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ABSTRACT 24 

Spatio-temporal methods have been developed for the estimation of concentrations of pollutants 25 

such as particulate matter and nitrogen dioxide for application in epidemiological studies. A 26 

limited number of city-specific spatio-temporal ozone (O3) models have been proposed until today. 27 

Our aim was to develop a spatio-temporal land use regression (LUR) model that estimates daily 28 

concentrations of O3, for the whole year, as well as the warm (April-September) and cold season 29 

(October-March), within the greater Athens area. We developed models using a semiparametric 30 

approach including linear and smooth functions of spatial and temporal covariates and a bivariate 31 

smooth thin plate function. The final set of explanatory variables was selected based on the 32 

adjusted-R2. We tested the final model in temporal and spatial terms following a leave-one out 33 

monitor approach. The adjusted-R2 in the leave-one-out cross validation was 0.73 for the annual 34 

model (warm: 0.65 and cold: 0.70). The spatial terms in our annual model explained 32.9% and 35 

the temporal 63.2% of the variability in O3. The developed models showed good validity when 36 

comparing predicted and observed measurements for the 2015 data. Spatio-temporal LUR 37 

modeling provides a useful tool for estimating O3 spatio-temporal variability with adequate 38 

accuracy for subsequent use in epidemiological studies.   39 

 40 
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pollution 42 
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1. Introduction 44 

Epidemiological studies investigating the effects of air pollution exposure on health have 45 

increasingly been relying on modelling estimation techniques to provide an individualized 46 

exposure, primarily at participant home addresses and in large study samples (Beelen et al, 2014; 47 

Dimakopoulou et al., 2014; Kirrane et al, 2015; Lee et al, 2016; Ostro et al., 2015; Raaschou-48 

Nielsen et al., 2013). The advantage of these exposure assessment methods is that they take into 49 

account the variability of air pollution concentrations at fine spatial scale, leading to a possible 50 

decrease in exposure measurement error and increase in statistical power.   51 

 52 

Among the most common methods applied to estimate exposure concentrations are chemical 53 

transport models (CTM) (Jerret et al., 2005), land use regression models (LUR) (Beelen et al, 54 

2013; Eeftens et al., 2012; Gryparis et al., 2007; Gryparis et al., 2014) and models that use satellite-55 

based aerosol optical depth (AOD) data (Dadvand et al, 2014; Kloog et al 2014). All of the 56 

aforementioned approaches can be extended to account for both the temporal and spatial 57 

concentration variations. Therefore, they are able to predict both short- or long-term exposure 58 

estimates, a useful for different epidemiological study designs. Such spatio-temporal models have 59 

been developed primarily for particles (PM) and nitrogen dioxide (NO2) and have been applied in 60 

epidemiological studies in the USA (Maynard et al., 2007; Puett et al., 2011) and in Europe 61 

(Dadvand et al., 2013; Katsoulis et al., 2013; Dimakopoulou et al., 2017). The association between 62 

short-term O3 exposure and health is considered as serious as the adverse health effects of PM 63 

exposure (Brunekreef et al., 2012). Moreover, there is a recent debate about the effects of long-64 

term exposure to O3 on health (Schwartz, 2016). However, despite these issues only few studies 65 

have developed models for predicting ozone (O3) concentrations. 66 



 67 

O3 is a main component of the photochemical air pollution cloud and a powerful oxidising agent 68 

(EEA 2011). It is an extremely reactive gas created by the reaction of traffic-related pollutants, 69 

such as nitrogen oxides (NOx) and volatile organic compounds (VOCs) with sunlight (WHO, 70 

2014). O3 is a secondary pollutant with spatio-temporal variations. O3 concentrations are lower in 71 

urban areas compared with the suburbs and rural areas. This is because emissions of NO tend to 72 

scavenge O3 and convert it into NO2 and oxygen (O2) (Stedman & Kent 2008). O3 variation also 73 

depends on meteorology (mainly on solar radiation but also on ambient temperature, relative 74 

humidity and wind speed) with O3 concentrations displaying a summer maximum in urban areas 75 

(Monks, 2000). 76 

 77 

Previous studies have shown that short-term exposure to O3 has adverse effects on pulmonary 78 

function, respiratory symptoms, while it is associated with increased medication usage, morbidity 79 

and mortality (WHO 2008,2013; EPA 2009; Karakatsani et al. 2017; Samoli et al. 2017). On the 80 

other hand, the evidence on mortality effects of long-term exposure to O3 is inconclusive (Jerrett 81 

et al. 2009, Brunekreef et al. 2012, Atkinson et al. 2016), while recent studies suggest an 82 

association between long-term exposure and reduced lung capacity and increased asthma incidence 83 

(WHO 2013). 84 

 85 

Only few models have been developed for O3 exposure assessment in epidemiological studies. 86 

Adam-Poupart et al. (2014) developed three different spatio-temporal models (a LUR mixed 87 

effects model, a Bayesian maximum entropy (BME) and a kriging method model) to predict 88 

summer ground-level O3 in Quebec, Canada. They compared the models with leave-one-out cross 89 



validation (LOOCV) and found that the combination of LUR and BME methods reduced the 90 

estimation errors. A recent study in the USA (Wang et al., 2016) improved the accuracy of the 91 

spatio-temporal estimates of O3 in the Los Angeles Basin, by including a smoothed spatial CTM 92 

output in their spatio-temporal LUR model. To our knowledge, only spatial LUR models have 93 

been developed in Europe in order to assess O3 exposure for long-term epidemiological studies in 94 

Sweden (Malmqvist et al., 2014) and the Netherlands (Kerckhoffs et al., 2015).  95 

 96 

In the present paper we develop and validate a spatio-temporal LUR model for O3 concentrations, 97 

using data from 2001 to 2014, which estimates daily concentrations of O3, for the whole year, 98 

warm (April 1st to 30th September) and cold season (October 1st and 31st March), within the greater 99 

Athens area, Greece. Our goal is to develop a useful tool that can predict daily maximum 8-hour 100 

average O3 concentrations in urban settings and that can be used in various epidemiological study 101 

designs.   102 

 103 

2. Materials and Methods  104 

2.1 O3 monitoring data 105 

We obtained hourly ground-level O3 observations for 2001 through 2014 from the fixed air 106 

pollution monitoring network, run by the Ministry of Environment and Energy 107 

(http://www.ypeka.gr/) in the greater Athens area. We calculated the daily maximum 8-hour 108 

average ozone concentration to represent daily exposure and included all available data. All sites 109 

used the same monitoring technology and complied with the E.U. Directives (Directive, 110 

2008/50/EC). UV absorption was used to measure O3. In Athens, the number of O3 monitoring 111 

http://www.ypeka.gr/


stations ranged from 9 to 12 stations during 2001 – 2014, resulting in 48,137 total observations 112 

(station-days). Figure 1 shows the study area and the geographical location of the monitoring sites. 113 

 114 

 115 

Figure 1. Map of the geographical location of the 12 fixed monitoring sites operated by the 116 

Ministry of Environment and Energy, at the greater Athens area, Greece and the land use data 117 

included in the developed model.  118 

 119 

 120 



2.2 Road density data 121 

We used traffic counts from field measurements carried out by the Ministry of Infrastructure, 122 

Transport and Networks (MITN) (http://www.yme.gr/), traffic data from projects conducted by 123 

the municipality authorities and our own on-site measurements. The integration method of all the 124 

available traffic data for the study area and the validation procedures applied have been described 125 

in detail elsewhere (Gryparis et al., 2014).  126 

 127 

2.3 Meteorological data 128 

We obtained meteorological data from the fixed meteorological site located at the center of Athens 129 

(National Observatory of Athens, Thissio) for the years 2001 – 2014. We extracted mean daily 130 

temperature (oC), relative humidity (%), wind speed (m/s), barometric pressure (mb), total solar 131 

radiation (Wh/m2/day), average solar radiation between hours 4am and 7pm (Wh/m2/day), average 132 

solar radiation between hours 10 am and 3pm (Wh/m2/day), cloud coverage (oktas) and wind 133 

direction (north, south, east, west).  134 

 135 

2.4 Other predictor variables for spatial variability 136 

In total, 87 potential predictor variables of O3 concentrations spatial variability were extracted by 137 

conducting GIS analyses. These variables are traffic-related, characterize land use and population 138 

density in different buffers around the fixed air pollution monitoring sites. The geographical 139 

coordinates of each monitoring site were obtained through the Ministry of Environment and 140 

Energy. The buffer zones used for traffic-related variables were: 25, 50, 100, 300, 500 and 1000 141 

m and were selected to take account of known dispersion patterns (Beelen et al., 2013). Total 142 

traffic load was calculated as length of the road segment multiplied by traffic intensity and divided 143 

http://www.yme.gr/


by road segment for all roads within each buffer zone. We also calculated the length of the road 144 

segments in different buffer zones around the fixed monitoring sites, traffic intensity on the nearest 145 

road to the fixed monitoring site and inverse distance to the nearest road to the fixed monitoring 146 

site. Moreover, we extracted the same traffic variables by including only major roads (road-width 147 

category ≥ 5). Land use data was available from CORINE (COordination and INformation on the 148 

Environmental programme, initiated by the European Commission) for year 2000. Definitions of 149 

the ESCAPE study were used (Beelen et al., 2013) to characterize land use (high density residential 150 

areas, low density residential areas, industry, port, urban green and semi natural plus forested 151 

areas). In addition, we used building and population density data for 2001 (data obtained from the 152 

Hellenic Statistical Authority – EL. STAT.). The buffer zones used for land use variables were 153 

100, 300, 500, 1000 and 5000 m. Areas of different land cover use, building and population density 154 

were calculated in m2, within each buffer zone. Finally, the altitude of the monitoring sites was 155 

obtained from the Ministry of Environment and Energy.  156 

 157 

2.5 Development of models 158 

We developed semi-parametric spatio-temporal land use regression models to predict O3 159 

concentrations measured at fixed monitoring sites for the whole year, warm and cold season. The 160 

model development methods have been described in detail elsewhere (Gryparis et al., 2014). In 161 

brief, we developed spatio-temporal semiparametric models, of the form: 162 
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where log.pollij is the log-transformed measurement of O3 at location i on day j, fl(.) l=1,2,…,q, is 164 

an unspecified smooth function reflecting the non-linear effect of covariate sl,ij on log-transformed 165 

pollutant’s concentration log.pollij, sl,ij stands for the lth smoothed covariate, geogij=(latitudei , 166 



longitudej), h is a bivariate smooth function of geographical coordinates (latitude and longtitude), 167 

and Wij is the vector of  covariates that have a linear effect on log.pollij. In summary, our model 168 

consists of covariates that have either a linear effect or a smooth effect on the outcome and of a 169 

bivariate smooth function of geography accounting for the remaining residual correlation. We 170 

assume that the errors εij are independent normal variables, with mean 0 and constant variance σ2
ε. 171 

Degrees of freedom were estimated via REML.  172 

 173 

The final variables included in the annual model were different years (2002 to 2014; 2001 is the 174 

reference category), the day of the week (Monday to Saturday; Sunday is the reference category), 175 

wind direction (east, south, west; north is the reference category) and cloud coverage (oktas). Also, 176 

we used penalized splines to model temperature (3 degrees of freedom), relative humidity (3 177 

degrees of freedom), wind speed (3 degrees of freedom), average solar radiation between 10 am 178 

and 3pm (8 degrees of freedom), day count (10 degrees of freedom). A bivariate smooth function 179 

(thin plate spline) of geography was used to account for remaining residual spatial correlation. 180 

Traffic load on the nearest major road (veh day-1 m), length of the major road segments (m) in a 181 

buffer of 500m around the fixed O3 monitoring sites and Urban Green land use class (m2) in a 182 

buffer of 300m around the fixed sites, were expressed as linear terms.  183 

 184 

The final spatio-temporal LUR model for warm & cold season O3 concentrations accounted for 185 

the same variables at the temporal scale as the annual model. Significant spatial covariates were 186 

for warm season model: traffic load on the nearest major road (veh day-1 m), urban green land 187 

cover in a buffer of 100 meters (m2), inverse distance of the monitoring sites to the nearest major 188 

road (included as a non-linear term; m-1), around each monitoring site and geographical location 189 



(longitude, latitude) of the monitoring sites; for cold season model: traffic load on the nearest major 190 

road (veh day-1 m), household density (N) in a buffer of 1000 meters around each monitoring site, 191 

nitrogen dioxide concentrations (μg/m3) and geographical location (longitude, latitude) of the 192 

monitoring sites. 193 

 194 

To check whether there was any remaining spatial or temporal residual autocorrelation, we used 195 

the partial autocorrelation function plots (Box et al., 2008), for each monitoring site separately and 196 

calculated Moran's I (Moran, 1950) for all the days of the study period (2001-2014), respectively.  197 

 198 

2.6 Model validation 199 

We performed both temporal and spatial validation as described in Gryparis et al (2014). Briefly, 200 

we calculated the overall and by-site bias by comparing the daily O3 predictions with the 201 

measurements for the year 2015 (not used in the model development) at the same fixed site 202 

monitoring locations. We validated our developed models with leave-one-out cross validation 203 

(LOOCV). Furthermore, we estimated the percentage explained spatial and temporal variability of 204 

the annual model’s, by excluding all temporal and spatial terms respectively and comparing 205 

adjusted-R2 values.  206 

 207 

All analysis was conducted using the R statistical software (version 2.10.1; R Development Core 208 

Team 2009) and the R library "SemiPar" version 1.0-2. 209 

 210 

3. Results and Discussion  211 

3.1 Distribution of O3 concentrations and covariates  212 



Data on O3 concentrations were available from a maximum of 12 fixed stations during the period 213 

2001 to 2014. Table 1 presents the summary statistics for the available 8-hour maximum O3 data 214 

for each fixed site. Also, a description of site type, distance to nearest road segment and altitude 215 

of fixed sites is given in Table 1. Annual concentrations presented an increase in 2011 followed 216 

by a decline by about 7% in 2008-14. Monitoring sites at traffic locations showed significantly (p-217 

value<0.001) lower mean O3 concentrations compared to background locations (50.7μg/m3 vs 75.0 218 

μg/m3, respectively). The spatial variability of the average O3 concentrations in the study area was 219 

larger compared to the temporal variability (per site range: -36.9% to 59.7% &  -11.4% to 14.1% 220 

of the overall mean value, respectively).  221 

 222 



Table 1. Description of the fixed monitoring sites operated by the Ministry of Environment and Energy in the greater Athens area and 

summary statistics for the available 8-hour maximum O3 measurements by site during 2001 - 2014. 

 

 

  

Distance (m) to the 

nearest   O3 (μg/m
3) 

Site ID Site Type street major street 

Altitude 

(a.m.s.l.)* 

Mean SD 
25% 

percentile 

Median 

 

75% 

percentile 

 

 

Min-Max 

ATH Urban Street Site 12 12 100 48 26.0 27 46 66 2 – 171 

GEO Suburban – Industrial 30 70 40 63 30.7 38 63 87 1 – 158 

LYK Suburban 50 50 234 82 33.5 56 83 107 1 – 217 

MAR Urban street site 30 150 170 78 30.6 54 76 100 1 – 195 

SMY Urban background 10 100 50 82 34.2 56 83 110 2 – 224 

PAT Urban Street Site 3 3 105 28 20.6 11 22 39 1 – 105 

PIR1 Urban Street Site 15 15 20 48 26.0 27 45 66 2 – 142 

PER Urban background 8 80 80 77 31.5 51 78 102 1 – 192 

AGP Suburban background 200 200 290 94 31.3 69 93 117 9 – 218 



ZOG Suburban background 800 800 245 83 30.0 61 84 104 1 – 217 

PIR2 Urban background - - 25 57 29.8 35 54 74 3 – 160 

GAL Suburban background 7 75 154 75 35.7 48 74 99 1 – 211 

*above mean sea level 



Table 2 presents summary statistics for the meteorological covariates included in the final models. 

In addition to the geographical location of the monitoring sites, Figure 1 also shows the “Urban 

Green” land cover class available from CORINE and the major road network in the study area. 

 

Table 2. Summary statistics for the meteorological data (daily values; 2001-2014) from the 

National Observatory site in the center of the greater Athens area.  

 

Meteorological variables Mean (SD) Min-Max 

Temperature (oC) 19 (7.4) -7 – 36 

Relative humidity (%) 64 (14.7) 24 – 100 

Wind speed (m/sec) 3.2 (1.6) 0.3 – 12.7 

Solar radiation between 4am to 7pm (Wh/m2/day) 289 (146.0) 0 – 554 

Cloud coverage (oktas) 4 (2.5) 0 - 8 

Wind direction (daily prevailing) Frequency (%)1 

North 2,289 51.3 

East 205 4.6 

South 1,554 34.9 

West 410 9.2 

1Number of days within the study period 2001-2014, with prevailing wind direction and 

corresponding percentage.   

  



3.2 Model selected, Spatial and temporal variability and model performance 

Table 3 summarizes the estimated coefficients for the final set of linear predictors included in the 

annual O3 spatio-temporal LUR model. Traffic load on the nearest major road, length of the major 

road segments in a buffer of 500 m around the fixed O3 monitoring sites, urban green land use 

class in a buffer of 300 m around the fixed O3 monitoring sites, cloud coverage and day of the 

week (compared to Sunday= reference category) were negatively associated with O3 levels. A 

significant annual incline in O3 concentrations was shown, compared to year 2001 (reference 

category). The lowest O3 concentrations were associated with west winds. The adjusted-R2 of the 

developed annual model was 0.76, while for the warm and cold season it was 0.70 and 0.71, 

respectively. Model assumptions were not violated. Inspection of the PACF plots separately per 

site did not reveal any major temporal residual autocorrelation. There was no significant spatial 

autocorrelation in the residuals of the models, since only 10% of the days from the 14-year study 

period resulted in Moran’s I p-value< 0.05. 

 

Table 3. Estimates of the linear predictors in the developed O3 spatio-termporal model.  

Additionally, the model included penalized splines for daily average temperature, relative 

humidity, wind speed, solar radiation and a variable for day count and a bivariate term of 

monitoring site geography.   

 

Variable Coefficient p-value 95% C. I. 

Intercept -1.06x104 0.679 (-6.09x104 , 3.96x104) 

Urban green in a buffer of 300m 

around  -2.82x10-4 0.009 (-4.94x10-4 , -7.01 x10-5) 



Road length of major roads in a buffer 

of 500m  around monitoring sites (m) -2.35x10-3 0.015 (-4.24x10-3 , -4.52x10-4) 

Traffic intensity on nearest major road -5.36x10-3 <0.001 (-6.06x10-3 , -4.65x10-3) 

Wind direction (daily prevailing) 

   
North Reference category 

East 0.55 0.193 (-0.28 , 1.38) 

South 1.63 <0.001 (1.20 , 2.07) 

West -1.06 0.001 (-1.68 , -0.45) 

Cloud coverage (oktas) -0.30 <0.001 (-0.41 , -0.19) 

Day of the week 

   
Sunday Reference category 

Monday -8.78 <0.001 (-9.40 , -8.16) 

Tuesday -8.91 <0.001 (-9.53 , -8.29) 

Wednesday -8.72 <0.001 (-9.34 , -8.10) 

Thursday -8.08 <0.001 (-8.70 , -7.46) 

Friday -8.78 <0.001 (-9.40 , -8.16) 

Saturday -3.13 <0.001 (-3.75 , -2.51) 

Year 

   
2001 Reference category 

2002 6.18 <0.001 (5.04 , 7.32) 

2003 11.05 <0.001 (9.06 , 13.04) 

2004 14.04 <0.001 (11.48 , 16.60) 

2005 20.37 <0.001 (17.06 , 23.68) 



2006 26.42 <0.001 (22.23 , 30.61) 

2007 33.18 <0.001 (28.11 , 38.25) 

2008 44.69 <0.001 (38.72 , 50.66) 

2009 50.31 <0.001 (43.40 , 57.23) 

2010 46.34 <0.001 (39.94 , 52.74) 

2011 44.18 <0.001 (39.06 , 49.30) 

2012 37.44 <0.001 (32.64 , 42.24) 

2013 29.45 <0.001 (25.59 , 33.31) 

2014 23.75 <0.001 (20.29 , 27.22) 

 

 

3.3 Model validation 

The predicted values were compared with the actual O3 measurements for the year 2015 (not used 

in the model building procedure), per fixed monitoring site. We found that the daily mean model 

predictions were on average higher compared to the daily mean observed values (Figure 2). The 

overall bias of the O3 prediction (calculated as observed-predicted values for year 2015) was -2.5 

μg/m3, while the by site-type bias was -7.3 μg/m3 for the traffic sites and was -2.6μg/m3 for the 

background sites. Therefore, the developed model seems to perform better for background 

monitors.  

 

 

 



 

Figure 2. Plot of the daily average O3-8h (μg/m3) observed (solid line) and predicted (dash line) 

values for the year 2015. 

 

Figure 3 shows the error bar plot of the annual mean observed and predicted O3 values, for 2015, 

per fixed monitoring site. A couple of sites (i.e. ATH, PIR1, SMY) displayed differences between 

measured and estimated values.  

 

 

 

 

 



 

Figure 3. Error bar for the 2015 annual mean O3-8h (μg/m3) observed (black color) & predicted 

(grey color) values along with their 95% C.I., by monitoring site. 

 

 

 

 



LOOCV of the O3 annual model resulted in a cross-validation adjusted-R2 of 0.73 (warm: 0.65 and 

cold: 0.70). The overall bias of the CV predictions (calculated as observed- CV predicted values) 

was -0.3 μg/m3, while the by site-type bias was -0.8 μg/m3 for the traffic sites and was -0.3μg/m3 

for the background sites. Therefore, also when taking into account the CV predictions the 

developed model performs slightly better at background sites. The exclusion of all the spatial 

covariates of the annual O3 model (traffic load on the nearest major road, length of the major road 

segments in a buffer of 500m around the fixed O3 monitoring sites, urban green land use class in a 

buffer of 300m around the fixed sites and the bivariate smooth term of fixed sites coordinates) 

resulted in an adjusted-R2 of 0.51. On the other hand, the exclusion of all temporal covariates 

resulted in an adjusted-R2 of 0.28. Therefore, all spatial terms together accounted for 

approximately 32.9% in the O3 of the explained variability, while all temporal term for 63.2%.  

 

3.4 Discussion 

A LUR model was developed for the greater Athens area, that explained the 76% of the spatio-

temporal variability in annual O3-8h concentrations and the 70% and 71% of the spatio-temporal 

variability in warm- and cold- season O3-8h concentrations. The model is a useful tool that can be 

used in different epidemiological study designs. For example, in a time series or panel study it can 

predict daily O3-8h values for the time period 2001 to 2014. For subsequent use in studies assessing 

long-term effects an average of O3-8h exposure over the time period of interest can easily be 

calculated from daily predicted values. Moreover, the model can provide an O3-8h estimate for 

any geographical point in the study area. Therefore, in case address history, work address or 

personal time activity patterns are known, it can be used to calculate a weighted average of 



exposure to O3-8h concentrations. This may lead towards a decrease in exposure measurement 

error.  

 

Previous studies in Europe have developed models for O3 exposure assessment based on a LUR-

model approach for capturing fine scale patterns of air pollution. Kerckhoffs et al (2015) developed 

a national fine spatial scale LUR model for the Netherlands that explained 71% of the spatial 

variation in summer average O3 concentrations. Malmqvist et al (2014) developed LUR models 

for two cities in Sweden (Malmo and Umea), with model R2 values of 0.40 and 0.67, respectively. 

Both studies used similar spatial predictor variables as in the present paper (traffic intensity, major 

road length and urban green space). A study in Quebec, Canada developed a spatio-temporal LUR 

model that explained 47% of the variability in summer ground-level O3 (Adam-Poupart et al., 

2014). The temporal covariates included in their final model (temperature, precipitation, day of 

the year, year) were also similar to our temporal predictors. Subsequently, combining the LUR 

with the Bayesian maximum entropy model improved the model fit (R2=0.65). Recent studies on 

O3 exposure assessment combine CTM outputs with LUR models to improve model fit (Akita et 

al., 2014; De Nazelle et al., 2010; Wang et al., 2016). The integration of a large-scale CTM model 

and LUR model, in a study by Wang et al (2016) in the USA, resulted in an improvement in the 

predictability of estimates for O3 (spatio-temporal LUR model: R2=0.75 vs combined model: 

R2=0.78). While, another study in Canada (Hystad et al., 2012), which included dispersion 

estimated O3 concentrations as an additional predictor variable in the LUR model, explained 56% 

of the spatio-temporal variability in O3 concentrations. The R2 values of our models are within the 

range of those previously reported in the literature. Furthermore, our model is locally generated 

and it is able to capture fine scale spatio-temporal patterns of O3 concentrations in contrast to LUR 



models that have been developed over different and large study areas (i.e. different countries) (de 

Hoogh et al., 2018).  

 

The aim of the present study was to capture the spatio-temporal variation of O3 concentrations in 

the greater Athens area, Greece. A map of long-term average of O3 concentrations estimated from 

the annual model for 1,000 randomly selected geographical points within the study area, shows 

higher concentrations in the suburban areas compared to the urban areas (Figure 4). 

 

 

Figure 4. Long-term average of O3 (daily 8-hour maximum) concentrations estimated by the 

annual spatio-temporal LUR model, at 1,000 randomly selected geographical points. 



This is consistent with urban decrement, since emissions of primary pollutants such as NO 

scavenge O3. Moreover, similar maps of long-term average of O3 concentrations estimated from 

the warm- and cold-season model shows higher O3 concentrations during the warm season and 

lower O3 concentrations in the cold season (Figures 5 and 6).  

 

 

Figure 5. Long-term average of O3 (daily 8-hour maximum) concentrations estimated by the warm 

season spatio-temporal LUR model, at 1,000 randomly selected geographical points. 

 



 

Figure 6. Long-term average of O3 (daily 8-hour maximum) concentrations estimated by the cold 

season spatio-temporal LUR model, at 1,000 randomly selected geographical points.  

 

This is consistent with the known O3 seasonal variation pattern. These findings suggest that the 

developed models account for both spatio-temporal O3 concentrations variation and therefore may 

decrease exposure measurement error in epidemiological studies. 

 

The declining trend observed in concentration levels of O3 in the study area is linked to Greece's 

financial crisis from 2010, which resulted in a 100% rise in petrol prices, followed by an immediate 

traffic decrease of about 10% (MITN). However, despite this decreasing trend, climate change 

could lead to an increase in the levels of O3 concentrations. Temperature and O3 formation are 



strongly dependent. As temperatures rise and stay elevated for longer periods of time (EPA, 2009), 

it is probable that the number of days that are conducive to O3 formation will increase. Therefore, 

variables that capture long-term trends should be considered as possible predictors during the 

model development procedure. 

 

A limitation of our study is that we used LOOCV in order to validate our developed models, rather 

than applying other validation methods such as k-fold cross validation. This was due to the number 

of available air pollution monitoring sites located in the study area and may led to overestimation 

of the predictive ability of the models (Wang et al., 2013). Also, a disadvantage was that daily O3 

concentrations estimated from a CTM were not available for the study area and time period. Hence, 

we could not apply a combined modeling approach as in other studies (Hystad et al., 2012; Wang 

et al., 2016) which suggest that exposure estimates at a location which is not close to a monitoring 

site may be improved by applying a hybrid model approach.  

 

Conclusions 

We developed and assessed the validity of an annual, warm- and cold- season spatio-temporal 

LUR model for O3-8h, for the greater Athens area, Greece. Our developed models are capable of 

providing fine-scale daily O3 concentration estimates, for a 14-year period and for an urban area 

that is the most populated in Greece (3,752,973 inhabitants; according to Census 2011, EL. 

STAT.). Subsequently, such predictions can be used in health effects analysis of air pollution. 

Moreover, a weighted average of the overall exposure to O3-8h can be calculated for each 

participant in case address history or personal time activity diary information is available. Since 

our developed models predict daily values, they can be used for either short-term or long-term 



exposure health effects analysis, the latter by averaging the daily estimates over the time interval 

of interest. Therefore, spatio-temporal LUR modeling is a promising method to predict O3 annual 

and warm- or cold- season spatio-temporal variability with adequate accuracy for use in 

epidemiological studies. 
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