r-factor of observed and simulated 
streamflows at daily and monthly time steps for ArcSWAT 
model calibration and validation periods are given in Table 
3. It can be seen from Table 3 that correlation during 
monthly calibration time steps is very good, whereas daily 
calibration exhibits relatively good agreement between 
the observed and simulated flows. During the calibration 
period, NSE values for daily and monthly time steps are 
0.84 and 0.97, respectively, whereas in the validation 
periods they are 0.76 and 0.94, respectively. 

It indicates that the simulated streamflows are in very 
good agreement with observed streamflows during both 
calibration and validation periods. Similarly, the low RSR 
value (< 0.49) indicates high accuracy in the simulated 
streamflows during calibration and validation periods at 
both time steps. The obtained PBIAS value  
indicates that the ArcSWAT model is underestimating 
during the calibration and validation periods at both time 
steps (Table 3), but its values are within the  
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range specified for good performance rating (i.e., ±10 < 
PBIAS < ±15, criteria given by Moriasi et al., 2007) of the 
model. 

Figures 2(a) and 2(b) show the daily and monthly 
streamflows, respectively, during calibration and 
validation periods with 95PPU, observed and best 
estimation. It can be seen from Figure 2(a) and 2(b) that 
the observed and simulated streamflows are not 
significantly different at the 95% level of confidence 

(95PPU) for calibration and validation periods at both 
daily and monthly time steps. The results of monthly time 
step were better than those for the daily time step. Figure 
3(a) and 3(b) show the most sensitive parameters (p-value 
and t-stat value) recorded after the SUFI-2 sensitivity 
analysis was performed for daily and monthly calibration 
periods, respectively. 

 

Table 4. Showing the 7-day nonstationarity test values calculated for historic and future periods using RCP 4.5 and RCP 8.5 scenarios. 

Scenarios Mean SD CV CoV 

Historic 0.031387 0.030528 97.2628 6.22E-06 

CCSM4_rcp85_2014_2040 0.089361 0.148127 165.7624 -0.0006 

CNRM-CM5_rcp85_2014_2040 0.083762 0.089706 107.0965 -0.00315 

NorESM1-M_rcp85_2014_2040 0.067874 0.078206 115.2224 6.06E-05 

MPI-ESM-LR_rcp85_2014_2040 0.076929 0.111478 144.9115 -0.00182 

ACCESS1-0_rcp85_2014 - 2040 0.077843 0.100506 129.1136 0.001819 

CCSM4_rcp45_2014_2040 0.002118 0.005037 237.8227 -5.2E-07 

CNRM-CM5_rcp45_2014_2040 0.047291 0.056411 119.2837 0.000362 

NorESM1-M_rcp45_2014_2040 0.069903 0.094836 135.668 -0.00077 

MPI-ESM-LR_rcp45_2014_2040 0.083232 0.134977 162.1695 0.001003 

ACCESS1-0_rcp45_2014 - 2040 0.052118 0.069506 133.363 -0.00035 

Table 5. Showing the 30-day nonstationarity test values calculated for historic and future periods using the RCP 4.5 and RCP 8.5 

scenarios. 

Scenarios Mean SD CV CoV 

Historic 0.252826 0.216525 85.64186 -0.00032 

CCSM4_rcp85_2014_2040 0.526865 0.740859 140.6163 -0.01019 

CNRM-CM5_rcp85_2014_2040 0.558273 0.637209 114.1393 -0.15706 

NorESM1-M_rcp85_2014_2040 0.556089 0.584582 105.1238 0.070079 

MPI-ESM-LR_rcp85_2014_2040 0.734266 1.318185 179.5242 -0.23674 

ACCESS1-0_rcp85_2014 - 2040 0.556285 0.685174 123.1696 0.140419 

CCSM4_rcp45_2014_2040 0.107882 0.369593 342.5909 0.003815 

CNRM-CM5_rcp45_2014_2040 0.385814 0.492475 127.6457 0.046754 

NorESM1-M_rcp45_2014_2040 0.475966 0.510737 107.3054 -0.05462 

MPI-ESM-LR_rcp45_2014_2040 0.599489 0.925985 154.4623 0.161264 

ACCESS1-0_rcp45_2014 - 2040 0.359644 0.44706 124.3061 -0.0137 

Table 6. Percentage variations in mean water balance components and streamflows for the historic total (1976 - 2013) and near (2014 

- 2040) periods of Subarnarekha river basin. 

Water balance component Historic total (1976–2013) period Near (2014–2040) period Percentage variation (%) 

PRECIP 938.07 863.67 -7.93 

SURQ 237.98 178.07 -25.17 

LATQ 11.79 8.87 -24.81 

GW_Q 131.15 117.81 -10.17 

PERC 163.23 148.08 -9.28 

SW 95.58 90.53 -5.29 

ET 526.67 529.93 0.62 

WYLD 388.95 312.07 -19.77 

Streamflows 126.93 107.40 -15.39 
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Madhusudana Rao C. and Bardhan A. (2020), Uncertainties and nonstationarity in streamflow projections under climate 
change scenarios and the ensuing adaptation strategies in Subarnarekha river basin, India, Global NEST Journal, 22(XX), 
XX-XX. 

The quantitative description of uncertainties and 
nonstationarity in the streamflows of Subarnarekha river 
basin for the historic and the future periods are analysed 
in probabilistic terms by developing PDF and CDF through 
two climate models (i) general circulation model (GCM) 
under the RCP 4.5 and 8.5 scenarios, and (ii) forcing 
climate change scenarios. 

Here, it is appropriate to recollect some pertinent 
characteristics of PDF and CDF from the earlier studies for 
better understanding of the obtained results in the 
present work. The shift of central mean  
of PDF is a measure of climate change effect, while the 
width of the PDF is an indication of noise or error (Paeth 
et al., 2013). The overlapping probability (OLP) arises from 
a combination of both and indicates to what 
extent PDF of the past and future climate 
can be distinguished from each other. The 
smaller it is, the higher the signal to-noise  
ratios of a given climate change (Paeth et al., 2013).

 

Figure 3(a). Shows the most sensitive parameters recorded after 

sensitivity analysis for daily calibration in SUFI-2. 

 

Figure 3(b). Shows the most sensitive parameters recorded after 

sensitivity analysis for monthly calibration in SUFI-2. 

Similarly, the CDF tells the accumulated probability of PDF 
and it is also a non-decreasing (monotonic) 
function. In general, PDF show the probability of one 
specific value occurrence, whereas CDF show the 
probability of all values up to a certain occurrence. 
From the CDF, for a given probability, the corresponding 
streamflow value can be easily known. The value 

of CDF is from 0 to 1, and the CDF provides a 
mapping between real values and (non-exceedance) 
probabilities. 

The GCM model results of the present work are 
expressed in the probabilistic terms such as the PDF and 
CDF developed for the monthly streamflows of the 
Subarnarekha river basin in five different 
experimental datasets from CORDEX using RCP 4.5 and 8.5 
scenarios and are shown in Figure 4. The low 
flow PDF calculated for 7-day and 30-day using  
RCP 4.5 and RCP 8.5 are given in Figure 5. It can be 
realized from Figures 4 and 5 that the streamflows 
of river basin are likely to decline in the near period (2014 
- 2040). It is inferred from the results that the RCP 8.5 
scenarios seem more suitable than RCP 4.5 scenarios in 
quantifying the uncertainties under nonstationarity 
assumptions. 

Similarly, the forcing climate change scenarios model 
results of the present work are also expressed in 
PDF and CDF developed for monthly streamflows of the 
Subarnarekha river basin. This model depict the  
perturbed temperatures ∆T=0 to 4

o
C (adding the 

prescribed change to the baseline (0-line)  
simulation temperatures) and perturbed precipitations 
∆P=0, ± 10 to ± 30% (multiplied with a given  
factor) independently or simultaneously (Mimikou et al., 
1991; Rehana and Mujumdar, 2011; Chintalacheruvu et 
al., 2020). 

Figures 6 and 7 depict the effect of precipitation and 
temperature change, respectively, on monthly 
streamflows of Subarnarekha river basin under  
forcing climate change scenarios. It can be seen  
from Figures 6 and 7 that, monthly streamflows of 
Subarnarekha river basin are significantly affected  
due to precipitation, whereas the evapotranspiration 
rates are affected due to temperature variations in the 
study area. 

The high and low flow frequency analysis in the river basin 
has been carried out. The high flows lead to floods, the 
low flows can lead to droughts. In practice, a drought 
refers to a period of unusually low water supplies, 
regardless of the water demand. The high and low flow 
frequency curves in the Subarnarekha river at Ghatsila 
gauging station are demonstrated in Figures 8 and 9 
respectively, emphasizing the variations of the mean 
streamflows in the river basin with respect to their 
recurrence interval in years. The low flow duration 
frequency curves for recurrence interval in years 
considering lower return periods for uncertainty analysis 
are more vulnerable to climate change and most likely to 
alter in terms of magnitudes i.e., return level (Viessman et 
al., 1977). 

A flow duration curve can be used to give an indication of 
the severity of low flows (Ponce, 1989). 
Such a curve, however, does not contain information on 
the sequence of low flows or the duration of possible 
droughts. The analysis is made more meaningful by 
abstracting the minimum flows over a period of several 
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consecutive days. For instance, in each year, the 7-day 
period with minimum flow volume is abstracted, and the 
minimum flow is the average flow rate for that period. 

In this study, the low flow duration frequency curves i.e., 
discharge to consecutive days of low flow in Subarnarekha 
river at Ghatsila gauging station for the return periods 2-

years, 5-years, 10-years and 30-years are shown in Figure 
10. The consecutive days of low flow analysis helps in 
correctly assessing the drought situation in the study 
region in addition to the environmental flows to be 
maintained in the river reach. 

  

  

Figure 4. Show the PDF and CDF for the monthly streamflows of the Subarnarekha river basin in five different experimental datasets 

from CORDEX using RCP 4.5 and RCP 8.5 scenarios. 

In the climate change scenarios the risk and streamflow 
assessment is generally carried out through return periods 
under nonstationarity assumptions, as these assumptions 
enable to introduce the time-varying concepts for better 
assessment. The low flow characteristics against their 
recurrence periods 7-day, 30-day, and 60-day values were 
also estimated under nonstationarity assumptions for 
drought determination and aquatic ecosystems in the 
Subarnarekha river basin. The 7-day and 30-day 

nonstationarity test values for historic (1976 - 2005) 
period and the near (2014 to 2040) period using the RCP 
4.5 and RCP 8.5 scenarios are given in Tables 4 and 5, 
respectively. 

The nonstationarity was investigated by calculating the 
mean, standard deviation (SD), Coefficient of  
Variation (CV) and Covariance (CoV) values (Table 4 and 5) 
obtained for historic (1976 - 2005) period, and also for 
near (2014 - 2040) period under the RCP 4.5 and 8.5 
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scenarios. These values show the detailed quantitative 
descriptions of uncertainties in streamflow predictions 
pertaining to climate change in the study region. There 

was a significant nonstationarity in the spatial distribution 
of the CV. This value was calculated to compare both for 
historic and future runoff distribution in the river basin. 

 

Figure 5. Low flow PDF calculated for 7-day and 30-day using RCP 4.5 and RCP 8.5 scenarios. 

The ArcSWAT calibration model was used to 
assess the streamflows of Subarnarekha river basin along 
with the water balance components such as precipitation 
(PRECIP), surface runoff (SURQ), lateral flow (LATQ), 
groundwater contribution (GW_Q), percolation (PERC), 
soil water (SW), evapotranspiration (ET), and 
water yield (WYLD) on monthly time step in the study 
area. The calculated mean values and the percentage 
variations of water balance components along  
with streamflows for the historic total (1976 - 2013) and 
near (2014 - 2040) periods of Subarnarekha river  
basin are given in Table 6. Here the historic total period 
includes the historic climate period (1976 - 2005) and the 

remaining past period from 2006 to 2013, i.e., till the end 
year for which data is available. The results from Table 6 
indicate that, all the mean values of water balance 
components such as PRECIP (-7.93%), SURQ (-25.17%), 
LATQ (-24.81%), GW_Q (-10.17%), PERC (-9.28%), SW (-
5.29%), and WYLD (-19.77%) are declining,  
whereas, ET (0.62%) is increasing in the Subarnarekha 
river basin. The percentage variation increase (+) or 
decrease (-) are shown in brackets against  
each mean value of water balance component.  
Therefore, from the results it is revealed that  
the mean values and the percentage variation in each 
water balance component for future period  
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get affected due to climate change, consequently the 
future streamflows (-15.39%) are likely to  
decline in the river basin. 

 

Figure 6. PDF showing the effect of precipitation change on 

future streamflows of Subarnarekha river basin under forcing 

climate change scenarios. 

 

Figure 7. PDF showing the effect of temperature change on the 

future streamflows of Subarnarekha river basin under forcing 

climate change scenarios. 

 

Figure 8. High flow frequency curves in the Subarnarekha river at 

Ghatsila gauging station. 

 

Figure 9. Low flow frequency curves in the Subarnarekha river at 

Ghatsila gauging station. 

To conclude, from the obtained results of Subarnarekha 
river basin, it is important to develop certain  
policies for adaptation to climate change in the  
river basin and they need to be followed for  

sustainable development of water resources in the river 
basin. 

5. Proposed policies for adaptation to climate change 
in Subarnarekha river basin 

An adaptation strategy aims to increase society’s 
resilience to climate change. According to IPCC (2007) 
report recommendations, a framework for managing 
future climate risk in the Subarnarekha river basin is 
suggested. 

 

Figure 10. Low flow duration frequency curves in the 

Subarnarekha river basin. Discharge to consecutive days of low 

flow Subarnarekha river at Ghatsila gauging station. 

The Subarnarekha river basin is adversely affected by the 
impact of climate change as it was demonstrated in the 
results and discussion section. Substantial percentage 
variation in water balance components and streamflows 
of river basin for future period were realized. This 
variation resulted in lowering of ground water and limited 
availability of water for agricultural and drinking purpose 
in summer season. Therefore, the present study highlights 
the broader approaches that are being proposed to 
facilitate adaptation to climate change as well as those 
that are specific to the water resources management for 
the study region as listed below: 

 Strengthening regional governance by 
formulating water user association, farmer 
association in accord with the ministries 
responsible for water management in the 
Subarnarekha river basin. 

 Providing an improved understanding and 
awareness of the key climate processes and the 
resultant climate risks and associated 
consequences. Some case studies on water 
savings and water harvesting technologies 
adopted in villages of study region need to be 
revealed. 

 Promoting transbasin diversion of water in the 
study region, namely conveyance schemes which 
move water from where it is available to where 
water is less available, or could be employed for 
human development. 

 Water consumption auditing and energy 
demands regular check in the river basin. 
Initiating water conservation strategies, 
groundwater recharging, reducing evaporation, 
and improved water efficiency. 
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 Conducting vulnerability assessments and using 
strategic planning to incorporate climate change 
into their activities. 

 Developing knowledge system to relate 
technology choices with time evolving climate 
responses. 

 Creating an enabling environment for 
community-based adaptation. 

 Promoting public-private partnership in the 
policy framework. 

 Formulating basin level adaptation strategies and 
action plans in developing the necessary 
capacities. 

 Integrating climate change adaptation measures 
such as lake regulation, floodplains, and 
permanent flood protection structures in flood 
risk management plans by the regional water 
management authority. 

 Comparison of community-based adaptation 
strategies for droughts and floods in the study 
region. 

 Development of Integrated Water Resources 
Management (IWRM) to provide a useful 
framework to plan well-coordinated and targeted 
adaptation measures to climate change. IWRM is 
a methodical process to the sustainable 
development and equitable allocation of water 
resources through a holistic approach to water 
management in the study region. 

6. Conclusions 

The quantitative description of uncertainties and 
nonstationarity in the daily and monthly streamflows of 
Subarnarekha river basin for the historic (1976 - 2005) 
period and the near (2014 -2040) period are accurately 
expressed in probabilistic terms recognized as PDF and 
CDF for providing significant information for planning 
climate change adaptation policies in Subarnarekha river 
basin. As novelty in the work, the PDF and CDF for low 
flows and high flows of the river basin are developed. The 
analysis of nonstationary approximations of the return 
levels under lower and high return periods may be more 
beneficial to design low and high capacity hydraulic 
structures as per the requirement in the river basin. The 
future streamflows in the river basin, water balance 
components for historic and future periods are assessed 
first time for this basin. 

The results revealed that the GCM and assumption of 
nonstationary model parameters are observed to be the 
main sources of uncertainty. It is realized that to cope 
with the uncertainties, the climate models developed 
based on the probabilistic approaches are very useful. The 
use of downscaled GCM and bias-corrected datasets as an 
input to the ArcSWAT hydrological model calibrated using 
SUFI-2 technique was successfully verified. Similar to the 
recent GCM models, the conventional model i.e., forcing 
climate change scenarios model was also verified. 

The streamflows and water balance components are 
observed to be sensitive towards the changes in the 
climate and LU/LC characteristics of the river basin. The 
effect of model uncertainties and nonstationarity 
assumption on streamflow simulations was examined and 
an approach to obtain nonstationary hydrologic model 
parameters was presented. Based on the results obtained, 
the adaptation strategies to climate change specific to the 
water resources management in the study area are 
proposed. 

In future studies of the river basin, it is suggested to 
conduct a vulnerability mapping of current and future 
climate impacts in the study area towards natural hazards. 
Further, without appropriate cooperation, adaptation may 
be limited and uneven. Therefore, research to examine 
the factors and processes that are important for 
cooperation to lead to positive adaptation outcomes and 
the increased adaptive capacity of water management 
institutions are suggested. 
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