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Abstract 10 

The present study analyses the various uncertainties and nonstationarity in the streamflow 11 

projections of Subarnarekha river basin in Eastern India using two widely used hydrological climate 12 

models: 1) general circulation model (GCM), and 2) forcing climate change scenarios. These two 13 
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climate models are used to force the ArcSWAT model. Subsequently this model is calibrated using 14 

SUFI-2 optimization technique. The downscaled and bias-corrected data from an ensemble of 10 15 

climate projections with representative concentration pathways (RCP) 4.5 and 8.5 scenarios (five 16 

each) were used in first model, whereas in second model a total of 63 (7 perturbed precipitations 17 

and 9 perturbed temperatures) combinations of hypothetical climate change scenarios were used. 18 

The results show very good correlation during monthly calibration time steps and relatively good 19 

agreement between the observed and simulated streamflows in daily calibration time steps. The 20 

uncertainties are expressed in probabilistic terms using probability density function (PDF) and 21 

cumulative distribution function (CDF) as they provide significant information for decision process 22 

in climate change adaptation in the river basin. The uncertainties associated with climate models, 23 

return periods and streamflow extremes are also analysed in the present work. The RCP 8.5 24 

scenarios seem more appropriate than RCP 4.5 scenarios in quantifying the uncertainties under 25 

nonstationarity assumptions. The mean values of water balance components and their percentage 26 

variation for both historic and future periods reveal that the water balance components get affected 27 

significantly due to climate change in a future period. Consequently, the streamflows are likely to 28 

decline in the river basin. The present study also highlights the comprehensive approaches that are 29 

being planned to facilitate adaptation to climate change as well as those that are specific to the 30 

water resources management in the study region. The findings in this work are useful for overall 31 

well-being of people in the study area. 32 

Keywords: Uncertainty, Nonstationary, forcing climate change, GCM, ArcSWAT, SUFI-2, 33 

Streamflows 34 

1. Introduction   35 

According to the 4th climate report from the Intergovernmental Panel on Climate Change (IPCC, 36 

2007), there is at least 90% certainty that human activities are causing global warming. The 37 

warming of global climate is unequivocal and is evidenced by numerous observations of increasing 38 
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air and ocean temperatures, melting of snow and ice, and rising global average sea level (Joseph 39 

2009). To deal with the future global warming, reliable estimates of regional patterns and 40 

amplitudes of climate changes are required. The reliable estimates can be made through the widely 41 

used climate models e.g., general circulation models (GCM) and forcing climate change scenarios 42 

that account for a variety of processes and interactions in the Earth’s climate system. The processes 43 

viz., downscaling techniques, climate projections and techniques for hydrological simulations with 44 

their associated discrepancies introduce uncertainty in impact analysis (Mujumdar and Ghosh, 45 

2008; Kure et al., 2013).   46 

In the changing climate context, it is presumed that uncertainties arise from (i) approximations and 47 

omissions required when representing the real-world process in climate models (Paeth et al., 2013), 48 

(ii) multi scale interval variability and inaccurate initial conditions (Palmer and Anderson, 1994), 49 

and (iii) observational data that are subject to gaps or inhomogeneity and measurement errors 50 

(Brohan et al., 2006; Hunt, 2011).  51 

This implies that the climate change impact assessment research and decision making using climate 52 

models in adaptation and mitigation processes have to cope with these uncertainties. The climate 53 

models still have significant deficiencies and differ in terms of their anticipated climate change, 54 

particularly at a regional scale (Paeth et al., 2010; 2013). Therefore, the claim for exact predictions 55 

on one side and uncertain model results on the other side is typical for scientific issues dealing with 56 

complex systems like river basins.  57 

In resent research, an emerging feature of all aspects of climate change scenarios is the growing use 58 

of probabilistic terms such as probability density function (PDF) and cumulative distribution 59 

function (CDF) which can provide detailed quantitative descriptions of uncertainties of climate 60 

change scenarios. Many studies (e.g., Giorgi and Mearns, 2003; Wilby and Harris, 2006; Kay et al., 61 

2009; Prudhomme and Davies, 2009; Paeth et al., 2013; Gillingham et al., 2015; Das and 62 

Umamahesh, 2017; Sung et al., 2018; Mackay et al., 2019) have carried out the quantification of 63 
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uncertainties in climate change impact assessment using meteorological parameters and expressed 64 

in probabilistic terms. Sometimes, an ensemble approach is also applied to deal with the uncertainty 65 

in climate scenarios because a specific scenario cannot represent all future climate conditions (Sung 66 

et al., 2018). But, it is still questionable that, which scenarios needed to include in the climate 67 

change impact assessment procedure for capturing future climate variability.  68 

Most studies have selected appropriate scenarios based on the performance in reproducing historical 69 

climate. However, it has the limitation that performance during a historical period cannot guarantee 70 

consistent performance during a future period (Lee et al., 2016). In this context, it is suggested to 71 

use as many climate scenarios as possible in climate change assessment (IPCC, 2014). In other 72 

words, employing multiple scenarios in climate change impact assessment may take the 73 

uncertainties into account.  74 

In river basin studies, it is certain that there remains a considerable uncertainty in future predictions 75 

of streamflows because of the forcing climate change scenarios (Ramadan et al., 2013). Generally, 76 

forcing climate change scenarios represent the perturbed precipitations (∆P = 0, ± 10 to ± 30%) and 77 

perturbed temperatures (∆T = 0 to 4oC) adding the prescribed changes to the baseline or 0-line 78 

(observational) dataset i.e., precipitations and temperatures. The use of these climate change 79 

scenarios involves a vast array of uncertainties that complicate the correct assessment of water 80 

resources potential in river basins.  81 

Further, in climate change scenarios the risk and streamflow assessment is generally carried out 82 

through return periods under nonstationarity assumptions, as these assumptions enable to introduce 83 

time-varying concepts for better assessment (Cooley, 2013; Mondal and Mujumdar, 2016). The 84 

analysis of nonstationary approximations of the return levels under lower return periods may be 85 

more beneficial to design low-capacity hydraulic structures (Das and Umamahesh, 2017). The low 86 

flows are also significant parameters in hydrology (Kiely, 2007). Traditionally, hydrologists were 87 

preoccupied with flood alleviation and so analysis for high flows is more commonplace than that of 88 
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low flow analysis. However, analysis of low flows is of significant interest, particularly in relation 89 

to water abstractions for water supply and hydroelectricity. 90 

Evaluation of changing climate related impact on future streamflows in a river basin is normally 91 

handled by simulating the hydrologic behaviour of the basin under projected climate conditions 92 

(Jana et al., 2018). This in turn requires developing a hydrological model i.e., depicting the 93 

hydrological response for the basin under consideration. In order to know the hydrological 94 

behaviour of river basins for the effective planning and management of soil and water resources, the 95 

applications of Soil and Water Assessment Tool (ArcSWAT) (Arnold et al., 1998) have been 96 

increased invariably across the world (Gassman et al. 2007; Shawul et al., 2013; Narsimlu et al., 97 

2013; 2015). ArcSWAT model could be effectively used for daily and monthly streamflow 98 

predictions and also for estimating water budgets at river basin-scales (Chintalacheruvu et al., 99 

2020).  100 

In addition, some researchers (e.g., Xu et al., 2003; Huang et al., 2006; Das and Umamahesh, 2017) 101 

have used a 3-layer variable infiltration capacity (VIC-3L) model for hydrological modelling to 102 

forecast the future streamflows of river basins. However, running the VIC model may seem to be a 103 

formidable task (https://vic.readthedocs.io/en/master/Documentation/UserGuide/) as it involves 104 

complex process to follow. 105 

Alternatively, it is felt that the ArcSWAT model may be applied in place of VIC model. The inputs 106 

from the downscaled GCM and bias-corrected datasets, and forcing climate change scenarios are 107 

used separately to force the ArcSWAT model and subsequently this model can be calibrated using 108 

SUFI-2 optimization technique. Upon satisfactory performance, the calibrated model is used for 109 

prediction of streamflows in the river basin under the climate change scenarios. 110 

In this context, in the present study an effort is made to verify the use of downscaled GCM and 111 

bias-corrected datasets, and also forcing climate change scenarios as inputs in the ArcSWAT model 112 

https://vic.readthedocs.io/en/master/Documentation/UserGuide/
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for prediction of streamflows of Subarnarekha river basin in Eastern India under climate change 113 

scenarios as this river basin is frequently affected by climate change in recent years.  114 

In order to provide detailed quantitative descriptions of uncertainties of climate change scenarios in 115 

the Subarnarekha river basin the probability density function (PDF) and cumulative distribution 116 

function (CDF) are planned to assess. Further, in this river basin the estimation of low flow duration 117 

frequency curves for recurrence interval in years considering the lower return periods for 118 

uncertainty analysis are more susceptible to climate change and most likely to vary in terms of 119 

magnitudes i.e., return level. Similarly, to carry the high flow analysis it is essential to know the 120 

extreme events occurring in the Subarnarekha river basin.  121 

In previous studies, (e.g., Dessai et al., 2005; Wilks, 2006; Paeth et al., 2013; Vanem, 2015; Das 122 

and Umamahesh, 2017; Mandal and Simonovic, 2017; Mohammed et al., 2017; Jobst et al., 2018; 123 

Mackay et al., 2019; Rai et al., 2019; Spafford et al., 2020) the uncertainties in precipitation, 124 

temperature and streamflows of river basins are expressed in probabilistic terms, typically using 125 

PDF and sometimes PDF and CDF both. But in most of the previous studies, the uncertainties in 126 

low flows and high flows are not expressed in probabilistic terms such as PDF and CDF, even 127 

though they are very important for developing adaptation strategies in the river basins.  128 

This persisting research gap is filled as a novel attempt in the present study by expressing the 129 

uncertainties in low flows and high flows of Subarnarekha river basin in both PDF and CDF. No 130 

such work is seen in reviewed literature on this river basin. Though the Subarnarekha river basin is 131 

a major river basin in India, significant research work is not done on this river basin. Few research 132 

works (e.g., Jana, et al., 2015; Yaduvanshi, et al., 2017; Yaduvanshi, et al., 2019; Kumar and Joshi, 133 

2019; Banerji and Mukhopadhyay, 2018) are available in literature, but they failed to explain the 134 

uncertainties in streamflow projections under the climate change scenarios, even though they are 135 

very important for water management and agricultural practices in the river basin. This research gap 136 

motivated us to select this river basin for present study.  137 
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The assessment of uncertainties in low flows and high flow events play a significant role in 138 

identifying the drought (low flow) and flood (high flow) effected regions in this river basin to 139 

prepare the ensuing adaptation strategies. Therefore, it is proposed to develop PDF and CDF for 140 

low flows and high flows along with the monthly and daily streamflows in the present study under 141 

climate change scenarios. In order to know the climate change impact on the future streaflows in the 142 

Subarnarekha river basin, the mean water balance components for historic and future periods are 143 

assessed for the first time for this basin in the present study. 144 

The water sector and its resources in the Subarnarekha river basin are facing threat due to industrial 145 

and uneven urban growth, both temporally and spatially. Hence the challenge of climate change 146 

calls for suitable comprehensible policy response that can help to reduce its vulnerability and build 147 

resilience of the water sector of Subarnarekha river basin (Government of Jharkhand (2013). The 148 

overall water sector vision, adaptation policy framework and assurance will be to improve water 149 

management practices through several strategies and initiatives in the study area to minimize the 150 

impacts of climate change and for the overall comfort of people in the study area.  151 

Further, assessment of uncertainties in future streamflows of Subarnarekha river basin using 152 

nonstationarity assumptions under climate changing conditions will help the water resources 153 

professionals to develop water management strategies and climate change adaptations in the river 154 

basin, as it is significantly affected by climate change in recent years and it urgently requires 155 

reliable hydrological estimates. 156 

2. Study area 157 

The present study is carried out on Subarnarekha river basin, the smallest river basin of the 14 158 

major river basins in India. This river basin is situated between latitudes 21° 33' to 23° 32' N and 159 

longitudes 85° 09' to 87° 27' E. The location map of the study area is given in Figure 1. The total 160 

catchment area of the river basin is 14140 km2 with high topographical variations ranging from 49 161 

m to 1049 m above mean sea level. The Subarnarekha river stretches to a length of 395 km through 162 
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Jharkhand, West Bengal and Orissa states of Eastern India. The Ghatsila, a gauging station of the 163 

Subarnarekha river basin situated in the Jharkhand state levers all the upstream runoff in the 164 

Jharkhand state. The tail river reach which is located down below the Ghatsila gauging station is 165 

passing through West Bengal and Orissa states and is not considered in the present work.  166 

The climate is tropical with hot summer and mild winters in the study area. The annual average 167 

maximum and minimum temperatures vary from 32.40 °C to 18.00 °C and the mean monthly 168 

temperatures vary from 40.5 °C in the month of May to 9.00 °C in the month of December. The 169 

Subarnarekha river is mostly a rain fed peninsular river with the wet months being June to 170 

September and during dry period the river flow is almost nil. This river basin is influenced by the 171 

South-West monsoon (June to October) and the annual average precipitation is about 1800 mm.  172 

The comprehensive summaries from the recent studies conducted on Subarnarekha river basin (e.g., 173 

Jana et al., 2015; Yaduvanshi, et al., 2017 & 2019; Kumar and Joshi, 2019) demonstrated that this 174 

river basin is found to be prone to climate change. There is decrease in rainfall and ensuing 175 

decreased streamflows of the river basin mostly in June to September period for almost half of the 176 

future years. The water balance components are affected due to climate change impact. The surface 177 

runoff shows an average annual decrease by 18.4%. There is an increasing trend of actual 178 

evapotranspiration in the recent 20 years period, which is an alarming situation for the agricultural 179 

in the study region. Increase of annual 24-h maximum rainfall and associated increase in the annual 180 

flood maxima with time of occurrence of peak rainfall and peak flow shifting from monsoon period 181 

to the month of May were also apparent in the study area.     182 

The inferences from these studies show that, this river basin is on the front line of climate change in 183 

recent years, and is affected by uncertain streamflows, frequent droughts and water crises for 184 

agriculture, drinking water and other purposes that necessitate the reliable hydrological estimates 185 

for the study region.  186 

3. Methods and materials 187 
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Two hydrological climate models: 1) general circulation model (GCM), and 2) forcing climate 188 

change scenarios are used to analyse various uncertainties and nonstationarity in the streamflow 189 

projections of Subarnarekha river basin. These two climate models are later used to force the 190 

ArcSWAT hydrological model simulation. In the first model, downscaled and bias-corrected data 191 

from an ensemble of 10 climate projections with representative concentration pathways (RCP) 4.5 192 

and 8.5 scenarios (five each) were used as input. Whereas, in the second model, a total of 63 (9 193 

perturbed temperatures and 7 precipitations) anticipated hypothetical climate change scenarios such 194 

as combinations of temperature change ∆T = 0 to 4oC with an interval of 0.5oC and precipitation 195 

change ∆P = 0, ± 10, ± 20 and ± 30% were considered as input. The procedure as used by Ramadan 196 

et al., 2013; Chintalacheruvu et al., 2020 is followed herein to develop these forcing climate 197 

changing scenarios. 198 

The major inputs, viz. digital elevation model (DEM) to represent the topography, soil maps to 199 

show the soil layers in the study region, land use/land cover (LU/LC) characteristics and hydro-200 

meteorological data like daily rainfall in mm, minimum and maximum daily temperature in oC, 201 

relative humidity, solar radiation and wind speed are used for the initial ArcSWAT model setup. 202 

The grid resolutions and the sources of major inputs i.e., spatial data are summarized in Table 1. 203 

The observed streamflow data for a period of 14 years (2000 to 2013) pertaining to the Ghatsila 204 

gauging station of the Subarnarekha river basin is obtained from central water commission (CWC), 205 

New Delhi, India. 206 

In this study, the regional climate model namely Conformal-Cubic Atmospheric Model (CCAM) is 207 

based on Coupled Model Intercomparison Phase 5 (CMIP5) used for RCP4.5 and RCP8.5 208 

scenarios. Five (ACCESS1-0, CCSM4, CNRM-CM5, MPI-ESM-LR, and NorESM1-M) historical 209 

and future simulated high-resolution GCM datasets for the RCP 4.5 and 8.5 scenarios were 210 

collected from high resolution coordinated regional climate downscaling experiment (CORDEX)-211 

South Asia of Indian institute of tropical meteorology, Pune (IITM, 2016). The GCM outputs were 212 
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downscaled through CORDEX. These downscaled GCM datasets are bias-corrected through R-213 

software.  214 

The bias-correction approach corrects the projected raw (uncorrected) daily GCM output using the 215 

differences in the statistics values such as mean, standard deviation and variance between GCM and 216 

observations of meteorological parameters (precipitation, maximum and minimum temperatures) in 217 

a reference period. Here, the period considered for the bias-correction is 1970 - 2005 for 218 

precipitation and maximum and minimum temperatures. The bias-correction includes model 219 

simulations during calibration to ensure their statistics values are similar to those of the 220 

corresponding observed values. The linear and non-linear correction techniques are widely 221 

practiced to correct the existing biases in climate datasets (Leander and Buishand 2007).  222 

In the present study, the procedure as suggested by Leander and Buishand (2007) is adopted and 223 

thus the non-linear correction technique for precipitation and linear correction technique for 224 

maximum and minimum temperatures are applied to correct the existing biases in climate datasets. 225 

Typically, in the meteorological parameters the precipitation variability is high and the temperature 226 

variability is consistent. On the basis of these characteristics, the use of non-linear correction 227 

procedure for precipitation and linear correction procedure for temperatures is appropriate 228 

(Shabalova et al. 2003). Table 2 demonstrates the obtained statistics values of observed, 229 

uncorrected (raw) and bias-corrected meteorological parameters. This bias-corrected data is used in 230 

the ArcSWAT hydrological model as an input. 231 

In ArcSWAT, the Subarnarekha river basin is delineated into 21 sub-basins, which are then further 232 

subdivided in to 251 HRUs (hydrological response units) that acceptably characterize the 233 

heterogeneity in this river basin. Threshold refinements for HRU definition are not employed in the 234 

present study. This ArcSWAT model is used for simulation of hydrological data on daily and 235 

monthly time scales for the observed data period from the year 2000 to 2013 (14 years). The 236 

starting two years data during 2000 to 2001 are used as warming periods for initial model set-up. 237 
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The data during the years 2002 to 2009 (8 years), and 2010 to 2013 (4 years) are analysed for 238 

streamflow calibration and validation, respectively. The quantification of the uncertainty in 239 

ArcSWAT model output was assessed using a sequential uncertainty fitting algorithm (SUFI-2).  240 

Using historic period 1976 to 2005 dataset in the calibrated ArcSWAT model, the future streamflow 241 

predictions are obtained for near future period 2014 to 2040 under the RCP 4.5 and 8.5 scenarios. 242 

Here, the cut off year 2013 is the end of available data. Therefore, the simulation is planned to end 243 

for the year 2013. Subsequently, the starting year of the near future period begins from the year 244 

2014. This type of assumption is well practiced in many earlier research works (e.g., Mishra and 245 

Lilhare, 2016; Mudbhatkal et al., 2017; Kumar et al., 2017; Chintalacheruvu, et al., 2020). 246 

In the present study, various uncertainties and nonstationarity in the streamflow projections of 247 

Subarnarekha river basin are calculated using RCP 4.5 and 8.5. The uncertainties are expressed in 248 

probabilistic term using PDF and they can be estimated by representing the climate model results as 249 

random samples from climate change scenarios (IPCC, 2007). The PDF span various amplitudes of 250 

climate change in terms of probability space associated with uncertain climate change. The 251 

probabilistic predictions allow for quantification of uncertainty and they provide important 252 

information for decision process in climate change adaptation (Collins et al., 2006).  Many studies 253 

(e.g., Wilks, 2006; Hingray et al., 2007; Paeth et al., 2013; Das and Umamahesh, 2017; Sung et al., 254 

2018) have concluded that the probabilistic assessments resulting from the comparison between the 255 

PDF of current and future under regional changing climate scenarios are useful tools to study 256 

climate change. In addition, the other probability term CDF can also be worked out for calculation 257 

of occurrence of extreme events of floods in the river basin studies.  258 

Further, the quantification of risk and reliability is made on stationary and nonstationarity 259 

assumptions. In stationary assumptions the moments and parameters are considered to be time 260 

independent (Read and Vogel, 2015), whereas, in the case of nonstationarity assumptions they are 261 

considered to be time-varying (IPCC, 2007; Milly et al., 2008; Cooley, 2013). The nonstationarity 262 
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is investigated by calculating the mean, standard deviation (SD), Coefficient of Variation (CV) and 263 

Covariance (CoV) values obtained for different climate change scenarios, such as historical and 264 

future periods using RCP 4.5 and RCP 8.5. These nonstationarity assumptions have become 265 

important to the researchers for better planning and risk management under climate change 266 

scenarios (Das and Umamahesh, 2017).  267 

Furthermore, in order to know the maximum flows in the river basin, the high flows against their 268 

recurrence periods 7-day, 30-day, and 60-day values are estimated using Gumbels extreme value 269 

distribution approach under nonstationarity assumptions. The low flow characteristics against their 270 

recurrence periods 7-day, 30-day, and 60-day values are also estimated under nonstationarity 271 

assumptions for drought determination and aquatic ecosystems in Subarnarekha river basin.  272 

3.1 Performance evaluation criteria 273 

In the present study, the ArcSWAT model performance during calibration and validation is 274 

evaluated with reference to six selected statistical indicators, namely coefficient of determination 275 

(R2), Nash-Sutcliff Efficiency (NSE), percentage bias (PBIAS), and RMSE (Root Mean Square 276 

Error)-observations standard deviation ratio (RSR), p-factor (observations bracketed by the 277 

prediction uncertainty), and r-factor (achievement of small uncertainty band). 278 

The goodness of fit can be quantified by the R2, NSE (Nash and Sutcliffe, 1970) and PBIAS (Yapo 279 

et al., 1996) between the observed and the simulated data. The closer the value of R2 to 1, the 280 

simulated and observed values are very close, which means that the performance of the model is 281 

above satisfactory level. NSE indicates 1:1 line fit between observed and simulated data (Narsimlu 282 

et al., 2013). NSE values ranges between -∞ to 1 (perfect fit), with optimal value of 1 (ASCE, 283 

1993).  284 

The PBIAS determines the tendency of simulated flows to be larger or smaller than their observed 285 

counterparts (Fiseha et al., 2012). The optimum value is zero, positive value indicates a tendency to 286 
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underestimation and negative value indicates a tendency to overestimation (Gupta et al., 1999; 287 

Verma and Jha, 2015).   288 

The RSR is one of the commonly used error index statistics (Singh et al., 2004; Moriasi et al., 289 

2007). It is calculated as the ratio of the RMSE and standard deviation of the observed data. The 290 

RSR varies from the value of 0, indicating zero RMSE or residual variation (perfect model 291 

simulation) to a large positive value. The lower the RSR the better is the model fit (Moriasi et al., 292 

2007).  293 

The p-factor signifies the percentage of observed data bracketed by 95% prediction uncertainty 294 

(95PPU) band and the r-factor denotes the thickness of 95PPU band. The value of p-factor very 295 

close to 1 and the value of r-factor nearly to zero signify excellent model performance with higher 296 

probability and lower uncertainty (Abbaspour et al., 2007, 2011; and Uniyal et al., 2015). 297 

The formulae  used for calculation of R2, NSE, PBIAS, and RSR  are given in Equations (1), (2), 298 

and (3), respectively as follows: 299 
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where Q is a variable (i.e. discharge), 
oQ and 

sQ denote the average values of Q and suffixes “o” 305 

and “s” stand for observed and simulated data. Here, “i” stands for ith observed or simulated data.   306 

4. Results and discussion 307 

The values of statistical indicators, viz. R2, NSE, PBIAS, RSR, p-factor and r-factor of observed and 308 

simulated streamflows at daily and monthly time steps for ArcSWAT model calibration and 309 

validation periods are given in Table 3. It can be seen from Table 3 that correlation during monthly 310 

calibration time steps is very good, whereas daily calibration exhibits relatively good agreement 311 

between the observed and simulated flows. During the calibration period, NSE values for daily and 312 

monthly time steps are 0.84 and 0.97, respectively, whereas in the validation periods they are 0.76 313 

and 0.94, respectively.  314 

It indicates that the simulated streamflows are in very good agreement with observed streamflows 315 

during both calibration and validation periods. Similarly, the low RSR value (< 0.49) indicates high 316 

accuracy in the simulated streamflows during calibration and validation periods at both time steps. 317 

The obtained PBIAS value indicates that the ArcSWAT model is underestimating during the 318 

calibration and validation periods at both time steps (Table 3), but its values are within the range 319 

specified for good performance rating (i.e., ±10 < PBIAS < ±15, criteria given by Moriasi et al., 320 

2007) of the model.  321 

Figure 2(a) and 2(b) show the daily and monthly streamflows, respectively, during calibration and 322 

validation periods with 95PPU, observed and best estimation. It can be seen from Figures 2(a) and 323 

2(b) that the observed and simulated streamflows are not significantly different at the 95% level of 324 
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confidence (95PPU) for calibration and validation periods at both daily and monthly time steps. The 325 

results of monthly time step were better than those for the daily time step. Figure 3(a) and 3(b) 326 

show the most sensitive parameters (p-value and t-stat value) recorded after the SUFI-2 sensitivity 327 

analysis was performed for daily and monthly calibration periods, respectively.  328 

The quantitative description of uncertainties and nonstationarity in the streamflows of Subarnarekha 329 

river basin for the historic and the future periods are analysed in probabilistic terms by developing 330 

PDF and CDF through two climate models (i) general circulation model (GCM) under the RCP 4.5 331 

and 8.5 scenarios, and (ii) forcing climate change scenarios. 332 

Here, it is appropriate to recollect some pertinent characteristics of PDF and CDF from the earlier 333 

studies for better understanding of the obtained results in the present work. The shift of central 334 

mean of PDF is a measure of climate change effect, while the width of the PDF is an indication of 335 

noise or error (Paeth et al., 2013). The overlapping probability (OLP) arises from a combination of 336 

both and indicates to what extent PDF of the past and future climate can be distinguished from each 337 

other. The smaller it is, the higher the signal to-noise ratios of a given climate change (Paeth et al., 338 

2013).  339 

Similarly, the CDF tells the accumulated probability of PDF and it is also a non-decreasing 340 

(monotonic) function. In general, PDF show the probability of one specific value occurrence, 341 

whereas CDF show the probability of all values up to a certain occurrence. From the CDF, for a 342 

given probability, the corresponding streamflow value can be easily known. The value of CDF is 343 

from 0 to 1, and the CDF provides a mapping between real values and (non-exceedance) 344 

probabilities.  345 

The GCM model results of the present work are expressed in the probabilistic terms such as the 346 

PDF and CDF developed for the monthly streamflows of the Subarnarekha river basin in five 347 

different experimental datasets from CORDEX using RCP 4.5 and 8.5 scenarios and are shown in 348 

Figure 4. The low flow PDF calculated for 7-day and 30-day using RCP 4.5 and RCP 8.5 are given 349 
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in Figure 5. It can be realized from Figures 4 and 5 that the streamflows of river basin are likely to 350 

decline in the near period (2014 - 2040). It is inferred from the results that the RCP 8.5 scenarios 351 

seem more suitable than RCP 4.5 scenarios in quantifying the uncertainties under nonstationarity 352 

assumptions. 353 

Similarly, the forcing climate change scenarios model results of the present work are also expressed 354 

in PDF and CDF developed for monthly streamflows of the Subarnarekha river basin. This model 355 

depict the perturbed temperatures ∆T = 0 to 4oC (adding the prescribed change to the baseline (0-356 

line) simulation temperatures) and perturbed precipitations ∆P = 0, ± 10 to ± 30% (multiplied with a 357 

given factor) independently or simultaneously (Mimikou et al., 1991; Rehana and Mujumdar, 2011; 358 

Chintalacheruvu et al., 2020).  359 

Figure 6 and Figure 7 depict the effect of precipitation and temperature change, respectively, on 360 

monthly streamflows of Subarnarekha river basin under forcing climate change scenarios. It can be 361 

seen from Figures 6 and 7 that, monthly streamflows of Subarnarekha river basin are significantly 362 

affected due to precipitation, whereas the evapotranspiration rates are affected due to temperature 363 

variations in the study area.  364 

The high and low flow frequency analysis in the river basin has been carried out.  The high flows 365 

lead to floods, the low flows can lead to droughts. In practice, a drought refers to a period of 366 

unusually low water supplies, regardless of the water demand. The high and low flow frequency 367 

curves in the Subarnarekha river at Ghatsila gauging station are demonstrated in Figure 8 and 368 

Figure 9 respectively, emphasizing the variations of the mean streamflows in the river basin with 369 

respect to their recurrence interval in years. The low flow duration frequency curves for recurrence 370 

interval in years considering lower return periods for uncertainty analysis are more vulnerable to 371 

climate change and most likely to alter in terms of magnitudes i.e., return level (Viessman et al., 372 

1977).  373 
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A flow duration curve can be used to give an indication of the severity of low flows (Ponce, 1989). 374 

Such a curve, however, does not contain information on the sequence of low flows or the duration 375 

of possible droughts. The analysis is made more meaningful by abstracting the minimum flows over 376 

a period of several consecutive days. For instance, in each year, the 7-day period with minimum 377 

flow volume is abstracted, and the minimum flow is the average flow rate for that period.  378 

In this study, the low flow duration frequency curves i.e., discharge to consecutive days of low flow 379 

in Subarnarekha river at Ghatsila gauging station for the return periods 2-years, 5-years, 10-years 380 

and 30-years are shown in Figure 10. The consecutive days of low flow analysis helps in correctly 381 

assessing the drought situation in the study region in addition to the environmental flows to be 382 

maintained in the river reach. 383 

In the climate change scenarios the risk and streamflow assessment is generally carried out through 384 

return periods under nonstationarity assumptions, as these assumptions enable to  introduce the 385 

time-varying concepts for better assessment. The low flow characteristics against their recurrence 386 

periods 7-day, 30-day, and 60-day values were also estimated under nonstationarity assumptions for 387 

drought determination and aquatic ecosystems in the Subarnarekha river basin. The 7-day and 30-388 

day nonstationarity test values for historic (1976 - 2005) period and the near (2014 to 2040) period 389 

using the RCP 4.5 and RCP 8.5 scenarios are given in Table 4 and Table 5, respectively.  390 

The nonstationarity was investigated by calculating the mean, standard deviation (SD), Coefficient 391 

of Variation (CV) and Covariance (CoV) values (Table 4 and 5) obtained for historic (1976 - 2005) 392 

period, and also for near (2014 - 2040) period under the RCP 4.5 and 8.5 scenarios. These values 393 

show the detailed quantitative descriptions of uncertainties in streamflow predictions pertaining to 394 

climate change in the study region. There was a significant nonstationarity in the spatial distribution 395 

of the CV. This value was calculated to compare both for historic and future runoff distribution in 396 

the river basin. 397 
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The ArcSWAT calibration model was used to assess the streamflows of Subarnarekha river basin 398 

along with the water balance components such as precipitation (PRECIP), surface runoff (SURQ), 399 

lateral flow (LATQ), groundwater contribution (GW_Q), percolation (PERC), soil water (SW), 400 

evapotranspiration (ET), and water yield (WYLD) on monthly time step in the study area. The 401 

calculated mean values and the percentage variations of water balance components along with 402 

streamflows for the historic total (1976 - 2013) and near (2014 - 2040) periods of Subarnarekha 403 

river basin are given in Table 6. Here the historic total period includes the historic climate period 404 

(1976 - 2005) and the remaining past period from 2006 to 2013, i.e., till the end year for which data 405 

is available. The results from Table 6 indicate that, all the mean values of water balance 406 

components such as PRECIP (-7.93%), SURQ (-25.17%), LATQ (-24.81%), GW_Q (-10.17%), 407 

PERC (-9.28%), SW (-5.29%), and WYLD (-19.77%) are declining, whereas, ET (0.62%) is 408 

increasing in the Subarnarekha river basin. The percentage variation increase (+) or decrease (-) are 409 

shown in brackets against each mean value of water balance component.  Therefore, from the 410 

results it is revealed that the mean values and the percentage variation in each water balance 411 

component for future period get affected due to climate change, consequently the future 412 

streamflows (-15.39%) are likely to decline in the river basin.  413 

To conclude, from the obtained results of Subarnarekha river basin, it is important to develop 414 

certain policies for adaptation to climate change in the river basin and they need to be followed for 415 

sustainable development of water resources in the river basin. 416 

5. Proposed policies for adaptation to climate change in Subarnarekha river basin 417 

An adaptation strategy aims to increase society’s resilience to climate change. According to IPCC 418 

(2007) report recommendations, a framework for managing future climate risk in the Subarnarekha 419 

river basin is suggested.  420 

The Subarnarekha river basin is adversely affected by the impact of climate change as it was 421 

demonstrated in the results and discussion section. Substantial percentage variation in water balance 422 

components and streamflows of river basin for future period were realized. This variation resulted 423 
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in lowering of ground water and limited availability of water for agricultural and drinking purpose 424 

in summer season. Therefore, the present study highlights the broader approaches that are being 425 

proposed to facilitate adaptation to climate change as well as those that are specific to the water 426 

resources management for the study region as listed below:  427 

• Strengthening regional governance by formulating water user association, farmer association 428 

in accord with the ministries responsible for water management in the Subarnarekha river 429 

basin.  430 

• Providing an improved understanding and awareness of the key climate processes and the 431 

resultant climate risks and associated consequences. Some case studies on water savings and 432 

water harvesting technologies adopted in villages of study region need to be revealed. 433 

• Promoting transbasin diversion of water in the study region, namely conveyance schemes 434 

which move water from where it is available to where water is less available, or could be 435 

employed for human development. 436 

• Water consumption auditing and energy demands regular check in the river basin. Initiating 437 

water conservation strategies, groundwater recharging, reducing evaporation, and improved 438 

water efficiency. 439 

• Conducting vulnerability assessments and using strategic planning to incorporate climate 440 

change into their activities. 441 

• Developing knowledge system to relate technology choices with time evolving climate 442 

responses. 443 

• Creating an enabling environment for community-based adaptation.  444 

• Promoting public-private partnership in the policy framework. 445 
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• Formulating basin level adaptation strategies and action plans in developing the necessary 446 

capacities. 447 

• Integrating climate change adaptation measures such as lake regulation, floodplains, and 448 

permanent flood protection structures in flood risk management plans by the regional water 449 

management authority. 450 

• Comparison of community-based adaptation strategies for droughts and floods in the study 451 

region. 452 

• Development of Integrated Water Resources Management (IWRM) to provide a useful 453 

framework to plan well-coordinated and targeted adaptation measures to climate change. 454 

IWRM is a methodical process to the sustainable development and equitable allocation 455 

of water resources through a holistic approach to water management in the study region. 456 

6. Conclusions 457 

The quantitative description of uncertainties and nonstationarity in the daily and monthly 458 

streamflows of Subarnarekha river basin for the historic (1976 - 2005) period and the near (2014 -459 

2040) period are accurately expressed in probabilistic terms recognized as PDF and CDF for 460 

providing significant information for planning climate change adaptation policies in Subarnarekha 461 

river basin. As novelty in the work, the PDF and CDF for low flows and high flows of the river 462 

basin are developed. The analysis of nonstationary approximations of the return levels under lower 463 

and high return periods may be more beneficial to design low and high capacity hydraulic structures 464 

as per the requirement in the river basin. The future streamflows in the river basin, water balance 465 

components for historic and future periods are assessed first time for this basin. 466 

The results revealed that the GCM and assumption of nonstationary model parameters are observed 467 

to be the main sources of uncertainty. It is realized that to cope with the uncertainties, the climate 468 

models developed based on the probabilistic approaches are very useful. The use of downscaled 469 
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GCM and bias-corrected datasets as an input to the ArcSWAT hydrological model calibrated using 470 

SUFI-2 technique was successfully verified. Similar to the recent GCM models, the conventional 471 

model i.e., forcing climate change scenarios model was also verified. 472 

The streamflows and water balance components are observed to be sensitive towards the changes in 473 

the climate and LU/LC characteristics of the river basin. The effect of model uncertainties and 474 

nonstationarity assumption on streamflow simulations was examined and an approach to obtain 475 

nonstationary hydrologic model parameters was presented. Based on the results obtained, the 476 

adaptation strategies to climate change specific to the water resources management in the study area 477 

are proposed. 478 

In future studies of the river basin, it is suggested to conduct a vulnerability mapping of current and 479 

future climate impacts in the study area towards natural hazards. Further, without appropriate 480 

cooperation, adaptation may be limited and uneven. Therefore, research to examine the factors and 481 

processes that are important for cooperation to lead to positive adaptation outcomes and the 482 

increased adaptive capacity of water management institutions are suggested.  483 
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Figure 1. Location map of Subarnarekha river basin with Ghatsila gauging station. 
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Figure 2(a). Daily streamflows during calibration and validation periods. 
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Figure 2(b). Monthly streamflows during calibration and validation periods. 
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Figure 3(a). Shows the most sensitive parameters recorded after sensitivity analysis for daily 

calibration in SUFI-2. 

 

Figure 3(b). Shows the most sensitive parameters recorded after sensitivity analysis for monthly 

calibration in SUFI-2. 
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Figure 4. Show the PDF and CDF for the monthly streamflows of the Subarnarekha river basin in 

five different experimental datasets from CORDEX using RCP 4.5 and RCP 8.5 scenarios. 
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Figure 5. Low flow PDF calculated for 7-day and 30-day using RCP 4.5 and RCP 8.5 scenarios. 
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Figure 6. PDF showing the effect of precipitation change on future streamflows of 

Subarnarekha river basin under forcing climate change scenarios. 

 

 

Figure 7. PDF showing the effect of temperature change on the future streamflows of 

Subarnarekha river basin under forcing climate change scenarios. 
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Figure 8. High flow frequency curves in the Subarnarekha river at Ghatsila gauging station. 

 

Figure 10. Low flow duration frequency curves in the Subarnarekha river basin. Discharge to 

consecutive days of low flow Subarnarekha river at Ghatsila gauging station. 

Figure 9. Low flow frequency curves in the Subarnarekha river at Ghatsila gauging station. 
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Tables 

Table 1. Show the spatial data description and their sources. 

Sl. No. Spatial data Description / resolution Source 

1. Digital Elevation 

Model 

30 m x 30 m grid resolution DEM 

to represent the topography 

Shuttle Radar Topography Mission 

(SRTM) of USGS 

2. Land use and land 

cover 

1 km x 1 km grid resolution 

LU/LC map to represent the 

crops and urban specific digital 

layers 

 

Nation Remote Sensing Centre, 

India / Water Resources 

information System 

(http://www.india-wris.nrsc.gov.in) 

and Texas A & M University 

(http://swat.tamu.edu/) 

3. Soil 1 km x 1 km grid resolution soil 

map to demonstrate the soil layer 

Food and Agriculture Organization 

(FAO) 

4. Hydrological data Gauged daily discharge data at 

Ghatsila gauging station of 

Subarnarekha river 

(Year 2000 to 2013) 

Central Water Commission 

(CWC), New Delhi, India  

5. Weather inputs (for 

model simulation) 

0.25° x 0.25° grid resolution daily 

precipitation data and 0.5° X 0.5° 

grid resolution data of other 

weather inputs 

Indian Meteorological Department 

(IMD), Pune, India 

6. Climate change data 0.5° x 0.5° grid resolution 

precipitation and temperature 

(maximum and minimum) data 

CORDEX-South Asia data set 

from IITM 

 

Table 2. The statistics values of observed, uncorrected and bias-corrected meteorological 

parameters. 

Parameters Precipitation Maximum 

Temperature 

Minimum 

Temperature 

Mean Observed 8.04 Observed 32.43 Observed 19.95 

Uncorrected 3.75 Uncorrected 32.18 Uncorrected 20.03 

Corrected 8.20 Corrected 32.55 Corrected 19.71 

Standard Deviation Observed 10.76 Observed 6.42 Observed 5.87 

Uncorrected 8.08 Uncorrected 6.47 Uncorrected 5.75 

Corrected 10.95 Corrected 6.40 Corrected 6.03 

Coefficient of Variation Observed 1.34 Observed 0.20 Observed 0.29 

Uncorrected 2.15 Uncorrected 0.20 Uncorrected 0.29 

Corrected 1.33 Corrected 0.20 Corrected 0.31 
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Table 3. Show the streamflows calibration and validation results on daily and monthly basis.  

Sl. 

No. 

Indices Daily time step Monthly time step 

Calibration Validation Calibration Validation 

1 R2 0.84 0.76 0.98 0.94 

2 NSE 0.84 0.76 0.97 0.94 

3 PBIAS 1.10 11.30 7.30 3.50 

4 RSR 0.40 0.49 0.17 0.25 

5 p-factor 0.58 0.42 0.85 0.44 

6 r-factor 0.58 0.41 0.81 0.62 

 

Table 4. Showing the 7-day nonstationarity test values calculated for historic and future periods 

using RCP 4.5 and RCP 8.5 scenarios. 

Scenarios Mean SD CV CoV 

Historic 0.031387 0.030528 97.2628 6.22E-06 

CCSM4_rcp85_2014_2040 0.089361 0.148127 165.7624 -0.0006 

CNRM-CM5_rcp85_2014_2040 0.083762 0.089706 107.0965 -0.00315 

NorESM1-M_rcp85_2014_2040 0.067874 0.078206 115.2224 6.06E-05 

MPI-ESM-LR_rcp85_2014_2040 0.076929 0.111478 144.9115 -0.00182 

ACCESS1-0_rcp85_2014 - 2040 0.077843 0.100506 129.1136 0.001819 

CCSM4_rcp45_2014_2040 0.002118 0.005037 237.8227 -5.2E-07 

CNRM-CM5_rcp45_2014_2040 0.047291 0.056411 119.2837 0.000362 

NorESM1-M_rcp45_2014_2040 0.069903 0.094836 135.668 -0.00077 

MPI-ESM-LR_rcp45_2014_2040 0.083232 0.134977 162.1695 0.001003 

ACCESS1-0_rcp45_2014 - 2040  0.052118 0.069506 133.363 -0.00035 
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Table 5. Showing the 30-day nonstationarity test values calculated for historic and future periods 

using the RCP 4.5 and RCP 8.5 scenarios. 

Scenarios Mean SD CV CoV 

Historic 0.252826 0.216525 85.64186 -0.00032 

CCSM4_rcp85_2014_2040 0.526865 0.740859 140.6163 -0.01019 

CNRM-CM5_rcp85_2014_2040 0.558273 0.637209 114.1393 -0.15706 

NorESM1-M_rcp85_2014_2040 0.556089 0.584582 105.1238 0.070079 

MPI-ESM-LR_rcp85_2014_2040 0.734266 1.318185 179.5242 -0.23674 

ACCESS1-0_rcp85_2014 - 2040 0.556285 0.685174 123.1696 0.140419 

CCSM4_rcp45_2014_2040 0.107882 0.369593 342.5909 0.003815 

CNRM-CM5_rcp45_2014_2040 0.385814 0.492475 127.6457 0.046754 

NorESM1-M_rcp45_2014_2040 0.475966 0.510737 107.3054 -0.05462 

MPI-ESM-LR_rcp45_2014_2040 0.599489 0.925985 154.4623 0.161264 

ACCESS1-0_rcp45_2014 - 2040  0.359644 0.44706 124.3061 -0.0137 

 

Table 6. Percentage variations in mean water balance components and streamflows for the historic 

total (1976 - 2013) and near (2014 - 2040) periods of Subarnarekha river basin. 

Water balance 

component 

Historic total (1976 - 

2013) period 

Near (2014 - 2040) 

period 

Percentage variation 

(%) 

PRECIP 938.07 863.67 -7.93 

SURQ 237.98 178.07 -25.17 

LATQ 11.79 8.87 -24.81 

GW_Q 131.15 117.81 -10.17 

PERC 163.23 148.08 -9.28 

SW 95.58 90.53 -5.29 

ET 526.67 529.93 0.62 

WYLD 388.95 312.07 -19.77 

Streamflows 126.93 107.40 -15.39 

 

 

 


