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ABSTRACT 

Particulate matter (PM), classified according to aerodynamic diameter, is one of the harmful 

pollutants causing health damaging effects. It is considered as cancerogenic by the World Health 

Organization (WHO) because of the substances found in the chemical composition of PM. In this 

study, short-term prediction of PM2.5 pollution at 1, 2 and 3 hours was modelled using deep learning 

methods. Three deep learning algorithms and the combination thereof were evaluated: Long-short 

term memory units (LSTM), recurrent neural networks (RNN) and gated recurrent unit (GRU). Air 

Quality Monitoring Stations of the Ministry of Environment and Urbanization of Turkey were utilized 

to obtain the data. Specifically, meteorological and air pollution data were obtained from a monitoring 

station located in Keçiören District of Ankara. Several trials were conducted using different 

combinations of RNN, GRU and LSTM models. Pollutant concentrations and meteorological factors 

were integrated into the model as input parameters to predict PM2.5 concentration for 1,2 and 3 hours. 

Best results with R2 of 0.83, 0.7 and 0.63 for 1-, 2-, and 3-hour predictions, respectively, were 

obtained by using a combination of GRU and RNN models. The results of this study are promising 

for explaining the effect of different deep learning models on prediction performance.   

Keywords: Air pollution, particulate matter, deep learning, prediction, GRU, RNN 
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1. Introduction 

The chemical compounds that lower the air quality are usually referred to as air pollutants. These 

compounds may be found in the air in two major forms: in a gaseous form and in a solid form 

(suspended in air), the latter referred to as Particular Matter (PM). Especially the pollutants which are 

not originally found in the atmosphere such as dust, gaseous, smell, smoke and fume may affect the 

health of all living creatures negatively (Güngör et al., 2013). Although there are several air pollutants 

such as sulphur oxides (SOx), nitrogen oxides (NO), carbon monoxide (CO)  in the atmosphere which 

are problematic for all ecosystem, particulate matter (PM) is one of the mostly important air pollutants 

(Vesilind et al. 2010; Boubel et al., 1994).   

PM is especially dangerous because of the negative effects on respiratory and nervous system 

(Krzyzanowsk and Schwela, 1999). PM pollutants are mainly classified according to their 

aerodynamic diameter. Especially PM10 (particles having aerodynamic diameter between 10 µm and 

2.5 µm) and PM2.5 (particles having aerodynamic diameter smaller than 2.5 µm) have a great 

importance on assessment of particulate matter in the air (Schnelle et al., 2015). PM2.5 may stay 

suspended in the air during months while PM10 may settle in a few hours (World Health Organization, 

2005). Moreover, PM10 may be filtered in upper respiratory tract while PM2.5 may reach to bronchus 

and create more serious health problems such as heart attack, asthma, premature birth, decrease in 

lung functions and even death (Karakas, 2015; Wang et al., 2016). In addition to physical features, 

chemical features of PM pollution are also important. The cancerogenic and toxic substances may be 

carried on them. Given the health hazards of air pollution, it is important to monitor and predict its 

level in the atmosphere. This study focuses on the short-term prediction of PM2.5 pollution using deep 

learning architectures.  

Deep learning is one of the emerging fields of artificial intelligence. Artificial neural networks, which 

is a machine learning class, have been widely used to solve complex world problems (Basheer and 

Hajmeer, 2000; Ayturan et al., 2018). Unfortunately, their prediction performance has been not so 

promising because of the problems in training of large data sets and disappearance of gradian (Goh 

https://www.sciencedirect.com/science/article/pii/B978012352335850082X#!
https://www.sciencedirect.com/science/article/pii/B978012352335850082X#!
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et al., 2017). Deep learning is a sub-class of machine learning and it carries machine learning one 

step beyond. Deep learning may solve problems by using more layers and bigger data sets and 

processing all layers simultaneously in order to get more accurate results (LeCun et al., 2015). Most 

of the deep learning models have been developed with respect to the application of steps such as input 

and output vector determination, transfer function determination, network structure selection, hidden 

layer determination, weight features and learning algorithm determination (Wang, 2003).  

All these positive properties of deep learning make it suitable for modeling and prediction of air 

pollution. A wide variety of models can be used for this purpose such as long-short term memory 

units (LSTM), recurrent neural networks (RNN), air quality estimation method based on deep 

learning (STDL), deep air learning (DAL), convolutional neural networks (CNN) and gated recurrent 

unit (GRU). There have been several studies on air pollution modelling using deep learning methods. 

Li et al. (2016) estimated PM2.5 using an STDL based model. They used batch auto coders and were 

able to obtain highly efficient results. In another study, Zhang et al. 2016 modelled PM2.5, and PM10 

using CNN and were also able to obtain low average error values. In addition, DAL method for the 

Beijing city of China was modeled by placing air pollutants and meteorological data from different 

stations in each divided section using city grid method. Interpolation and property analysis were also 

added to the models and highly efficient models were developed (Qui et al., 2018). According to a 

study conducted in South Korea, meteorological data obtained from different stations were used to 

predict PM2.5 by LSTM method. The long-term prediction results of these models were promising 

(RMSE of 12.41 for 8-hour prediction and 13.54 for 24-hour prediction) (Bui et al., 2018). Moreover, 

Kok et al.  (2017) studied O3 and NO2 prediction for Aarhus and Brasov cities using LSTM and they 

were able to obtain successful prediction results with low RMSE values (3.26 for O3 and 3.79 for 

NO2). Another study was conducted for Beijing city of China using LSTM based model. PM2.5 

concentration was predicted for 5, 10 and 120 hours and the results were promising (RMSE of 44.15 

for 5-hour and 108.4 for 120-hour prediction, respectively) (Reddy et al., 2017). Athira et al. (2018) 
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used the LSTM, RNN and GRU to predict PM2.5 pollution, their results showed that GRU based 

models performed better relative to other models.  

This study explores the use of RNN, GRU and LSTM models and their combinations to determine 

the optimal strategy for short-term prediction of PM2.5 pollution in Keçiören District of Ankara. The 

layout of the paper is as follows: Section 2 describes in detail the study area, the meteorological and 

pollution data used and the methodology.  It includes a description of the RNN, GRU and LSTM 

model application and selection procedures. Section 3 provides a discussion of prediction results, and 

finally section 4 summarizes the conclusions of the study.   

2. Material and Methods 

2.1. Study area 

Keçiören district of Ankara province of Turkey was selected as the study area. Keçiören is the second 

largest district of Ankara with respect to population. It has a surface area of 189 km2 and altitude of 

950 m. According to the population census in 2016, the population of the district was determined as 

903 565 people. It is also one of the most crowded districts of Turkey and its population is more than 

several cities in Turkey. Because of the high population density, low income and excess usage of coal 

for heating purposes, it was selected as study area. Figure 1 shows a map of Turkey, Ankara, Keçiören 

and the location of air quality monitoring station. This station belongs to the Ministry of Environment 

and Urbanization so the monitoring and maintaining of the measurement devices are suitable for the 

accurate measurements. 

2.2.Data 

Data were obtained from a publicly available data sharing system of Turkey Ministry of Environment 

and Urbanization (MEU, 2019). The hourly data of two years’ time period (2017-2018) was taken 

from this system. The dataset was arranged in cloud environment provided by Google Colab. This 

data set only represents the meteorological and air pollution parameters measured in that area. There 

were some missing parameters present in this data together with the extreme values in some 

parameters (i.e. high wind speeds in the storms, high or low temperature degrees, high pollutant 
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concentrations because of the traffic, construction etc.). Therefore, firstly unnecessary information 

and missing variables were removed. Next, the data was normalized with max-min normalization 

before integration into the model so as to standardize values and increase the model performance. A 

total of 17 parameters used as inputs including meteorological and air pollution variables for the prior 

hours and 1 output air pollution parameter for the future (forecast) hours. Table 1 presents the input 

and output parameters used in this study.  

 
Figure 1. (a) Map of Turkey, (b) Map of Ankara, (c) Map of Keçiören and location of air quality 

monitoring station 

 

 

Table 1. Input and output parameters and time frames used in models 

Input Parameters 

Time Frame of 

Input 

Parameters 

Output Parameter 
Time Frame of 

Output Parameter 

PM2.5 Concentration (μg/m3) 
Previous Hours 

(12h) 

PM2.5 

Concentration(μg/m3) 

Next Hours 

(1, 2 and 3h) 
NO Concentration (μg/m3) 

NO2 Concentration (μg/m3) 

(a)   

(b) 

(c) 
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Cabin Temperature (°C) 

Relative Humidity (%) 

Cabin Humidity (%) 

PM10 Concentration (μg/m3) 

Sun Radiation (W/m2) 

SO2 Concentration (μg/m3) 

NOx Concentration (μg/m3) 

Air Temperature (°C) 

Air Pressure (mbar) 

Wind Speed (m/s) 

O3 Concentration (μg/m3) 

Wind Direction (degree) 

UVB Radiation (W/m2), 

UVA Radiation (W/m2) 

 

2.3.  Methodology 

In order to determine most appropriate model for the data set, short-term prediction models were 

developed using several combinations of three different deep learning methods: RNN, GRU and 

LSTM. Figure 2 gives the basic block system of the three models used.   

RNN model mainly consists of one input (X), one output (H) and previous output (Ht-1) and it has 

no gates present. In this model input and previous output multiplied with each other in the presence 

of activation function (tanh) (Rathor, 2018). The mathematical equation followed by RNN is given 

in Equation 1.  

𝐻 = tanh(𝐻𝑡−1 ∗ 𝑋)                                                                                                                                    (1) 

GRU model is similar with RNN model except with the presence of update gate. GRU also consists 

of same input (X) and previous output (Ht-1) like RNN. The update gate is used to decide whether 

previous output will affect final output. New mathematical operations like subtraction, summation, 

multiplication with new set of weights affect final output (Rathor, 2018). The mathematical equations 

followed by GRU are given in Equation 2, 3, 4 and 5.  

𝐹1 = 𝜎 (𝑊1 ∗ [𝐻𝑡−1, 𝑋])                                                                                                                            (2) 

𝐹2 = 𝜎 (𝑊2 ∗ [𝐻𝑡−1, 𝑋])                                                                                                                        (3) 

𝐹3 = 𝑡𝑎𝑛ℎ (𝑊3 ∗ [𝐹1 ∗ 𝐻𝑡−1, 𝑋])                                                                                                             (4) 

𝐻 = (1 − 𝐹2) ∗ 𝐻𝑡−1 + ( 𝐹2 ∗ 𝐹3)                                                                                                        (5) 
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LSTM model has two more gates: forget gate and output gate. This means that there is addition of 

two extra mathematical operations and two extra weight sets in the system. In LSTM, two previous 

output enters to the system and produce return cycle from output to input (Ct-1 and Ht-1). With the 

help of LSTM final output was obtained with several control operation (Rathor, 2018). LSTM is the 

most complicated method within three of them and appropriate for big data sets. The mathematical 

equations followed by LSTM are given in Equation 6, 7, 8, 9, 10 and 11. 

𝐹4 = 𝜎 (𝑊4 ∗ [𝐻𝑡−1, 𝑋] + 𝑏4)                                                                                                                (6) 

𝐹5 = 𝜎 (𝑊5 ∗ [𝐻𝑡−1, 𝑋] + 𝑏5)                                                                                                              (7) 

𝐹6 = 𝑡𝑎𝑛ℎ (𝑊6 ∗ [𝐻𝑡−1, 𝑋] + 𝑏6)                                                                                                        (8) 

𝐶 =  𝐹4 ∗ 𝐶𝑡−1 +  𝐹5 ∗ 𝐹6                                                                                                                      (9) 

𝐹7 = 𝜎 (𝑊7 ∗ [𝐻𝑡−1, 𝑋] + 𝑏7)                                                                                                            (10) 

𝐻 = 𝐹7 ∗ tanh (𝐶)                                                                                                                                (11) 

 

Figure 2. Block system of (a) RNN, (b) GRU and (c) LSTM models (Rathor, 2018) 
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2.3.1. Model Selection 

In order to determine the most appropriate algorithm fitted to the data, a number of parameters were 

kept constant such as block number used in models, prediction period, and programming language. 

Model block numbers were selected as 50 in all trials. For all trials previous 12 hours of data were 

integrated into the models and the model predictions 1 hour later were evaluated (Table 2). All models 

were developed in python programing language. The results of different models were evaluated 

according to R-squared (R2), root mean squared logarithmic error (RMSLE), root mean square error 

(RMSE), mean absolute error (MAE) and standard deviation (STD) values. Several combinations of 

the three models such as GRU, RNN, LSTM, LSTM+LSTM, RNN+RNN, GRU+GRU, GRU+RNN, 

LSTM+RNN, LSTM+GRU, GRU+LSTM, RNN+LSTM, RNN+GRU were explored to determine 

the optimal model. For each model selection, five trials were conducted, and the average values were 

determined to make selection suitable. 

2.3.2. Model Application 

First, the data set consisting of 500 days over a two-year period (2017-2018) was divided into training 

and testing subsets. 350 days of data were used for training and the remaining 150 days of data were 

used for testing. Secondly, the training and testing subsets were divided into input and output 

parameters.  The flow chart of the applied model is given in Figure 3. 
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Figure 3. Flowchart of GRU+RNN model 

Next, the shape of training and input-output parameters in the test set was generated. This provides 

the model applicable and definable features. For PM2.5 prediction, layers for GRU and RNN were 

defined in order.  

 

Figure 4. Train and test losses of the model (The x-axis represents the number of epochs while the 

y-axis represents the losses.) 

In this model, mean absolute error (MAE) was used as a loss function and Adam Optimization 

Algorithm was used for the most appropriate alterative for stochastic gradian slope. Adam algorithm 

is preferred using deep learning in solution of several problems, owing to its’ unique features such as 

low memory requirement and working well with the hyperparameters. In this algorithm exponential 

weight of past gradients average of the squares of them were calculated and stored. Then, all 

parameters were updated with respect to the direction of information combined in the memory 

(Rizwan, 2018). Finally, data argument confirmed by the fit function was arranged and the train and 

test losses were monitored (Figure 4). The generated model structure is given in Table 2. As seen in 

Table 2, the time laps used in GRU model is 12 hours, and block number 50 in both GRU and RNN. 

The number of parameters used in GRU is 10200 and RNN is 5050. Dense layer represents the output 

layers of 1, 2, 3 hours later. As a result of model application, all test data set could be predicted. At 

this point, all predicted results were combined with the test data set and the normalization were 

reversed. 

https://engmrk.com/adam-optimization-algorithm/
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Table 2. GRU+RNN model structure 

 

3. Results and Discussion 

Table 3 shows error statistics of the model selections. The GRU and RNN model combination gives 

the highest correlation and lowest error statistics: a R2 of 0.832, RMSLE of 0.398, RMSE of 6.282, 

MAE of 4.211 and STD of 4.661. Therefore, this combination (GRU+RNN) was selected as the best 

method. 

Table 3. Summary of the results of different model trials 

Model Evaluation Criteria 

R2 RMSLE RMSE MAE STD 

GRU 0.817 0.414 6.897 4.492 5.233 

RNN 0.827 0.410 7.138 4.703 5.370 

LSTM 0.801 0.429 7.507 4.664 5.882 

LSTM+LSTM 0.815 0.430 6.968 4.630 5.207 

RNN+RNN 0.826 0.408 7.203 4.697 5.461 

GRU+GRU 0.820 0.405 6.573 4.354 4.923 

GRU+RNN 0.832 0.398 6.282 4.211 4.661 

LSTM+RNN 0.825 0.414 6.392 4.297 4.732 

LSTM+GRU 0.816 0.439 6.933 4.604 5.184 

GRU+LSTM 0.813 0.428 7.373 4.799 5.598 

RNN+LSTM 0.802 0.528 7.885 5.765 5.379 

RNN+GRU 0.823 0.480 6.859 4.853 4.848 

 

3.1. One-hour prediction 

Figure 5 shows the regression curve of actual and predicted values (a) and the time evolution of actual 

and predicted values (b) for the GRU+RNN model applied to the test data.  
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R2 = 0.832, RMSLE = 0.404, RMSE =6.272 and MAE= 4.211 were obtained by one-hour prediction 

of GRU+RNN model. 

 

Figure 5. (a) Regression curve of actual (y-axis) and predicted (x-axis) values for one-hour 

prediction (b) Comparison of actual and predicted results (y-axis) with respect to time in seconds 

(x-axis) for one-hour prediction 

3.2. Two-hour prediction 

Figure 6 shows similar results as Figure 5 but for a  two-hour prediction.  

R2 = 0.709, RMSLE = 0.507, RMSE = 8.451 and MAE= 5.696 were obtained for two-hour prediction 

of GRU+RNN model.   

 

Figure 6. (a) Regression curve of actual (y-axis) and predicted (x-axis) values for two-hour 

prediction (b) Comparison of actual and predicted results (y-axis) with respect to time in seconds 

(x-axis) for two-hour prediction 

3.3. Three-hour prediction 
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Figure 7 shows similar results as Figures 6 and 5 for a three-hour prediction.  

R2 = 0.611, RMSLE = 0.576, RMSE = 9.789 and MAE= 6.554 were obtained by three-hour prediction 

of GRU+RNN model. 

 

 
Figure 7. (a) Regression curve of actual (y-axis) and predicted (x-axis) values for three-hour 

prediction (b) Comparison of actual and predicted results (y-axis) with respect to time in seconds 

(x-axis) for three-hour prediction 

4. The results of this study indicates that the prediction performance of the model is comparable with 

results reported by previous studies (Bui et al., 2018; Kok et al. 2017; Reddy et al., 2017; Athira 

et al., 2018). Moreover, the prediction performance of GRU and RNN models is higher for the 

short-term prediction as also reported by other studies (Athira et al., 2018; Chung, 2014). Data is 

the most important factor affecting the system performance. In this study, the too high or low 

(extreme) values in some parameters were kept in the data. Despite the normalization of the data, 

these extreme values may affect system performance. Furthermore, the number of data was limited 

because of the missing values in the data set.  

5. Conclusions 

This study explored the use of RNN, GRU and LSTM deep learning models and their combinations 

to determine the optimal model selection for short-term prediction of PM2.5 pollution in Keçiören 

District of Ankara. Meteorological and air pollution data were obtained from a monitoring station of 

Ministry of Environment and Urbanization. The monitoring station used in this study was chosen 

with respect to the standard deviation (SD) of the data form the all stations found in the Ankara. The 
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data of station which has lowest SD value was chosen as the study station, so the results of this data 

set are expected to be the best. 

The model performance was evaluated based on statistical indices like RMSLE, RMSE, MAE and 

R2. The best model was the GRU and RNN combination. Next, the selected model was used to predict 

PM2.5 pollution for 1, 2 and 3 hours.  

• Best results were obtained for 1-hour prediction of the selected model with R2 of 0.832, 

RMSLE of 0.404, RMSE of 6.272 and MAE of 4.21. 

• Model predication performance decreased when the time period for prediction was increased. 

(R2 of 0.709 for 2-hour prediction and R2 of 0.611for 3-hour prediction) 

The results of this study are promising for explaining the effect of different deep learning models on 

the prediction of air pollution concentrations depending on other pollutants in the air and 

meteorological factors. However, the predictive performance of the model may be influenced by the 

presence of the extreme values contained in the data. With the elimination of these extreme values, 

model performance may be improved.  As well as data sets with different meteorological factors and 

pollution concentrations, a total of 17 input parameters were inserted into the model. The effect of 

some of these parameters on PM2.5 pollution may be less than others. The model performance may 

be improved with the detection and the elimination of these parameters. Although there are many 

studies focusing on PM2.5 modeling, PM2.5 modeling using the deep learning method is a relatively 

new topic. There are limited number of studies in this area and this study may constitute the basis for 

further research. With the help of this study, similar models with longer-term prediction performance 

can be developed with better data. 

By means of PM2.5 prediction, determination of future concentrations, preparation of control law and 

regulations, determination of possible pollutant sources, control of sudden pollution episodes and 

taking preventive precautions are possible.  
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