

Photocatalytic reduction of $AuCl_4^-$ by $Fe_3O_4/SiO_2/TiO_2$ nanoparticles

Kunarti E.S.*, Roto R., Nuryono N., Santosa S.J. and Fajri M.L.

Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia

Received: 05/12/2019, Accepted: 18/02/2020, Available online: 12/03/2020

*to whom all correspondence should be addressed: e-mail: eko_kunarti@ugm.ac.id

https://doi.org/10.30955/gnj.003262

Graphical abstract

Abstract

Metallurgy and recovery of gold in electronic waste sometimes involve the reduction of tetrachloroaurate ion (AuCl₄⁻) to elemental gold form. Currently, for the reduction of tetrachloroaurate ion, people use reducing agents such as hydroguinone and sodium borohydride. Photocatalysts of Fe₃O₄/SiO₂/TiO₂ nanoparticles were prepared and tested for the reduction of tetrachloroaurate ion under UV light illumination. The magnetite (Fe₃O₄) nanoparticle was first prepared by coprecipitation and sonication, followed by SiO₂ and TiO₂ coatings via the sol-gel process and calcination. The products were confirmed by XRD and TEM. The photocatalytic reduction of tetrachloroaurate ion was performed in a closed reactor equipped with a UV light source. The results indicated that Fe₃O₄/SiO₂/TiO₂ nanoparticles were successfully prepared, which retained photocatalytic magnetic and properties. good The photocatalytic reaction is best performed at a pH of 5 under UV irradiation for 2 h, which is capable of reducing 96% of the tetrachloroaurate present in the mixture. The co-presence of Ni²⁺ and Cu²⁺ ions in the solution leads to a decrease in yield due to competitive reduction and adsorption. The photocatalyst is recoverable by the use of a magnetic bar and may find application for gold recovery and metallurgy.

Keywords: Nanoparticle, Fe₃O₄/SiO₂/TiO₂, photoreduction, tetrachloroaurate.

1. Introduction

Gold is one of the precious metals, well-known for its beauty, corrosion resistance, malleability, and ease to form alloys. It has been used to prepare coins and jewelry since ancient times. Along with technological advances, gold is now used in the production of electronic devices for its excellent electrical conductivity. The rapid technological progress and consumptive nature of society lead to the shortening of the use of electronic devices, which use gold in many of their components. It speeds up the discharge of electronic devices waste. Among other rare earth metal elements, the valuable component of the electronic device waste is gold.

Roughly, the waste of electronic devices contains 40% of metals, including heavy metals such as copper (20%), tin (4%), nickel (2%), lead (2%), silver (0.02%) and precious metals such as gold (0.1%) (Gramatyka *et al.*, 2007). Therefore, metal recovery of electronics waste is an important way, not only from the management of hazardous waste point of view but also from the recovery process of the precious metals.

The process of gold recovery from electronic equipment waste requires several steps that are dissolution, separation, and purification (Cui and Zhang, 2008). In the purification step, the photocatalytic reduction method is usually applied by utilizing a semiconductor, which is relatively new and potentially useful as an alternative green method. More importantly, it does not produce harmful by-products (Kida *et al.*, 2009; Barakat, 2010).

Titanium dioxide is often used as a photocatalyst because of its low toxicity, superior photocatalytic performance, and good chemical stability. Several studies on the application of titanium dioxide for gold recovery have been reported, such as by Grieken *et al.* (2005) who have reviewed the gold recovery process from electroplating waste in the [Au(CN)₂]⁻ complex using a titanium dioxide photocatalyst. Wojnicki *et al.* (2013) have conducted a study of gold photoreduction kinetics in the complex form AuCl₄⁻ using TiO₂. Wahyuni *et al.* (2015) have successfully examined the application of gold recovery by photocatalytic reduction of AuCl₄⁻ ion by utilizing TiO₂

Kunarti E.S., Roto R., Nuryono N., Santosa S.J. and Fajri M.L. (2020), Photocatalytic reduction of AuCl^{4⁻} by Fe₃O₄/SiO₂/TiO₂ nanoparticles, *Global NEST Journal*, **22**(1), 119-125.

photocatalyst with the addition of other metal ions such as Ag(I), Cu^{2+} , and Fe³⁺.

The photocatalytic reaction commonly takes place in the suspension of a photocatalyst having a nanometer size, so that an efficient separation process is required to recover the catalyst from the aqueous medium. Several studies have been conducted regarding suspended TiO₂ separation efforts in heterogeneous photocatalysis processes, e.g., flocculation, sedimentation and microfiltration (Xi and Geissen, 2001; Rottman, 2013). But such methods need additional costs for chemicals, takes a relatively long time, are relatively expensive and need control during the separation process.

Photocatalysts such as glass beads, silica gel, glass fibers in mesh form, and zeolites are coated with titanium to alleviate the problem (Szabo et al., 2013). Although this method can provide solutions to problems related to the difficulty of liquid-solid phase separation, slurry-type reactors are more advantageous than immobilized photocatalyst systems in terms of available surface area and better mass-transfer characteristics. The magnetization of the photocatalyst can facilitate the process of photocatalyst recovery with the help of a magnetic bar. This modification is able to combine the characteristics of the surface to volume ratio and settling process commonly observed by larger particles (Beydoun et al., 2000).

The TiO₂ modification of the catalyst can be done by superimposing on the surface of the magnetic material. Beydoun et al. (2000) have reported work on the modification of magnetite by superimposing with titania to give photocatalyst nanocomposite. However, direct contact between the titania and iron oxide could lower photocatalytic activity and cause a photo dissolution event. To avoid this problem, in the later research Beydoun and Amal (2002) modified magnetite by coating with SiO₂ as an insulating layer for direct charge transfer between Fe₃O₄ core and TiO₂ shell. The SiO₂ layer with porous structures enables the surface area to increase and to facilitate better access for target species to reach the active site of the material (Ullah et al., 2015). Several studies on addition of SiO₂ layer to the Fe₃O₄/TiO₂ nanocomposite show a better performance in photooxidation of organic compounds such as sucrose (Beydoun and Amal, 2002), methyl orange (Gad-Allah

et al., 2007), acetaminophen, antipyretin, caffeine, metoprolol, bisphenol A (Álvarez *et al.*, 2010), methylene blue (Kunarti *et al.*, 2016) and photoreduction of silver(I) ions (Kunarti *et al.*, 2017). We have been working on the photocatalytic reduction of metallic ions (Kunarti *et al.*, 2017; Fajri, 2017). In this contribution, photocatalytic reduction of tetrachloroaurate ion by $Fe_3O_4/SiO_2/TiO_2$ nanoparticles is reported. This work is novel since the photocatalyst has not been reported elsewhere. In addition, the photoreduction of tetrachloroaurate is usualy done with TiO₂ photocatalyst. The introduction of magnetic material of magnetite to the TiO₂ photocatalyst

allows us to separate and reuse the photocatalyst. Further, the effect of some operating conditions such as pH and time is evaluated. In addition, the co-presence of Cu^{2+} and Ni^{2+} that are commonly found along with $AuCl_4^-$ is also examined. These two metals are also present in the minerals containing gold.

2. Materials and methods

2.1. Chemicals

Iron(II) chloride tetrahydrate (FeCl₂·4H₂O), iron(III) chloride hexahydrate (FeCl₃·6H₂O), tetraethyl orthosilicate (TEOS, >99%), trisodium citrate dihydrate (Na₃C₆H₅O₇·2H₂O), ethanol, ammonia solution (25% v/v), tetrachloroauric acid (HAuCl₄) were purchased from Merck. Titanium(IV) tetraisopropoxide (TTIP, >97%) was acquired from Aldrich. Deionized water was used as the main solvent throughout the experiments. The chemicals were used as received without further purification.

2.2. Preparation of Fe₃O₄/SiO₂/TiO₂ nanoparticles

Magnetite, Fe₃O₄, and Fe₃O₄/SiO₂ nanoparticles were prepared according to the previous work (Kunarti *et al.*, 2017) with slight modification. They were synthesized through a sol-gel method. Briefly, Fe₃O₄/SiO₂ was dispersed in 30 mL ethanol 98% followed by the addition of 0.20 mL deionized water and 1 mL TTIP. The mixture was ultrasonicated for 3 hours. The produced material was washed with ethanol several times. The solids were dried, and the product obtained was calcined at 500 °C for 3 h. The as prepared Fe₃O₄/SiO₂/TiO₂ nanoparticles were characterized and then applied for the recovery of gold through photoreduction of tetrachloroauric ions.

2.2.1. Product characterization and analysis

X-ray diffraction patterns were recorded on Shimadzu XRD 6000, with Cu-K α radiation. The XRD patterns were used to confirm the crystal structure of the synthesized materials. Transmission electron microscopy (TEM) images were obtained on JEOL JEM-1400 TEM with an acceleration voltage of 120 kV. The magnetic properties were quantified using a cryogen-free physical measurement vibrating sample magnetometer (Oxford VSM 1.2H). The tetrachloroaurate ions in the solution were determined by using atomic absorption spectrometry (AAS) (Perkin Elmer 3110).

2.3. Photocatalytic reduction of tetrachloroauric

The photoreduction of tetrachloroaurate ion was performed in a batch system in a closed vessel equipped with a UV-lamp (40 W, 220 V, wavelength 340-390 nm). A 25 mL AuCl₄⁻ solution of 50 mg/L, and the catalyst weighed 0.025 g were placed in the glass vessel. The nanoparticles were dispersed by stirring the suspension continuously using magnetic stirrer under UVirradiation. After the reaction, the solution tetrachloroaurate ions were analyzed by AAS. In this study, the effect of pH and time, and the addition of Cu²⁺, and Ni²⁺ ions were also studied. The predetermined condition is presented in Table 1.

 Table 1. Prescribed experimental condition for the photocatalytic

 reduction of [AuCl₄]⁻

Variable	Preset
рН	1, 3, 5, 7, 9
Reaction time (h)	0.5, 1, 2, 3, 4
Mas of photocatalyst (mg)	25
Concentration of AuCl₄ ⁻ (mg/L)	50
Concentration of Ni ²⁺ (mg/L)	50
Concentration of Cu ²⁺ (mg/L)	50

2.3.1. Reduction of AuCl₄⁻ ions in a mixture with Cu²⁺ or Ni²⁺

A portion of 0.025 g of Fe₃O₄/SiO₂/TiO₂ nanoparticles photocatalyst was incorporated into the mixture of [AuCl₄]⁻ and Cu²⁺(or Ni²⁺) solution with a molar ratio of 1:1 at pH 5 in the photocatalyst reactor while stirred and irradiated with UV light for 2 h. After photoreaction, the tetrachloroaurate ion ions content was analyzed by AAS, and the photocatalyst material was separated from the solution using an external magnetic bar.

2.3.2. Reduction of AuCl₄⁻ ions in a mixture with both Cu²⁺ and Ni²⁺ ions

Fe₃O₄/SiO₂/TiO₂ nanoparticles photocatalyst weighed 0.025 g was dispersed into the mixture of AuCl₄⁻, Ni²⁺, and Cu²⁺ solution with a molar ratio of 1:1:1 in a reactor while being stirred and irradiated with UV light. The solution pH was preset at 5. Irradiation was done for 2 h. After photoreaction, the solid material was separated from the solution using an external magnetic bar, and the metal content was sampled by AAS.

Figure 1. XRD patterns of (a) Fe₃O₄, (b) Fe₃O₄/SiO₂ and (c) Fe₃O₄/SiO₂/TiO₂ nanoparticles

3. Results and discussion

3.1. Characterisation of Fe₃O₄/SiO₂/TiO₂ nanoparticles

Figure 1 shows the diffraction patterns for Fe₃O₄, Fe₃O₄/SiO₂, and Fe₃O₄/SiO₂/TiO₂. The Fe₃O₄ diffractogram agrees with the JCPDS No. 01-1111 as confirmed with the peaks at 2θ = 30.22, 35.56, 43.14, 57.04, and 62.66° (Figure 1a), which indicates face-centered cubic (*fcc*) crystal structure. A similar pattern was observed after coating with SiO₂ with the addition of a wide peak at 2θ about 21-26°. This peak is believed to be due to the amorphous SiO₂ phase. Peaks of the anatase phase of TiO₂ appear at 25.22°, 48.36, and 54.22 on the diffraction pattern of

Fe₃O₄/SiO₂/TiO₂. A similar result was also reported by previous studies (Kunarti *et al.*, 2016; Kunarti *et al.*, 2017) and literatures (Schatz *et al.*, 2009; Xue *et al.*, 2013).

The TEM images of the obtained nanoparticles are presented in Figure 2. It is observed that there are spherical dark images of Fe₃O₄ core particles covered by a bright shell of SiO₂ and TiO₂ at the outer shell, which very similar brightness with the SiO₂ inner shell. It is believed that TiO₂ coats the outer shell of Fe₃O₄/SiO₂ nanoparticles. The mean diameter of Fe₃O₄/SiO₂/TiO₂ nanoparticles is estimated to be 14 nm.

Figure 2. TEM images of Fe $_3O_4$ nanoparticles after coating with SiO $_2$ and TiO $_2$

Figure 3. VSM curve of (a) Fe₃O₄, and (b) Fe₃O₄/SiO₂/TiO₂ nanoparticles

The magnetic properties of the products were recorded quantitatively by use of a vibrating sample magnetometer (VSM) (Figure 3). The data suggest that there is a decrease in the magnetic properties of Fe_3O_4 after coating with SiO_2 and/or TiO_2 . The magnetic hysteresis indicates the superparamagnetic nature of materials. Although there is an appreciable decrease, in general the magnetism of the product is still good (4.38 emu/g). This magnetic property

still allows us to recover the solids by an external magnetic bar after application (Figure 4).

Figure 4. The picture of photocatalyst (a) before and (b) after inteaction with a magnetic bar

3.2. Photocatalytic reduction of tetrachloroauric

3.2.1. The effect of reaction pH

The medium acidity is one of the critical parameters in the photocatalytic reduction process. The pH of the medium affects the charge of the TiO₂ and AuCl₄⁻ species. Figure 5 shows the effect of pH on AuCl₄⁻ ion reduction. The photocatalytic reduction increases along with increasing pH and reaches an optimum condition at pH 5. The ease of TiO₂ to give electrons and to form OH is strongly affected by surface speciation of TiO₂. The specification of the surface of TiO₂ (>TiOH) in the aqueous solution is commonly written as follows (Hoffmann et al., 1995)

At low pH: > TiOH + H⁺ \Box > TiOH₂⁺

At high pH: > TiOH + OH⁻ \Box > TiO⁻ + H₂O

Figure 5. Effect of pH on the photocatalytic reduction of AuCl₄-

At pH less than 3, >TiOH is dominant to form > $TiOH_2^+$. The presence of >TiOH is abundant at pH 3 to 10. Meanwhile, at pH above 10, the >TiOH is dominant as >TiO⁻, so at the pH of 5, TiO₂ will be in the form of TiOH₂⁺ species and the lower the pH, the more $TiOH_2^+$ species. At pH 5, TiO₂ is present as TiOH₂⁺ species which will interact with anionic charged of [AuCl₄]⁻ solution. In the presence of UV rays, the photocatalyst will absorb energy from UV rays so that electrons will be transferred from the valence band to the conduction band of TiOH₂⁺.

The AuCl₄⁻ species will interact with the surface of the photocatalyst, so when AuCl₄⁻ is on the surface of the photocatalyst, there will be an AuCl₄⁻ reduction process to metallic gold. At the pH below 5, however, there is a decrease in the reduced AuCl₄⁻ concentration. This is because the number of TiOH₂⁺ species is very abundant, resulting in the number of electrons produced decreases. However, when the pH above 5 species of TiO₂ will turn into TiO⁻ then the interaction between TiO⁻ and AuCl₄⁻ becomes difficult result in a lack of AuCl₄⁻ which can be reduced. In addition, the increase in pH in the solution also causes a species change from AuCl₄⁻ into precipitation that makes the reduction process ineffective.

3.2.2. The effect of reaction time

Figure 6 shows the effect of the irradiation time on the reduction of AuCl₄⁻ ions. The longer the irradiation time the more AuCl₄⁻ to be reduced. A slight decrease in the reduction after 2 h was observed. The number of electrons formed for the occurrence of the reduction process is influenced by the number of rays that affect the photocatalyst surface. Figure 6 shows that at the time of irradiation 0-2 h an increase in AuCl₄- ion reduction. This is caused by the longtime of irradiation that impacts more photon energy on the photocatalyst. This results in more electrons being formed and the reduction of AuCl₄⁻ions to Au⁰ will increase. Photoreduction for 2 h is the optimum point of irradiation. In a longer reduction process, the surface of the photocatalyst has been covered by the Auprecipitate resulting from the reduction process thus blocking the interaction between the photocatalyst and the UV light, resulting in constant photocatalytic activity. However, in the results of this study, there is a decrease in the percentage of reduction, this may be due to desorption of the release of AuCl₄⁻ ions that have bound to Fe₃O₄/SiO₂/TiO₂ nanoparticles.

Figure 6. Effect of irradiation time on the photocatalytic reduction of $AuCl_4^-$ to Au^0

3.2.3. The effect of SiO₂ on the catalytic reduction of AuCl₄⁻ To evaluate the obtained photocatalysts in the reduction of AuCl₄⁻ ions, the photoreduction reaction was carried out with and without UV light exposure. Figure 7 shows the amount of AuCl₄⁻ ions both reduced and adsorbed using each of photocatalysts with and without UV light exposure.

Figure 7. Reduction of $AuCl_4^-$ with photocatalyst of (a) TiO₂, (b) Fe₃O₄/TiO₂ and (c) Fe₃O₄/SiO₂/TiO₂

Figure 7 appears that under UV-light irradiation, the Fe₃O₄/SiO₂/TiO₂ nanoparticles have a better photocatalytic activity to reduce $AuCl_4$ than that of Fe₃O₄/TiO₂, and TiO₂. The Fe_3O_4/TiO_2 nanoparticles have the lowest $AuCl_4^$ photoreduction activity could be due to direct contact between the TiO₂ and the Fe₃O₄, where the Fe₃O₄ nanoparticles act a recombination center (Beydoun and Amal, 2002). This recombination causes a small number of TiO₂ conduction electrons (e_{cb}-) to play a role in reducing AuCl₄⁻ ions hence the percentage of AuCl₄⁻ species is small. This phenomenon did not occur for Fe₃O₄/SiO₂/TiO₂, because of the presence of the SiO₂ layer as a chargetransfer insulator was able to prevent electron-hole recombination. This causes the photoreduction activity of AuCl₄⁻ ions using Fe₃O₄/SiO₂/TiO₂ better than that of Fe₃O₄/TiO₂. Meanwhile, the Fe₃O₄/SiO₂/TiO₂ nanoparticle has a higher photoreduction activity than TiO₂ due to the presence of the SiO₂ layer (Liu et al., 2011). The SiO₂ layers which have a porous structure can increase the surface area for adsorption so that it facilitates the access of AuCl₄-Au ions to the photocatalyst active site. In addition, the presence of silica is also capable of immobilizing TiO2 so that can minimize the agglomeration of TiO₂ particles that may occur in TiO₂ particles. This condition causes the photoreduction process of AuCl₄⁻ ions using $Fe_3O_4/SiO_2/TiO_2$ to be more efficient.

It is known that the photocatalytic reduction process is initiated and/or accompanied by the adsorption of the species on the TiO₂ surface. Figure 7 shows the results of AuCl₄⁻⁻ ions adsorption by photocatalysts, in the absence of UV light irradiation. It appears that the Fe₃O₄/SiO₂/TiO₂ photocatalyst has the best adsorption ability. The presence of a SiO₂ layer which has a large surface area seems to have better characteristics of mass transfer. The AuCl₄⁻⁻ adsorption by Fe₃O₄/TiO₂ solid is smaller than that of TiO₂, which is likely due to its lower surface area. It is in good agreement with the previous report (Banisharif *et al.*, 2013).

3.2.4. Photocatalytic eduction of AuCl₄⁻ ions in the presence of Ni²⁺ and Cu²⁺

Besides gold, nickel and copper are found in electronic waste (Gramatyka *et al.*, 2007). To recover gold from electronic waste, it is first soaked in a strong acid solution to produce $AuCl_4^-$, Ni^{2+} , and Cu^{2+} . Ni^{2+} and Cu^{2+} ions can be photocatalytically reduced by TiO₂ (Joshi *et al.*, 2011). The presence of Ni^{2+} and Cu^{2+} ions might affect the

photoreduction of AuCl₄⁻ ions. In this study, AuCl₄⁻ photoreduction reaction is also carried in the solution containing Ni²⁺ and Cu²⁺ ions. The reaction was performed using Fe₃O₄/SiO₂/TiO₂ photocatalyst under UV irradiation. The results are presented in Figure 8.

Figure 8. Reduction of AuCl₄⁻ catalyzed by Fe₃O₄/SiO₂/TiO₂ (a) without Ni²⁺ and Cu²⁺, (b) with Ni²⁺ in the mixture where AuCl₄⁻ to Ni²⁺ molar ratio 1:1, (c) with Cu²⁺ in the mixture where AuCl₄⁻ to Cu²⁺ molar ratio of 1:1, and (d) with Ni²⁺ and Cu²⁺ in the mixture where AuCl₄⁻ to Ni²⁺ to Cu²⁺ molar ratio of 1:1:1

Figure 8 shows that the addition of Ni²⁺ ions causes a decrease in the number of AuCl₄⁻ ions reduced from 96.13% to 80.98%. In the absence of Ni²⁺ ions, all conduction band (e_{cb}-) electrons produced by TiO₂ are used to reduce Au ions while in the presence of Ni²⁺ions, both Au ions and Ni²⁺ ions capable of being reduced by TiO₂ so that during the photoreduction reaction takes place, there is competition in the use of the conduction band electrons (e_{cb}-) produced by TiO₂. This causes some conduction band electrons (e_{cb}-) to be used to reduce AuCl₄⁻ ions and the other part is used to reduce Ni²⁺ ions. Decreasing the number of conduction band electrons (e_{cb}-) to reduce AuCl₄⁻ ions.

Evaluation of $Fe_3O_4/SiO_2/TiO_2$ activity for $AuCl_4^-$ ion reduction was also made by comparing the photocatalytic activity of Fe₃O₄/SiO₂/TiO₂ in the presence of Cu²⁺ ions with the molar ratio of 1:1 under UV illumination. The result is presented in Figure 8. It shows a slight decrease in the percentage reduction of Au ions in the mixture of AuCl₄⁻ and Cu²⁺ ions. It can be concluded that the presence of Cu²⁺ ions can decrease the percentage reduction of ${\rm AuCl_{4^-}}$ ions although relatively small and insignificant. This is because the Cu²⁺ ions in the solution can also be reduced to cause competition with AuCl₄⁻ ions in binding the electrons. However, since the reduction of Cu^{2+} ions is slower, which is indicated by a value of E^{0} $(E^0 = 0.340 \text{ eV})$ which is much lower than that of AuCl₄⁻ ions (E^0 = 1.002 eV). The Cu²⁺ ions are more difficult to be reduced than AuCl₄⁻ ions so that the presence of Cu²⁺ ions does not significantly affect the AuCl₄⁻ ion reduction.

Reduction of AuCl₄⁻ was also performed in the presence of Ni²⁺ and Cu²⁺. Figure 8 reveals that the presence of Ni²⁺ and Cu²⁺ leads to a decrease in AuCl₄⁻ photoreduction. The addition of Ni²⁺ has a stronger effect than that of Cu²⁺. Both Ni²⁺ and Cu²⁺ can be reduced, as suggested by their standard reduction potentials of -0.25 V and 0.34 V, to form Ni⁰ and Cu⁰ respectively, which competes with AuCl₄⁻ photoreduction. The standard reduction potentials of Ni²⁺

and Cu^{2+} are much lower than those of AuCl_{4^-} , which is much more difficult to reduce than AuCl₄⁻. Based on their standard reduction potential, Cu²⁺ is easier to reduce than Ni²⁺. However, the opposite result is observed. AuCl₄⁻ ions are reduced directly to Au⁰ ions while Cu²⁺ ions may be reduced to Cu⁺ and Cu⁰. When Cu⁺ and Cu⁰ species escape from the surface of TiO₂ and meet with AuCl₄⁻ ions, there will be redox reaction among AuCl₄⁻, Cu⁺ and Cu⁰ ions where $Cu^{\scriptscriptstyle +}$ and Cu^0 will oxidize back to $Cu^{2\ast}$ ions. The AuCl₄⁻ has a higher reduction potential value so it is reduced, while Cu⁺ and Cu⁰ which have a smaller reduction potential value then they oxidized. are The cross-redox reaction interface probably happens, in which the AuCl₄⁻ reduction can occur because of the bridge of the previously reduced Cu²⁺ ions. So that the only small decreased of AuCl₄⁻ ion reduction process in the presence of Cu²⁺ ion in this study is probably affected by the reduction potential values of each metal ions as well as the crossing redox reaction interface effect. Meanwhile, this phenomenon does not happen for Ni²⁺ ion. Moreover, the decrease in the amount of reduced AuCl₄⁻ ions in the mixture Ni²⁺, of AuCl₄⁻, and Cu²⁺ in Figure 8 more likely due to the deposition of nickel and copper on the surface of the photocatalyst, so active site of the photocatalyst is covered by metal thereby reducing the amount of reduced AuCl4⁻. The presence of Ni²⁺ and Cu²⁺ ions in the mixture slightly hinder the reduction of AuCl₄⁻.

Figure 9. Adsorption of AuCl₄⁻ by Fe₃O₄/SiO₂/TiO₂ (a) without Ni²⁺ and Cu²⁺, (b) with Ni²⁺ in the mixture where AuCl₄⁻ to Ni²⁺ molar ratio of 1:1, (c) with Cu²⁺ in the mixture where AuCl₄⁻ to Cu²⁺ molar ratio of 1:1, and (d) with Ni²⁺ and Cu²⁺ in the mixture where AuCl₄⁻ to Ni²⁺ to Cu²⁺ molar ratio of 1:1:1

The stronger effect is shown by the presence of Ni²⁺. It is clearly not caused by competition in the photoreduction, but it prominently caused by adsorption of Ni²⁺ on the surface of TiO₂. As presented previously, the photocatalytic reduction process is always initiated and/or accompanied by adsorption on the surface of photocatalyst (Wahyuni *et al.*, 2015; Kunarti *et al.*, 2017). When AuCl₄⁻ in the solution is along with Ni²⁺ and Cu²⁺ ions, the adsorption of the three ions should be involved. The Ni²⁺ and Cu²⁺ ions having a smaller size than AuCl₄⁻, can be adsorbed faster than Au(III). Consequently, the adsorption of AuCl₄⁻ is inhibited by Ni²⁺ and Cu²⁺, causing a decrease in the AuCl₄⁻ adsorption, and so the lower photoreduction. This result is in accordance with the previous study in the reduction of AuCl₄⁻ using TiO₂ as the photocatalyst (Wahyuni *et al.*, 2015). The role of Ni²⁺ and Cu²⁺ in the lowering AuCl₄⁻ photoreduction caused by adsorption competition is supported by data obtained from a process without light exposure as illustrated by Figure 9. It is seen in the figure that adsorption of AuCl₄⁻ decreased in the presence of Ni²⁺ but only slightly decreased when Cu²⁺ is present.

As discussed earlier, at pH 5 the surface of TiO₂ is dominated by TiOH₂⁺ and TiOH groups, hence the species AuCl₄⁻ and AuCl₃OH⁻ ions are adsorbed through the complex formation and electrostatic interactions. It has also been reported that at pH 5 or lower, Ni²⁺ and Cu²⁺ ions are dominant. This makes an electrostatic interaction between the Ni²⁺ ion and the positively charged surface of TiOH₂⁺ is not possible to occur so that the adsorption of Ni²⁺ ions on the photocatalyst surface is likely to occur through electrostatic interactions between Ni²⁺ ions and SiO₂. This phenomenon also takes place for Cu²⁺ ions.

SiO₂ has a pH_{pzc} (potential zero charges) value of about 2.0, therefore at pH 5, the SiO₂ has a negatively charged surface. The porous structure of TiO₂ allows a silica layer to have contact with the solution. So that electrostatic interactions between SiO₂ and Ni²⁺ and Cu²⁺ can occur. In addition, the adsorption process of Ni²⁺ and Cu²⁺ ions can also take place through the interaction between these ions and free electron pairs on oxygen atoms on the surface of >TiOH. The interaction between TiO₂ and Ag⁺ ions has also been reported previously (Kunarti *et al.*, 2017). Adsorbed Ni²⁺ and Cu²⁺ can cover the surface of Fe₃O₄/SiO₂/TiO₂ nanoparticles to prevent adsorption of either AuCl₄⁻ or AuCl₃OH⁻ and prevent further reduction. Therefore, the photoreduction of AuCl₄⁻ as indicated in Figure 9(d).

4. Conclusions

The AuCl₄⁻ ions have been photocatalytically reduced to metallic gold using Fe₃O₄/SiO₂/TiO₂ nanoparticles as photocatalyst. The Fe₃O₄/SiO₂/TiO₂ nanoparticles were prepared by combined methods of co-precipitation, sonochemical and sol-gel synthesis, as well as calcination at 500 °C. The products have magnetic moment of 4.38 emu/g, which could be separated from the solution mixture by using an external magnetic bar. The materials photocatalytically reduced 96 % of AuCl₄⁻ ions in the solution, at 0.025 g photocatalyst loading, 50 mg L⁻¹ AuCl₄⁻¹ solution concentration under UV light illumination. The addition of Ni²⁺ and Cu²⁺ ions decreases the amount of the ions to be reduced due to the competition between reduction and adsorption processes. This prepared photocatalyst is expected to find application in the recovery of gold from electronic waste, which are abundant and complex.

Acknowledgements

The authors acknowledge to Universitas Gadjah Mada and Faculty of Mathematics and Natural Sciences for the financial support.

References

Álvarez P.M., Jaramillo J., López-Piñero F. and Plucinski P.K. (2010), Preparation and characterization of magnetic TiO₂ nanoparticles and utilization for the degradation of emerging pollutants in water, *Applied Catalalysis B: Environmental*, **100**, 338–345.

- Banisharif A., Elahi S.H., Firooz A.A., Khodadadi A.A. and Mortazavi Y. (2013), TiO₂/Fe₃O₄ nanocompositep Photocatalysts for enhanced photo-decolorization of congo red dye, *International Journal of Nanoscience and Nanotechnology*, **9**, 193–202.
- Barakat M.A. (2010), New trends in removing heavy metals from industrial wastewater, Arabian Journal of Chemistry, 4, 361– 377.
- Beydoun D. and Amal R. (2002), Implications of heat treatment on the properties of a magnetic iron oxide-titanium dioxide photocatalyst, *Materials Science and Engineering*, **94**, 71–81.
- Beydoun D., Amal R., Low G.K.-C. and McEvoy S. (2000), Novel photocatalyst: titania-coated magnetite activity and photodissolution, *Journal of Physical Chemistry B*, **104**, 4387– 4396.
- Cui J. and Zhang L. (2008), Metallurgical recovery of metals from electronic waste: a review, *Journal of Hazardous Materials*, **158**, 228–256.
- Fajri M.L. (2017), Synthesis of Fe₃O₄/SiO₂/TiO₂ nanocomposites as photocatalyst for reduction of Au(III) ion in the mixture of Au(III) and Ni(II) ions, Undergraduate Thesis, Deptartement of Chemistry, Universitas Gadjah Mada.
- Gad-Allah T.A., Kato S., Satokawa S. and Kojima T. (2007), Role of core diameter and silica content in photocatalytic activity of TiO₂/SiO₂/Fe₃O₄ composite, *Solid State Science*, **9**, 737–743.
- Gramatyka P., Nowosielski R. and Sakiewicz P. (2007), Recycling of waste electrical and electronic equipment, *Journal of Achievements in Materials and Manufacturing Engineering*, 20, 535–538.
- Grieken R.V., Aguado J., Maria-José M.L. and Marugán J. (2005), Photocatalytic gold recovery from spent cyanide plating bath solution, *Gold Bulletin*, **38**, 180–187.
- Hoffmann M.R., Martin S.T., Choi W. and Bahnemann D.W. (1995), Environmental applications of semiconductor photocatalysis, *Chemical Reviews*, **95**, 69–96.
- Joshi K.M., Patil B.N., Shirsath D.S. and Shrivastava V.S. (2011), Photocatalytic removal of Ni(II) and Cu(II) by Using different semiconducting materials, *Advances in Applied Science Research*, **2**, 445–454.
- Kida T., Oshima R., Nonaka K., Shimanoe K. and Nagano M. (2009), Photoinduced recovery of gold using an inorganic/organic hybrid photocatalyst, *Journal of Physical Chemistry C*, **113**, 19986–19993.
- Kunarti E.S., Roto R., Pradipta A.R. and Budi I.S. (2017), Fe₃O₄/SiO₂/TiO₂ nanoparticles as catalyst for Ag(I) ions, Oriental Journal of Chemistry, **33**(4), 1933–1940.
- Kunarti E.S., Syoufian A., Budi I.S. and Pradipta A.R. (2016), Preparation and properties of Fe₃O₄/SiO₂/TiO₂ core/shell nanocomposite as recoverable photocatalyst, *Asian Journal of Chemistry*, **28**, 1343–1346.
- Liu H., Jia Z., Ji S., Zheng Y., Li M. and Yang H. (2011), Synthesis of TiO₂/SiO₂@Fe₃O₄ magnetic microspheres and their properties of photocatalytic degradation dyestuff, *Catalysis Today*, **175**, 293–298.
- Rottman J., Platt L.C., Sierra-Alvarez R. and Shadman F. (2013), Removal of TiO₂ nanoparticles by porous media: effect of

filtration media and water chemistry, *Chemical Engineering Journal*, **217**, 212–220.

- Schatz A., Hager M. and Reiser O. (2009), Cu(II)-azabis (oxazoline)complexes immobilized on superparamagnetic magnetite/silica nanoparticles: a highly selective and recyclable catalyst for the kinetic resolution of 1,2-diols, *Advanced Functional Materials*, **19**, 2109–2115.
- Szabo T., Veres A., Cho E., Khim J., Varga N. and Dekany I. (2013), Photocatalyst separation from aqueous dispersion using graphene oxide/TiO₂ nanocomposites, *Colloids and Surfaces* A: Physicochemical and Engineering Aspects, **433**, 230–239.
- Ullah S., Ferreira-Neto E.P., Pasa A.A., Alcântara C.C.J., Acuña J.J.S., Bilmes S.A., Ricci M.L.M., Landers R., Fermino T.Z. and Rodrigues-Filho U.P. (2015), Enhanced photocatalytic properties of core@shell SiO₂@TiO₂ nanoparticles, *Applied Catalysis B: Environmental*, **179**, 333–343.
- Wahyuni E.T., Kuncaka A. and Sutarno S. (2015), Application of photocatalytic reduction method with TiO₂ for gold recovery, *American Journal of Analytical Chemistry*, **3**, 207–211.
- Wojnicki M., Tokarski T. and Kwolek P. (2013), Kinetic study of the photoelectrochemical gold recovery from diluted chloride solutions, *Archives of Metallurgy and Materials*, **58**, 709–716.
- Xi W. and Geissen S.U. (2001), Separation of titanium dioxide from photocatalytically treated water by cross-flow microfiltration, *Water Reserch*, **35**, 1256–1262.
- Xue C., Zhang Q., Li J., Chou X., Zhang W., Ye H., Cui Z. and Dobson P.J. (2013), High photocatalytic activity of Fe₃O₄-SiO₂-TiO₂ functional particles with structure, *Journal of Nanomaterials*, 2013, 1–8.