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Abstract 

Spatio-temporal methods have been developed for the 
estimation of concentrations of pollutants such as 
particulate matter and nitrogen dioxide for application in 
epidemiological studies. A limited number of city-specific 
spatio-temporal ozone (O3) models have been proposed 
until today. Our aim was to develop a spatio-temporal 
land use regression (LUR) model that estimates daily 
concentrations of O3, for the whole year, as well as the 
warm (April-September) and cold season (October-
March), within the greater Athens area. We developed 
models using a semiparametric approach including linear 
and smooth functions of spatial and temporal covariates 
and a bivariate smooth thin plate function. The final set of 
explanatory variables was selected based on the adjusted-
R

2
. We tested the final model in temporal and spatial 

terms following a leave-one out monitor approach. 
The adjusted-R

2
 in the leave-one-out cross validation was 

0.73 for the annual model (warm: 0.65 and cold: 0.70). 
The spatial terms in our annual model explained 32.9% 
and the temporal 63.2% of the variability in O3. 
The developed models showed good validity when 
comparing predicted and observed measurements for the 
2015 data. Spatio-temporal LUR modeling provides a 
useful tool for estimating O3 spatio-temporal variability 
with adequate accuracy for subsequent use in 
epidemiological studies. 

Graphical abstract 
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1. Introduction 

Epidemiological studies investigating the effects of air 
pollution exposure on health have increasingly been 
relying on modelling estimation techniques to provide an 
individualized exposure, primarily at participant home 
addresses and in large study samples (Beelen et al., 2014; 
Dimakopoulou et al., 2014; Kirrane et al., 2015; Lee et al., 
2016; Ostro et al., 2015; Raaschou-Nielsen et al., 2013). 
The advantage of these exposure assessment methods is 
that they take into account the variability of air pollution 
concentrations at fine spatial scale, leading to a possible 
decrease in exposure measurement error and increase in 
statistical power. 

Among the most common methods applied to estimate 
exposure concentrations are chemical transport models 
(CTM) (Jerret et al., 2005), land use regression models 
(LUR) (Beelen et al., 2013; Eeftens et al., 2012; Gryparis 
et al., 2007; Gryparis et al., 2014) and models that use 
satellite-based aerosol optical depth (AOD) data (Dadvand 
et al., 2014; Kloog et al., 2014). All of the aforementioned 
approaches can be extended to account for both the 
temporal and spatial concentration variations. Therefore, 
they are able to predict both short- or long-term exposure 
estimates, a useful for different epidemiological study 
designs. Such spatio-temporal models have been 
developed primarily for particles (PM) and nitrogen 
dioxide (NO2) and have been applied in epidemiological 
studies in the USA (Maynard et al., 2007; Puett et al., 
2011) and in Europe (Dadvand et al., 2013; Katsoulis et al., 
2013; Dimakopoulou et al., 2017). The association 
between short-term O3 exposure and health is considered 
as serious as the adverse health effects of PM exposure 
(Brunekreef et al., 2012). Moreover, there is a recent 
debate about the effects of long-term exposure to O3 on 
health (Schwartz, 2016). However, despite these issues 
only few studies have developed models for predicting 
ozone (O3) concentrations. 
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O3 is a main component of the photochemical air pollution 
cloud and a powerful oxidising agent (EEA, 2011). It is an 
extremely reactive gas created by the reaction of traffic-
related pollutants, such as nitrogen oxides (NOx) and 
volatile organic compounds (VOCs) with sunlight (WHO, 
2014). O3 is a secondary pollutant with spatio-temporal 
variations. O3 concentrations are lower in urban areas 
compared with the suburbs and rural areas. This is 
because emissions of NO tend to scavenge O3 and convert 
it into NO2 and oxygen (O2) (Stedman and Kent, 2008). 
O3 variation also depends on meteorology (mainly on solar 
radiation but also on ambient temperature, relative 
humidity and wind speed) with O3 concentrations 
displaying a summer maximum in urban areas (Monks, 
2000). 
Previous studies have shown that short-term exposure to 
O3 has adverse effects on pulmonary function, respiratory 
symptoms, while it is associated with increased 
medication usage, morbidity and mortality (WHO, 
2008,2013; EPA, 2009; Karakatsani et al., 2017; Samoli 
et al., 2017). On the other hand, the evidence on mortality 
effects of long-term exposure to O3 is inconclusive (Jerrett 
et al., 2009; Brunekreef et al., 2012; Atkinson et al., 2016), 
while recent studies suggest an association between long-
term exposure and reduced lung capacity and increased 
asthma incidence (WHO, 2013). 
Only few models have been developed for O3 exposure 
assessment in epidemiological studies. Adam-Poupart 
et al. (2014) developed three different spatio-temporal 
models (a LUR mixed effects model, a Bayesian maximum 
entropy (BME) and a kriging method model) to predict 
summer ground-level O3 in Quebec, Canada. They 
compared the models with leave-one-out cross validation 
(LOOCV) and found that the combination of LUR and BME 
methods reduced the estimation errors. A recent study in 
the USA (Wang et al., 2016) improved the accuracy of the 
spatio-temporal estimates of O3 in the Los Angeles Basin, 
by including a smoothed spatial CTM output in their 
spatio-temporal LUR model. To our knowledge, only 
spatial LUR models have been developed in Europe in 
order to assess O3 exposure for long-term epidemiological 
studies in Sweden (Malmqvist et al., 2014) and the 
Netherlands (Kerckhoffs et al., 2015). 
In the present paper we develop and validate a spatio-
temporal LUR model for O3 concentrations, using data 
from 2001 to 2014, which estimates daily concentrations 
of O3, for the whole year, warm (April 1

st
 to 30

th
 

September) and cold season (October 1
st

 and 31
st

 March), 
within the greater Athens area, Greece. Our goal is to 
develop a useful tool that can predict daily maximum 
8-hour average O3 concentrations in urban settings and 
that can be used in various epidemiological study designs. 
2. Materials and methods 

2.1. O3 monitoring data 

We obtained hourly ground-level O3 observations for 2001 
through 2014 from the fixed air pollution monitoring 
network, run by the Ministry of Environment and Energy 
(http://www.ypeka.gr/) in the greater Athens area. We 
calculated the daily maximum 8-hour average ozone 
concentration to represent daily exposure and included all 

available data. All sites used the same monitoring 
technology and complied with the E.U. Directives 
(Directive, 2008/50/EC). UV absorption was used to 
measure O3. In Athens, the number of O3 monitoring 
stations ranged from 9 to 12 stations during 2001–2014, 
resulting in 48,137 total observations (station-days). 
Figure 1 shows the study area and the geographical 
location of the monitoring sites. 

 

Figure 1. Map of the geographical location of the 12 fixed 

monitoring sites operated by the Ministry of Environment and 

Energy, at the greater Athens area, Greece and the land use data 

included in the developed model 

2.2. Road density data 
We used traffic counts from field measurements carried 
out by the Ministry of Infrastructure, Transport and 
Networks (MITN) (http://www.yme.gr/), traffic data from 
projects conducted by the municipality authorities and 
our own on-site measurements. The integration method 
of all the available traffic data for the study area and the 
validation procedures applied have been described in 
detail elsewhere (Gryparis et al., 2014). 

2.3. Meteorological data 
We obtained meteorological data from the fixed 
meteorological site located at the center of Athens 
(National Observatory of Athens, Thissio) for the years 
2001–2014. We extracted mean daily temperature (°C), 
relative humidity (%), wind speed (m/s), barometric 
pressure (mb), total solar radiation (Wh/m

2
/day), average 

solar radiation between hours 4 am and 7 pm 
(Wh/m

2
/day), average solar radiation between hours 

10 am and 3pm (Wh/m
2
/day), cloud coverage (oktas) and 

wind direction (north, south, east, west). 

2.4. Other predictor variables for spatial variability 
In total, 87 potential predictor variables of O3 
concentrations spatial variability were extracted by 
conducting GIS analyses. These variables are traffic-
related, characterize land use and population density in 
different buffers around the fixed air pollution monitoring 
sites. The geographical coordinates of each monitoring 
site were obtained through the Ministry of Environment 
and Energy. The buffer zones used for traffic-related 
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variables were: 25, 50, 100, 300, 500 and 1000 m and were 

selected to take account of known dispersion patterns 

(Beelen et al., 2013). Total traffic load was calculated as 

length of the road segment multiplied by traffic intensity and 

divided by road segment for all roads within each buffer 

zone. We also calculated the length of the road segments in 

different buffer zones around the fixed monitoring sites, 

traffic intensity on the nearest road to the fixed monitoring 

site and inverse distance to the nearest road to the fixed 

monitoring site. Moreover, we extracted the same traffic 

variables by including only major roads (road-width 

category ≥ 5). Land use data was available from CORINE 

(COordination and INformation on the Environmental 

programme, initiated by the European Commission) for year 

2000. Definitions of the ESCAPE study were used (Beelen et 

al., 2013) to characterize land use (high density residential 

areas, low density residential areas, industry, port, urban 

green and semi natural plus forested areas). In addition, we 

used building and population density data for 2001 (data 

obtained from the Hellenic Statistical Authority – EL. STAT.). 

The buffer zones used for land use variables were 100, 300, 

500, 1000 and 5000 m. Areas of different land cover use, 

building and population density were calculated in m
2
, 

within each buffer zone. Finally, the altitude of the 

monitoring sites was obtained from the Ministry of 

Environment and Energy. 

2.5. Development of models 
We developed semi-parametric spatio-temporal land use 

regression models to predict O3 concentrations measured at 

fixed monitoring sites for the whole year, warm and cold 

season. The model development methods have been 

described in detail elsewhere (Gryparis et al., 2014). 
In brief, we developed spatio-temporal semiparametric 

models, of the form: 

 


    ,
1

log.poll ( ) (geog ) ,
q

T
ij ij l l ij ij ij

l

W f s h
 (1) 

where log.pollij is the log-transformed measurement of O3 at 

location i on day j, fl(.) l = 1,2,…,q, is an unspecified smooth 

function reflecting the non-linear effect of covariate sl,ij on 

log-transformed pollutant’s concentration log.pollij, sl,ij 

stands for the l
th

 smoothed covariate, geogij = (latitudei, 

longitudej), h is a bivariate smooth function of geographical 

coordinates (latitude and longtitude), and Wij is the vector of 

covariates that have a linear effect on log.pollij. In summary, 

our model consists of covariates that have either a linear 

effect or a smooth effect on the outcome and of a bivariate 

smooth function of geography accounting for the remaining 

residual correlation. We assume that the errors εij are 

independent normal variables, with mean 0 and constant 

variance σ
2

ε. Degrees of freedom were estimated via REML. 

The final variables included in the annual model were 

different years (2002 to 2014; 2001 is the reference 

category), the day of the week (Monday to Saturday; 

Sunday is the reference category), wind direction (east, 

south, west; north is the reference category) and cloud 

coverage (oktas). Also, we used penalized splines to model 

temperature (3 degrees of freedom), relative humidity (3 

degrees of freedom), wind speed (3 degrees of freedom), 

average solar radiation between 10 am and 3 pm (8 degrees 

of freedom), day count (10 degrees of freedom). A bivariate 

smooth function (thin plate spline) of geography was used 

to account for remaining residual spatial correlation. Traffic 

load on the nearest major road (veh day
-1

 m), length of the 

major road segments (m) in a buffer of 500m around the 

fixed O3 monitoring sites and Urban Green land use class 

(m
2
) in a buffer of 300 m around the fixed sites, were 

expressed as linear terms. 
The final spatio-temporal LUR model for warm & cold 

season O3 concentrations accounted for the same variables 

at the temporal scale as the annual model. Significant 

spatial covariates were for warm season model: traffic load 

on the nearest major road (veh day
-1

 m), urban green land 

cover in a buffer of 100 meters (m
2
), inverse distance of the 

monitoring sites to the nearest major road (included as a 

non-linear term; m
-1

), around each monitoring site and 

geographical location (longitude, latitude) of the 

monitoring sites; for cold season model: traffic load on the 

nearest major road (veh day
-1

 m), household density (N) in a 

buffer of 1000 meters around each monitoring site, 

nitrogen dioxide concentrations (μg/m
3
) and geographical 

location (longitude, latitude) of the monitoring sites. 
To check whether there was any remaining spatial or 

temporal residual autocorrelation, we used the partial 

autocorrelation function plots (Box et al., 2008), for each 

monitoring site separately and calculated Moran's I (Moran, 

1950) for all the days of the study period (2001–2014), 

respectively. 
2.6. Model validation 
We performed both temporal and spatial validation as 

described in Gryparis et al. (2014). Briefly, we calculated the 

overall and by-site bias by comparing the daily O3 

predictions with the measurements for the year 2015 (not 

used in the model development) at the same fixed site 

monitoring locations. We validated our developed models 

with leave-one-out cross validation (LOOCV). Furthermore, 

we estimated the percentage explained spatial and temporal 

variability of the annual model’s, by excluding all temporal 

and spatial terms respectively and comparing adjusted-R
2

 

values. 
All analysis was conducted using the R statistical software 

(version 2.10.1; R Development Core Team, 2009) and the R 

library “SemiPar” version 1.0-2. 

3. Results and discussion 
3.1. Distribution of O3 concentrations and covariates 
Data on O3 concentrations were available from a maximum 

of 12 fixed stations during the period 2001 to 2014. Table 1 

presents the summary statistics for the available 8-hour 

maximum O3 data for each fixed site. Also, a description of 

site type, distance to nearest road segment and altitude of 

fixed sites is given in Table 1. Annual concentrations 

presented an increase in 2011 followed by a decline by 

about 7% in 2008–2014. Monitoring sites at traffic locations 

showed significantly (p-value < 0.001) lower mean O3 

concentrations compared to background locations (50.7 

μg/m
3

 vs 75.0 μg/m
3
, respectively). The spatial variability of 

the average O3 concentrations in the study area was larger 

compared to the temporal variability (per site range: -36.9% 

to 59.7% & -11.4% to 14.1% of the overall mean value, 
respectively). 
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Table 1. Description of the fixed monitoring sites operated by the Ministry of Environment and Energy in the greater Athens area and summary statistics for the available 8-hour maximum O3 

measurements by site during 2001–2014 

Site ID Site type 

Distance (m) to the nearest 
 

O3 (μg/m
3
) 

Street Major street Altitude (a.m.s.l.)* Mean SD 25% percentile Median 75% percentile Min–Max 

ATH Urban Street Site 12 12 100 48 26.0 27 46 66 2–171 

GEO Suburban–Industrial 30 70 40 63 30.7 38 63 87 1–158 

LYK Suburban 50 50 234 82 33.5 56 83 107 1–217 

MAR Urban street site 30 150 170 78 30.6 54 76 100 1–195 

SMY Urban background 10 100 50 82 34.2 56 83 110 2–224 

PAT Urban Street Site 3 3 105 28 20.6 11 22 39 1–105 

PIR1 Urban Street Site 15 15 20 48 26.0 27 45 66 2–142 

PER Urban background 8 80 80 77 31.5 51 78 102 1–192 

AGP Suburban background 200 200 290 94 31.3 69 93 117 9–218 

ZOG Suburban background 800 800 245 83 30.0 61 84 104 1–217 

PIR2 Urban background - - 25 57 29.8 35 54 74 3–160 

GAL Suburban background 7 75 154 75 35.7 48 74 99 1–211 

*above mean sea level 
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Table 2 presents summary statistics for the 
meteorological covariates included in the final models. 
In addition to the geographical location of the monitoring 
 

sites, Figure 1 also shows the “Urban Green” land cover 
class available from CORINE and the major road network 
in the study area. 

Table 2. Summary statistics for the meteorological data (daily values; 2001–2014) from the National Observatory site in the center of 

the greater Athens area 

Meteorological variables Mean (SD) Min-Max 

Temperature (°C) 19 (7.4) -7–36 

Relative humidity (%) 64 (14.7) 24–100 

Wind speed (m/sec) 3.2 (1.6) 0.3–12.7 

Solar radiation between 4am to 7pm (Wh/m
2
/day) 289 (146.0) 0–554 

Cloud coverage (oktas) 4 (2.5) 0–8 

Wind direction (daily prevailing) Frequency (%)
1
 

North 2,289 51.3 

East 205 4.6 

South 1,554 34.9 

West 410 9.2 
1
Number of days within the study period 2001–2014, with prevailing wind direction and corresponding percentage 

 

3.2. Model selected, Spatial and temporal variability and 
model performance 

Table 3 summarizes the estimated coefficients for the 
final set of linear predictors included in the annual O3 
spatio-temporal LUR model. Traffic load on the nearest 
major road, length of the major road segments in a buffer 
of 500 m around the fixed O3 monitoring sites, urban 
green land use class in a buffer of 300 m around the fixed 
O3 monitoring sites, cloud coverage and day of the week 
(compared to Sunday = reference category) were 
negatively associated with O3 levels. A significant annual 
incline in O3 concentrations was shown, compared to year 
2001 (reference category). The lowest O3 concentrations 
were associated with west winds. The adjusted-R

2
 of the 

developed annual model was 0.76, while for the warm 
and cold season it was 0.70 and 0.71, respectively. Model 
assumptions were not violated. Inspection of the PACF 
plots separately per site did not reveal any major 
temporal residual autocorrelation. There was no 
significant spatial autocorrelation in the residuals of the 
models, since only 10% of the days from the 14-year study 
period resulted in Moran’s I p-value <0.05. 

3.3. Model validation 

The predicted values were compared with the actual O3 
measurements for the year 2015 (not used in the model 
building procedure), per fixed monitoring site. We found 
that the daily mean model predictions were on average 
higher compared to the daily mean observed values 
(Figure 2). The overall bias of the O3 prediction (calculated 
as observed-predicted values for year 2015) was 
-2.5 μg/m

3
, while the by site-type bias was -7.3 μg/m

3 
for 

the traffic sites and was -2.6 μg/m
3
 for the background 

sites. Therefore, the developed model seems to perform 
better for background monitors. 

Figure 3 shows the error bar plot of the annual mean 
observed and predicted O3 values, for 2015, per fixed 
monitoring site. A couple of sites (i.e. ATH, PIR1, SMY) 
displayed differences between measured and estimated 
values. 

 

Figure 2. Plot of the daily average O3-8h (μg/m
3
) observed (solid 

line) and predicted (dash line) values for the year 2015 

 

Figure 3. Error bar for the 2015 annual mean O3-8h (μg/m
3
) 

observed (black color) & predicted (grey color) values along with 

their 95% C.I., by monitoring site 
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LOOCV of the O3 annual model resulted in a cross-
validation adjusted-R

2
 of 0.73 (warm: 0.65 and cold: 0.70). 

The overall bias of the CV predictions (calculated as 
observed-CV predicted values) was -0.3 μg/m

3
, while the 

by site-type bias was -0.8 μg/m
3 

for the traffic sites and 
was -0.3 μg/m

3
 for the background sites. Therefore, also 

when taking into account the CV predictions the 
developed model performs slightly better at background 
sites. The exclusion of all the spatial covariates of the 
annual O3 model (traffic load on the nearest major road, 

length of the major road segments in a buffer of 500 m 
around the fixed O3 monitoring sites, urban green land use 
class in a buffer of 300 m around the fixed sites and the 
bivariate smooth term of fixed sites coordinates) resulted 
in an adjusted-R

2
 of 0.51. On the other hand, the exclusion 

of all temporal covariates resulted in an adjusted-R
2
 of 

0.28. Therefore, all spatial terms together accounted for 
approximately 32.9% in the O3 of the explained variability, 
while all temporal term for 63.2%. 

 

Table 3. Estimates of the linear predictors in the developed O3 spatio-termporal model. Additionally, the model included penalized 

splines for daily average temperature, relative humidity, wind speed, solar radiation and a variable for day count and a bivariate term 

of monitoring site geography 

Variable Coefficient p-value 95% C. I. 

Intercept -1.06 × 10
4
 0.679 (-6.09 × 10

4
, 3.96 × 10

4
) 

Urban green in a buffer of 300 m around  -2.82 × 10
-4

 0.009 (-4.94 × 10
-4

, -7.01 × 10
-5

) 

Road length of major roads in a buffer of 500 m around monitoring sites (m) -2.35 × 10
-3

 0.015 (-4.24 × 10
-3

, -4.52 × 10
-4

) 

Traffic intensity on nearest major road -5.36 × 10
-3

 <0.001 (-6.06 × 10
-3

, -4.65 × 10
-3

) 

Wind direction (daily prevailing) 

   North Reference category 

East 0.55 0.193 (-0.28, 1.38) 

South 1.63 <0.001 (1.20, 2.07) 

West -1.06 0.001 (-1.68, -0.45) 

Cloud coverage (oktas) -0.30 <0.001 (-0.41, -0.19) 

Day of the week 

   Sunday Reference category 

Monday -8.78 <0.001 (-9.40, -8.16) 

Tuesday -8.91 <0.001 (-9.53, -8.29) 

Wednesday -8.72 <0.001 (-9.34, -8.10) 

Thursday -8.08 <0.001 (-8.70, -7.46) 

Friday -8.78 <0.001 (-9.40, -8.16) 

Saturday -3.13 <0.001 (-3.75, -2.51) 

Year 

   2001 Reference category 

2002 6.18 <0.001 (5.04, 7.32) 

2003 11.05 <0.001 (9.06, 13.04) 

2004 14.04 <0.001 (11.48, 16.60) 

2005 20.37 <0.001 (17.06, 23.68) 

2006 26.42 <0.001 (22.23, 30.61) 

2007 33.18 <0.001 (28.11, 38.25) 

2008 44.69 <0.001 (38.72, 50.66) 

2009 50.31 <0.001 (43.40, 57.23) 

2010 46.34 <0.001 (39.94, 52.74) 

2011 44.18 <0.001 (39.06, 49.30) 

2012 37.44 <0.001 (32.64, 42.24) 

2013 29.45 <0.001 (25.59, 33.31) 

2014 23.75 <0.001 (20.29, 27.22) 
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3.4. Discussion 

A LUR model was developed for the greater Athens area, 
that explained the 76% of the spatio-temporal variability 
in annual O3-8h concentrations and the 70% and 71% of 
the spatio-temporal variability in warm- and cold- season 
O3-8h concentrations. The model is a useful tool that can 
be used in different epidemiological study designs. For 
example, in a time series or panel study it can predict daily 
O3-8h values for the time period 2001 to 2014. For 
subsequent use in studies assessing long-term effects an 
average of O3-8h exposure over the time period of 
interest can easily be calculated from daily predicted 
values. Moreover, the model can provide an O3-8h 
estimate for any geographical point in the study area. 
Therefore, in case address history, work address or 
personal time activity patterns are known, it can be used 
to calculate a weighted average of exposure to O3-8h 
concentrations. This may lead towards a decrease in 
exposure measurement error. 

Previous studies in Europe have developed models for O3 
exposure assessment based on a LUR-model approach for 
capturing fine scale patterns of air pollution. Kerckhoffs et 
al. (2015) developed a national fine spatial scale LUR 
model for the Netherlands that explained 71% of the 
spatial variation in summer average O3 concentrations. 
Malmqvist et al. (2014) developed LUR models for two 
cities in Sweden (Malmo and Umea), with model R

2
 values 

of 0.40 and 0.67, respectively. Both studies used similar 
spatial predictor variables as in the present paper (traffic 
intensity, major road length and urban green space). 
A study in Quebec, Canada developed a spatio-temporal 
LUR model that explained 47% of the variability in 
summer ground-level O3 (Adam-Poupart et al., 2014). 
The temporal covariates included in their final model 
(temperature, precipitation, day of the year, year) were 
also similar to our temporal predictors. Subsequently, 
combining the LUR with the Bayesian maximum entropy 
model improved the model fit (R

2
 = 0.65). Recent studies 

on O3 exposure assessment combine CTM outputs with 
LUR models to improve model fit (Akita et al., 2014; De 
Nazelle et al., 2010; Wang et al., 2016). The integration of 
a large-scale CTM model and LUR model, in a study by 
Wang et al. (2016) in the USA, resulted in an improvement 
in the predictability of estimates for O3 (spatio-temporal 
LUR model: R

2
 = 0.75 vs combined model: R

2
 = 0.78). 

While, another study in Canada (Hystad et al., 2012), 
which included dispersion estimated O3 concentrations as 
an additional predictor variable in the LUR model, 
explained 56% of the spatio-temporal variability in O3 
concentrations. The R

2
 values of our models are within the 

range of those previously reported in the literature. 
Furthermore, our model is locally generated and it is able 
to capture fine scale spatio-temporal patterns of O3 
concentrations in contrast to LUR models that have been 
developed over different and large study areas (i.e. 
different countries) (de Hoogh et al., 2018). 

The aim of the present study was to capture the spatio-
temporal variation of O3 concentrations in the greater 
Athens area, Greece. A map of long-term average of O3 

concentrations estimated from the annual model for 
1,000 randomly selected geographical points within the 
study area, shows higher concentrations in the suburban 
areas compared to the urban areas (Figure 4). 

 

Figure 4. Long-term average of O3 (daily 8-hour maximum) 

concentrations estimated by the annual spatio-temporal LUR 

model, at 1,000 randomly selected geographical points. 

This is consistent with urban decrement, since emissions 
of primary pollutants such as NO scavenge O3. Moreover, 
similar maps of long-term average of O3 concentrations 
estimated from the warm- and cold-season model shows 
higher O3 concentrations during the warm season and 
lower O3 concentrations in the cold season (Figures 5 and 
6) 

 

Figure 5. Long-term average of O3 (daily 8-hour maximum) 

concentrations estimated by the warm season spatio-temporal 

LUR model, at 1,000 randomly selected geographical points 
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Figure 6. Long-term average of O3 (daily 8-hour maximum) 

concentrations estimated by the cold season spatio-temporal 

LUR model, at 1,000 randomly selected geographical points 

This is consistent with the known O3 seasonal variation 
pattern. These findings suggest that the developed 
models account for both spatio-temporal O3 
concentrations variation and therefore may decrease 
exposure measurement error in epidemiological studies. 

The declining trend observed in concentration levels of O3 
in the study area is linked to Greece's financial crisis from 
2010, which resulted in a 100% rise in petrol prices, 
followed by an immediate traffic decrease of about 10% 
(MITN). However, despite this decreasing trend, climate 
change could lead to an increase in the levels of O3 
concentrations. Temperature and O3 formation are 
strongly dependent. As temperatures rise and stay 
elevated for longer periods of time (EPA, 2009), it is 
probable that the number of days that are conducive to 
O3 formation will increase. Therefore, variables that 
capture long-term trends should be considered as possible 
predictors during the model development procedure. 

A limitation of our study is that we used LOOCV in order 
to validate our developed models, rather than applying 
other validation methods such as k-fold cross validation. 
This was due to the number of available air pollution 
monitoring sites located in the study area and may led to 
overestimation of the predictive ability of the models 
(Wang et al., 2013). Also, a disadvantage was that daily O3 
concentrations estimated from a CTM were not available 
for the study area and time period. Hence, we could not 
apply a combined modeling approach as in other studies 
(Hystad et al., 2012; Wang et al., 2016) which suggest that 
exposure estimates at a location which is not close to a 
monitoring site may be improved by applying a hybrid 
model approach. 

4. Conclusions 

We developed and assessed the validity of an annual, 
warm- and cold- season spatio-temporal LUR model for 

O3-8h, for the greater Athens area, Greece. Our developed 
models are capable of providing fine-scale daily O3 
concentration estimates, for a 14-year period and for an 
urban area that is the most populated in Greece 
(3,752,973 inhabitants; according to Census 2011, EL. 
STAT.). Subsequently, such predictions can be used in 
health effects analysis of air pollution. Moreover, a 
weighted average of the overall exposure to O3-8h can be 
calculated for each participant in case address history or 
personal time activity diary information is available. Since 
our developed models predict daily values, they can be 
used for either short-term or long-term exposure health 
effects analysis, the latter by averaging the daily estimates 
over the time interval of interest. Therefore, spatio-
temporal LUR modeling is a promising method to predict 
O3 annual and warm- or cold- season spatio-temporal 
variability with adequate accuracy for use in 
epidemiological studies. 
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