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Abstract 

Smoothed Particle Hydrodynamics (SPH) is a promising 
simulation technique in the family of Lagrangian 
mesh-free methods, especially for flows that undergo 
large deformations. Particle methods do not require a 
mesh (grid) for their implementation, in contrast to 
conventional Computational Fluid Dynamics (CFD) 
methods. Conventional CFD algorithms have reached a 
very good level of maturity and the limits of their 
applicability are now fairly well understood. In this paper 
we investigate the application of the SPH method in 
Poiseuille and transient Couette flow along with a free 
surface flow example. Algorithmically, the method is 
viewed within the framework of an atomic-scale method, 
Molecular Dynamics (MD). In this way, we make use of 
MD codes and computational tools for macroscale 
systems. 

Keywords: Smoothed particle hydrodynamics (SPH), 
molecular dynamics, Poiseuille flow, Couette flow, tank 
drainage. 

1. Introduction 

Lagrangian methods are based on the concept of 
describing fluid flows by following the motion of fluid 
particles. This appears to overcome numerical difficulties 
associated with large deformations. In this work we 
discuss the common concepts and similarities underlying 
three particle methods: Molecular Dynamics (MD), 
Dissipative Particle Dynamics (DPD) and Smooth Particle 
Hydrodynamics (SPH). These methods are appropriate for 
different time and length scales. 

In an MD simulation, interactions between particles 
(atoms or molecules) are calculated and this seems to be 
the most appropriate method to study flows at the 
nanoscale since the assumption of continuous medium, 
conventionally employed in fluid dynamics, cannot be 
applied. At these very small scales, a wide range of studies 
have shown that as channel dimensions decrease, solid 
wall particles interact with the fluid and control its 
behavior, such as fluid atom positions, velocity, 
temperature and transport properties such as diffusion 

coefficient, shear viscosity and thermal conductivity 
(Spetsiotis et al., 2018; Spareboom et al., 2009; Sofos 
et al., 2009; Eral et al., 2009). On a larger time and/or 
spatial scale MD simulations become very time consuming 
and need large computational resources. At these scales, 
DPD is considered as a simulation method that bridges the 
gap between atomistic and mesoscopic simulation and 
has been successfully applied in modeling complex fluids 
in periodic domains (Pivkin and Karniadakis, 2005; Lei 
et al., 2008; Li et al., 2015). 

As far as macroscale methods are concerned, the central 
idea in SPH is the subdivision of the fluid system under 
study to a number of moving particles (“chunks” or blobs 
of matter) (Monaghan, 1988, 1992). The conservation 
laws of continuum fluid dynamics, in the form of partial 
differential equations, are transformed into their particle 
forms by integral equations through the use of an 
interpolation function that gives the kernel estimate of 
the field variables at a point. Information is extracted only 
at discrete points (the particles) and the integrals are 
evaluated as sums over neighboring particles. Each fluid 
particle has a constant mass and time-dependent velocity, 
density, pressure, dynamic viscosity, temperature (as 
needed). In the SPH framework the governing PDEs 
describing the system in motion are transformed to a 
number of ordinary differential equations (ODEs). 
For example, a possible form of SPH formulation of 
conservation of momentum and mass PDEs leads to a set 
of ODEs for the velocities and densities of the particles 
which can be integrated by a numerical method of 
integration of ODEs (e.g. Verlet, Euler, Runge-Kutta, etc). 
The positions of the particles are then calculated by 
integrating the velocity. Detailed work on SPH can be 
found in (Gingold and Monaghan, 1977; Koumoutsakos, 
2005; Shao, 2009; Bouscasse et al., 2013; Bian et al., 
2015). 

SPH is well suited for flows of liquids with free surface 
such as wave propagation, wave/structure interaction, 
sloshing to mention a few. Furthermore, SPH is very useful 
in applications in soil mechanics and water resources 
engineering such as: flood wave propagation modeling, 
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floodplain inundation predictions, open channel 
hydraulics. Environmental applications at small scales 
include sensors for air and water quality, pathogen 
detection devices and biological security threat mitigation. 

The ideas of SPH have “merged” with the mesoscopic 
method DPD (Muller et al., 2015). The result is a method 
frequently referred to as SDPD (for smooth DPD). In SDPD 
the discretization of the Navier-Stokes equation follows 
the methodology of SPH but, in addition the method 
includes the thermal fluctuations as in the original DPD 
method. SDPD is appropriate for simple, complex and 
biological fluids. It is also proposed to develop 
strategies/techniques for coupling these methods across 
scales (nano, meso, macro) using the conceptual 
framework of peridynamics (i.e. non-local theories of 
mechanics) as can be found in Silling (2010). 

We applied the SPH simulation method on a software 
platform that has been widely used for research, primarily 
for Molecular Dynamics simulations of atomistic systems, 
LAMMPS (Large-scale Atomic/Molecular Massively 
Parallel Simulator, see Plimpton (1995)), based on a 
previous work by Liakopoulos et al. (2018). Due to its 
particle nature, SPH is directly compatible with the 
existing code architecture and data structures present in 
LAMMPS for MD (Sofos et al., 2009, 2013; Liakopoulos 
et al., 2016). Furthermore, its parallel nature offers a 
boost in all simulations that could be executed in parallel 
tasks (Herault et al., 2010). It would be interesting to 
develop reliable models of length scale coupling for 
problems with multiple physics and multiple scales, such 
as ink-jet printing, DNA and protein micro-/nano-arraying, 
and fabrication of particles and capsules for controlled 
release of medicines (Liu and Liu, 2010). Towards these 
directions, in this work we focus on reproducing CFD 
examples with SPH and investigate three SPH test cases, 
the development of transient Couette flow, Poiseuille 
flow, and a water tank drainage example. 

2. Smoothed particle hydrodynamics formulation 

2.1. SPH mathematics 

In this section we present the basic steps in developing an 
SPH formulation for a given partial differential equation, 
while referring to the case of Navier-Stokes equations and 
the energy equation for a Newtonian fluid in parallel. 
A detailed description of the mathematics of the method 
can be found in Liakopoulos et al. (2018). 

The starting point of an SPH formulation is an integral 
approximation of a function f(x). In its ideal form the 
approximation has the form of the identity 

     


   x x x x x  df f  (1) 

where x is the position vector and (x – x′) is the Dirac’s 
delta function defined as 

 


  


x x
x x

x x

1 when

0 when
  

If we replace the delta function by a kernel of the integral 
approximation, i.e., W(x – x′;h), this function plays the 

role of a smoothing function over a spatial neighbourhood 
of dimension h. 

     


   x x x x x W ;h  df f  (2) 

The choice of the kernel is important for the success of 
the method. 

Next, the flow domain is discretized by a set of point 
masses (fluid particles). The smoothing kernels (also 
known as interpolation kernels) are centered at the point 
masses. For a variable f(x), we calculate its value at xi by 

   





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and the gradient at position xi by 
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 
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In rectangular Cartesian coordinates (x
1
, x

2
, x

3
) the 

conservation equations for mass, momentum and energy 
are written in indicial notation as 





 



 


D

Dt x
 (5) 





 




 



D 1
b

Dt

a a
a

x
 (6) 
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where  is the fluid density, (
1
, 

2
, 

3
) are the 

components of the velocity vector, 
a the components of 

the total stress tensor, (q
1
, q

2
, q

3
) is the heat flux vector, 

(b
1
, b

2
, b

3
) is the body force per unit mass, a = 1, 2, 3 and 

 = 1, 2, 3. Here, repeated indices imply summation from 
1 to 3. Incorporating the constitutive equations for 
Newtonian fluids we obtain the well known Navier-Stokes 
equations. Incorporating the SPH particle approximation 
for the dependent variables and their derivatives 
(Eqs. 3 and 4) we obtain the SPH equations for the 
Navier-Stokes, continuity and energy equations as follows: 
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where ij = i − j, 
2

V
3x x
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,  = 

−p + , and  are the components of the stress 

deviator, mj is the mass of the j
th

 particle, i is the density 
of the i

th
 particle, pi is the pressure of the i

th
 particle, 

 1 2 3, ,i i i    the velocity of the i
th

 particle, and μi the 

dynamic viscosity coefficient of i
th

 particle. 
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2.2. The choice of the smoothing function 

It is obvious that the choice of the smoothing function W 
and the smoothing length, h, is very important and can 
lead to success or failure of the method. A smoothing 
function must have a number of properties such as the 
“property of unity”, compact support (i.e., local support), 
positivity, decay, smoothness, symmetry, as well as the 
“Delta function property”. Among these seven desirable 
properties, two of them are indispensable: 

   


   x x x “unity”proW ;h  d 1 perty  (11) 

and 

     


   x x x x
h 0

“Delta function”prolimW ;h perty

 

(12) 

2.3. SPH equations as solved in LAMMPS 

In the LAMMPS implementation the field variables are {, 
v, e, P, Q} that is density, velocity, internal energy, the 
stress tensor, and the heat flux vector. The discretized 
equations are: 

Local density for particle i 
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

 
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1 1
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This is frequently referred in the mathematical literature 
as “partition of unity”. 

Momentum equation for particle i 
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where P is the stress (pressure) tensor. Note that the 
pair-wise forces are 
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Continuity equation 
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Energy equation 
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(17) 

Newman–Richter type artificial viscosity 

Monaghan has introduced an artificial viscosity term in 
order to avoid instabilities in this SPH formulation of the 
N–S equations. It is adopted in the LAMMPS formulation 
so that the pair-wise forces are modified and take the 
form 

 

 
       
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with 
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c c
α h 

εh

i j ij ij

ij

i j ijr
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where ci = speed of sound of particle i, cj = speed of sound 

of particle j,  = auxiliary factor for control of dissipation, 
rij the distance vector between i

th
 and j

th
 particle, 

 = auxiliary factor used to avoid singularities when rij  0. 

As a rule of thump   0.01. The energy equation has to be 
also modified. 

2.4. Some remarks about SPH formulations for fluids 

In relation to the application of the SPH method in fluid 
dynamical problems we should mention that the 
treatment of pressure for incompressible flow can be 
carried out either through an equation of state or by 
enforcing the incompressibility condition via a Poisson 
equation for pressure. Another important issue in viscous 
water flows is the treatment of viscosity, which is a key 
quantity in determining water transport. In addition, the 
computational enforcement of boundary conditions 
(especially inlet-outlet boundary conditions) requires 
further development (Lykov et al., 2015; Lei et al., 2011). 
Collision detection at impermeable solid boundaries is 
also very important. 

3. Results and discussion 

In order to estimate the effectiveness and accuracy of the 
SPH method in LAMMPS, we have chosen to reproduce 
three classical CFD and Computational Hydraulics 
examples, the development of a transient Couette flow, 
Poiseuille flow in various channel dimensions, and the 
well-documented water tank drainage example. 
Snapshots of the simulations, as well as velocity and 
density profiles where possible are presented in each 
case. 

3.1. Transient Couette flow 

A 3-D rectangular simulation box is created for unsteady 
Couette flow, as shown in Figure 1. The model 
screenshot was created with OVITO (Stukowski, 
2010). The dimensions in x-, y- and z-directions are  

(Lx, Ly, Lz) = (2  10
-2

 mm, 1  10
-3

 m, 1  10
-3

 m). Wall and 
fluid particles are set on fcc (face centered cubic) sites in 
the beginning of the simulation and remain on their initial 
position until the upper rigid plate moves. The solid walls 
are simulated by particles which balance the pressure of 
inner fluid particles and prevent them from penetrating 
the wall. We make the distinction between wall particles 
and fluid particles by their ability to move or not: fluid 
particles move while wall particles remain in their initial 
positions during simulation. The upper wall is given a 

constant velocity, vx
 
= 1  10

-2
 m/s, in the x-direction and 

drives the flow due to friction. The channel consists of 
400 wall particles and 3400 water particles. The upper and 
lower walls are formed by two layers of wall particles. 
The nominal density for walls and fluid is constant 
ρ = 1000 kg/m

3
. Periodic conditions are enforced in the 

x- and z- directions. The simulation runs with a timestep 

of Δt = 5  10
-5

 s. 
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Figure 1. Couette flow model 

In the beginning of a simulation, water particles are 
assigned random initial velocities in order to reach the 
desired temperature, before the upper plate moves. 
The system reaches equilibrium after an equilibration run 

of about 1  10
6 

timesteps. Then, the upper plate is given 
a constant velocity and production runs start. 

 

Figure 2. x-Velocity profile across the y-direction as a function of 

the simulation time 

Figure 2 shows the resulting velocity profile across the 
y-direction extracted at various times of the simulation. 
As it can be seen, we obtain transient behaviour as the 
flow evolves in time and reaches steady state between 
0.25 and 2.5 s. At steady state, the velocity profile is linear 
and this result is in agreement to similar problems at 
these scales (Hu and Adams, 2006), although, Song et al. 
(2018) note that at such scale, the SPH simulation 
converges, but the deviation from the analytical solution 
is considerable. For our model, the time ts required to 
reach steady flow (asymptotically) is in agreement with 
continuum theory prediction (White, 1991; Liakopoulos 
and Sofos, 2016). 

3.2. Poiseuille flow 

The computational domain for SPH Poiseuille flow consists 
of a simulation box, periodic on x- and z-dimensions, 
similar to the previous Couette example (Figure 1), with 
stationary upper wall. Flow originates due to the 

application of an external force Fext at the x-direction on 
all fluid particles, which acts as a LAMMPS analog to the 
application of pressure difference to induce the flow in 
macroscopic systems. In such systems, in LAMMPS 
simulations, it is common to use periodic conditions for 
the channel in order to simulate the flow and the flow is 
driven not by a pressure difference Δp but by an external 
force Fext applied to each of the N fluid particles in the 

model. Consequently, N·Fext  p·A, where A is the cross-
section area. Corresponding dp/dx values for each value 
of Fext used in our simulations are shown in Table 1. 

Table 1. Corresponding dp/dx and Fext values 

Fext (10
−9

 N) 1.0 2.5 5.0 10.0 

dp/dx (10
−3

 Pa/m) -3.4 -8.5 -17.0 -34.0 

Temperature remains constant (T = 300 K) throughout the 
simulations. In the beginning of a simulation, water 
particles are assigned random initial velocities in order to 
reach the desired temperature. The system reaches 

equilibrium state after a run of about 1  10
6 

timesteps, 
where the timestep is Δt = 0.01 s. Next, an external force 
is applied to drive the flow. A thermostatting mechanism 
(a common practice in LAMMPS) is incorporated to keep 
system temperature constant at 300 K, since the 
application of the external force adds energy to the flow 
and it has to be removed through the thermostatted 
walls. 

Figure 3 presents particle number density profiles across 
the channel, for each magnitude of Fext used. Density 
profiles reveal density variations that develop in a fluid 
due to fluid structuring near the walls. The instantaneous 
particle number density is expressed as the number of 
particles located in each simulation bin at a specific 
timestep. This number of particles is averaged over the 
total simulation time and a time-averaged value for each 
bin is extracted and shown here. 

 

Figure 3. Poiseuille flow: Particle number density profile across 

the y-direction for different magnitudes of Fext 

At first, there seems to be no effect of the external driving 
forces on the shape of the profiles, as has been also 
shown in respective atomic-scale simulations (Spetsiotis 
et al., 2018). We also observe significant ordering of fluid 
atoms at layers close to the walls and we attribute this 
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fact to the SPH technique behavior at the boundaries, 
where interactions of wall with fluid atoms exist. 
This result comes from Eq. (13), which has the advantage 
of conserving the mass exactly, but it shows edge effects 
for particles at the interface between the two different 
materials, i.e., solid wall – fluid. In this way, while there 
exist discontinuities across the channel y-dimension, the 
average particle number density remains constant. 

 

Figure 4. Poiseuille flow: x-Velocity profile across the y-direction 

for different magnitudes of Fext. Lines are 2
nd

 order parabolic fits 

Moreover, we investigate the impact of the magnitude of 
the external applied force on fluid velocity (Figure 4). 
The velocity profiles seem to fit well on parabolas. Greater 
magnitude of Fext leads to greater velocity values, as 
expected from the continuum theory. It is of interest to 
note that a velocity bias is observed near the wall, 
representing the existence of slip velocities at the 
boundaries. We attribute this effect to the SPH technique 
behavior at the boundaries which can generate unrealistic 
effects. In Gomez-Gesteira (2010), it is noted that the 
velocity fall to zero when we approach the boundaries, 
while the density does not. Creation of realistic boundary 
conditions is still an open topic in SPH methods. 

3.3. Water tank drainage 

In this example we present the drainage of a rectangular 
tank with a hole in the lower right wall. For the 
ease of simulation, the model is considered 2D, as a 

(x,y) = (1.05  10
-3

 m, 1.05  10
-3

 m) non-periodic 
simulation box. Computational cost is minimal at this 
dimension scale, although larger scale problems can be 
tackled without any significant change in our SPH 
software. Water particles fill the tank and exit through a 
hole strip in the lower part of the right wall when 
simulation starts due to gravity. Simulation runs for 

3  10
4
 timesteps, where the timestep t = 2  10

−5
 sec, 

corresponding to a real simulation time of 0.6 sec and 
seems adequate to reveal the full evolution of the 
phenomenon (Figure 5). Drainage time has been found 
short and we attribute this to the small system dimension. 

 

Figure 5. Water tank drainage 

 

Figure 6. Comparison of the SPH, Runge-Kutta and analytical 

methods for the water tank drainage problem 

To partially check the validity of the SPH result, 
comparison is made with the well-known analytical and 
numerical results. The draining of a tank with a hole is a 
problem, first described by Torricelli. If S is the area ratio 
(“strip”/tank cross section) and g the acceleration due to 
gravity, then water emerges from the hole with velocity 

2hu gy and the variation of fluid height in time is given 

by the ordinary differential equation 

  2
dy

S g y
dt

 (20) 

The analytical solution of Eq. (20) can be easily found as 

 
   
 

2

1 2
0

2
( )

2

S g
y t y t  (21) 

where y0 the initial height of water inside the tank. 
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If we plot the numerical solution by a fourth/fifth order 
Runge-Kutta method of Eq. (20), the analytical solution, 
Eq. (21), and the variation of fluid average depth obtained 
by the SPH method, we obtain the results of Figure 6. Our 
SPH results seem to fit very well to the model of 
Eqs. (20) and (21). 

4. Conclusions 

We have presented a smoothed particle hydrodynamics 
(SPH) numerical model and simulation results of water in 
three different examples: Couette and Poiseuille flows 
and the water tank drainage problem. We have shown 
that SPH, as a purely particle method, has many 
similarities to Molecular Dynamics, the well-documented 
atomistic simulation method, as well as to mesoscopic 
methods such as Dissipative Particle Dynamics. However, 
to address practical engineering problems in these fields 
we have to reduce the required CPU time for SPH and 
more generally for particle methods compared to classical 
CFD methods, especially when working with well-suited 
software platforms, such as Large-scale Atomic/Molecular 
Massively Parallel Simulator. 

It should be mentioned that the method seems to 
reproduce well most macroscopic problems but fails to 
incorporate nano- and micro-scale effects, such as the 
wall effect on fluid properties and transport properties. 
We also have pointed out unrealistic effects in fluid flows 
close to the wall boundaries. Development of realistic 
boundary conditions is still an open topic in SPH methods. 
Further research on the applicability of the method in CFD 
and Hydraulics problems, would point out the scale limits 
and try to bridge with atomic-scale methods so as to 
suggest a hybrid multiscale modeling system. 
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