
  

 

1 

 

Particle-based modeling and meshless simulation of flows  

with Smoothed Particle Hydrodynamics 

 

F. Sofos
1
, A. Liakopoulos

2,*
, T.E. Karakasidis

3
  

1,2,3
Hydromechanics and Environmental Engineering Laboratory, Department of Civil Engineering, 

University of Thessaly, Pedion Areos, GR-38334, Volos, Greece 

 

*
Corresponding author: e-mail: aliakop@civ.uth.gr, tel: +302421074111 

 

ABSTRACT 

Smoothed Particle Hydrodynamics (SPH) is a promising simulation technique in the family of 

Lagrangian mesh-free methods, especially for flows that undergo large deformations. Particle methods 

do not require a mesh (grid) for their implementation, in contrast to conventional Computational Fluid 

Dynamics (CFD) methods. Conventional CFD algorithms have reached a very good level of maturity 

and the limits of their applicability are now fairly well understood. In this paper we investigate the 

application of the SPH method in Poiseuille and transient Couette flow along with a free surface flow 

example. Algorithmically, the method is viewed within the framework of an atomic-scale method, 

Molecular Dynamics (MD). In this way, we make use of MD codes and computational tools for 

macroscale systems.  

Keywords: Smoothed Particle Hydrodynamics (SPH); Molecular Dynamics; Poiseuille flow; Couette 

flow; Tank drainage 

 

1. Introduction  

Lagrangian methods are based on the concept of describing fluid flows by following the motion of 

fluid particles. This appears to overcome numerical difficulties associated with large deformations. In 
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this work we discuss the common concepts and similarities underlying three particle methods: 

Molecular Dynamics (MD), Dissipative Particle Dynamics (DPD) and Smooth Particle 

Hydrodynamics (SPH). These methods are appropriate for different time and length scales. 

In an MD simulation, interactions between particles (atoms or molecules) are calculated and this 

seems to be the most appropriate method to study flows at the nanoscale since the assumption of 

continuous medium, conventionally employed in fluid dynamics, cannot be applied. At these very 

small scales, a wide range of studies have shown that as channel dimensions decrease, solid wall 

particles interact with the fluid and control its behavior, such as fluid atom positions, velocity, 

temperature and transport properties such as diffusion coefficient, shear viscosity and thermal 

conductivity (Spetsiotis et al., 2018; Spareboom et al., 2009; Sofos et al., 2009; Eral et al., 2009). On 

a larger time and/or spatial scale MD simulations become very time consuming and need large 

computational resources. At these scales, DPD is considered as a simulation method that bridges the 

gap between atomistic and mesoscopic simulation and has been successfully applied in modeling 

complex fluids in periodic domains (Pivkin and Karniadakis, 2005; Lei et al., 2008; Li et al., 2015).  

As far as macroscale methods are concerned, the central idea in SPH is the subdivision of the fluid 

system under study to a number of moving particles (“chunks” or blobs of matter) (Monaghan, 1988 

and 1992). The conservation laws of continuum fluid dynamics, in the form of partial differential 

equations, are transformed into their particle forms by integral equations through the use of an 

interpolation function that gives the kernel estimate of the field variables at a point. Information is 

extracted only at discrete points (the particles) and the integrals are evaluated as sums over 

neighboring particles. Each fluid particle has a constant mass and time-dependent velocity, density, 

pressure, dynamic viscosity, temperature (as needed). In the SPH framework the governing PDEs 

describing the system in motion are transformed to a number of ordinary differential equations 

(ODEs). For example, a possible form of SPH formulation of conservation of momentum and mass 

PDEs leads to a set of ODEs for the velocities and densities of the particles which can be integrated by 

a numerical method of integration of ODEs (e.g. Verlet, Euler, Runge-Kutta, etc). The positions of the 
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particles are then calculated by integrating the velocity. Detailed work on SPH can be found in 

(Gingold and Monaghan, 1977; Koumoutsakos, 2005; Shao, 2009; Bouscasse et al. 2013; Bian et al., 

2015).  

SPH is well suited for flows of liquids with free surface such as wave propagation, wave/structure 

interaction, sloshing to mention a few. Furthermore, SPH is very useful in applications in soil 

mechanics and water resources engineering such as: flood wave propagation modeling, floodplain 

inundation predictions, open channel hydraulics etc. Environmental applications at small scales 

include sensors for air and water quality, pathogen detection devices and biological security threat 

mitigation. 

The ideas of SPH have “merged” with the mesoscopic method DPD (Muller et al., 2015). The result is 

a method frequently referred to as SDPD (for smooth DPD). In SDPD the discretization of the Navier-

Stokes equation follows the methodology of SPH but, in addition the method includes the thermal 

fluctuations as in the original DPD method. SDPD is appropriate for simple, complex and biological 

fluids. It is also proposed to develop strategies/techniques for coupling these methods across scales 

(nano, meso, macro) using the conceptual framework of peridynamics (i.e. non-local theories of 

mechanics) as can be found in Silling (2010). 

We applied the SPH simulation method on a software platform that has been widely used for research, 

primarily for Molecular Dynamics simulations of atomistic systems, LAMMPS (-Large-scale 

Atomic/Molecular Massively Parallel Simulator, see (Plimpton, ( 1995)), based on a previous work by 

(Liakopoulos et al. (2018). Due to its particle nature, SPH is directly compatible with the existing 

code architecture and data structures present in LAMMPS for MD (Sofos et al., 2009, 2013; 

Liakopoulos et al. 2016). Furthermore, its parallel nature offers a boost in all simulations that could be 

executed in parallel tasks (Herault et al., 2010). It would be interesting to develop reliable models of 

length scale coupling for problems with multiple physics and multiple scales, such as ink-jet printing, 

DNA and protein micro-/nano-arraying, and fabrication of particles and capsules for controlled release 

of medicines (Liu and Liu 2010). Towards these directions, in this work we focus on reproducing 
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CFD examples with SPH and investigate three SPH test cases, the development of unsteady (transient) 

Couette flow, Poiseuille flow, and a water tank drainage example.  

 

2. Smoothed Particle Hydrodynamics formulation 

2.1 SPH Mathematics 

In this section we present the basic steps in developing an SPH formulation for a given partial 

differential equation, while referring to the case of Navier-Stokes equations and the energy equation 

for a Newtonian fluid in parallel. A detailed description of the mathematics of the method can be 

found in Liakopoulos et al. (2018). 

The starting point of an SPH formulation is an integral approximation of a function  xf . In its ideal 

form the approximation has the form of the identity  

     


 xxxxx d  ff   (1) 

where x  is the position vector and  xx   is the Dirac’s delta function defined as 
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when1
  

If we replace the delta function by a kernel of the integral approximation, i.e.,  h;W xx  , this 

function plays the role of a smoothing function over a spatial neighbourhood of dimension h .  

      xxxxx  


d h; Wff  (2) 

The choice of the kernel is important for the success of the method.  

Next, the problem flow domain is discretized by a set of point masses (fluid particles). The smoothing 

kernels (also known as interpolation kernels) are centered at the point masses. For a variable  xf , we 

calculate its value at  ix  by 
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and the gradient at position ix  by 
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In rectangular Cartesian coordinates  321 ,x,xx  the conservation equations for mass, momentum and 

energy are written in indicial notation as  
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where   is the fluid density,  321 ,,   are the components of the velocity vector,  a  the 

components of the total stress tensor,  321 ,, qqq  is the heat flux vector,  321 b,b,b   is the body force 

per unit mass, 3,2,1a  and 3,2,1 . Here, repeated indices imply summation from 1 to 3. The 

symbol  
Dt

D
 denotes the material (substantial) derivative. Incorporating the constitutive equations for 

Newtonian fluids we obtain the well known Navier-Stokes equations. Incorporating the SPH particle 

approximation for the dependent variables and their derivatives (Eqs. 3 and 4) we obtain the SPH 

equations for the Navier-Stokes, continuity and energy equations as follows:  
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where jiij   , 
2

V
3x x

 
 

 

 
 

   
    
   

 ,    p , 

and   are the components of the stress deviator, jm  is the mass of the j
th

 particle,  i  is the density 

of the i
th

 particle, ip  is the pressure of the i
th

 particle,   321 ,, iii   the velocity of the i
th

 particle, and 

i  the dynamic viscosity coefficient of i
th

 particle. 

 

2.2 The choice of the smoothing function  

It is obvious that the choice of the smoothing function W and the smoothing length, h, is very 

important and can lead to success or failure of the method. A smoothing function must have a number 

of properties such as the “property of unity”, compact support (i.e, local support), positivity, decay, 

smoothness, symmetry, as well as the “Delta function property”. Among these seven desirable 

properties, two of them are indispensable:  

 


 1d h;W xxx   (“unity” property)  (11) 

and 

   xxxx 


h;Wlim
0h

 (“Delta function” property) (12) 

 

2.3 SPH equations as solved in LAMMPS  

In the LAMMPS implementation the field variables are  Qe P,,,, v  that is density, velocity, internal 

energy, the stress tensor, and the heat flux vector. The discretized equations are: 

2.3.1 Local density for particle i 
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This is frequently referred in the mathematical literature as “partition of unity”. 

 

2.3.2 Momentum equation for particle i 
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where P  is the stress (pressure) tensor. Note that the pair-wise forces are 
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2.3.3 Continuity equation 
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2.3.4 Energy equation 
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2.3.5 Newman-Richter type artificial viscosity  

Monaghan has introduced an artificial viscosity term in order to avoid instabilities in this SPH 

formulation of the N-S equations. It is adopted in the LAMMPS formulation so that the pair-wise 

forces are modified and take the form 
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where ic  speed of sound of particle i , jc speed of sound of particle j , α auxiliary factor for 

control of dissipation, ijr  the distance vector between i
th

 and j
th

 particle, ε auxiliary factor used to 

avoid singularities when 0r ij . As a rule of thump 01.0ε  . The energy equation has to be also 

modified.  

 

2.54 Some remarks about SPH formulations for fluids 

In relation to the application of the SPH method in fluid dynamical problems we should mention that 

the treatment of pressure for incompressible flow can be carried out either through an equation of state 

or by enforcing the incompressibility condition via a Poisson equation for pressure. Another important 

issue in viscous water flows is the treatment of viscosity, which is a key quantity in determining water 

transport. In addition, the computational enforcement of boundary conditions (especially inlet-outlet 

boundary conditions) requires further development (Lykov et al., 2015; Lei et al., 2011). Collision 

detection at impermeable solid boundaries is also very important.  

 

3. Results and discussion  

In order to estimate the effectiveness and accuracy of the SPH method in LAMMPS, we have chosen 

to reproduce three classical CFD and Computational Hydraulics examples, the development of a 

transient Couette flow, Poiseuille flow in various channel dimensions, and the well-documented water 

tank drainage example. Snapshots of the simulations, as well as velocity and density profiles where 

possible are presented in each case. 

 



  

 

9 

 

3.1 Transient Couette flow 

A 3-D rectangular simulation box is created for unsteady Couette flow, as shown in Fig. 1. . The 

Mmodel screenshot was created with OVITO (Stukowski, 2010) and it is shown in Fig. (1). The 

dimensions in x-, y- and z-directions are (Lx, Ly, Lz)=( 2x10
-2

m0.8m, 1x10
-3

0.34m, 1x10
-3

m0.17m). 

Wall and fluid particles are set on fcc (face centered cubic) sites in the beginning of the simulation and 

remain on their initial position until the upper rigid plate moves. The solid walls are simulated by 

particles which balance the pressure of inner fluid particles and prevent them from penetrating the 

wall. We make the distinction between wall particles and fluid particles by their ability to move or 

not: fluid particles move while wall particles remain in their initial positions during simulation. The 

upper wall is given a constant velocity, vx
 
=3.51x10

-2
m/s, in the x-direction and drives the flow due to 

friction. The channel consists of 2000 400 wall particles and 6000 3400 water particles. The upper and 

lower walls are formed by two layers of wall particles. The nominal density for walls and fluid is 

constant ρ=1000kg/m
3
.  Periodic conditions are enforced in the x- and z- directions. The simulation 

runs with a timestep of Δt=5x10
-5

0.01s. 

 

Figure 1. Couette flow model 

In the beginning of a simulation, water particles are assigned random initial velocities in order to 

reach the desired temperature, before the upper plate moves. The system reaches equilibrium after an 
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equilibration run of about 1x10
6 

timesteps. Then, the upper plate is given a constant velocity and 

production runs start.  

Figure 2 shows the resulting velocity profile across the y-direction extracted at various times of the 

simulation. As it can be seen, we obtain transient behaviour as the flow evolves in time and reaches 

steady state between 0.25 and 2.5s. At steady state, the velocity profile is linear and this result is in 

agreement to similar problems at these scales (Hu and Adams, 2006), although, Song et al. (2018) 

note that at such scale, the SPH simulation converges, but the deviation from the analytical solution is 

considerable. For our model, the time ts required to reach steady flow (asymptotically) is in agreement 

with continuum theory prediction (White, 1991; Liakopoulos and Sofos, 2016).  

Figure 2 shows the resulting velocity profile across the y-direction extracted at various times of the 

simulation. As it can be seen, we obtain transient behaviour as the flow evolves in time and reaches 

steady state after 25x10
6 

timesteps. At steady state, the velocity profile is almost linear and this result 

is in agreement to similar problems at small scales (Hu and Adams, 2006). Moreover, Song et al. 

(2018) note that at such scale, the SPH simulation converges, but the deviation from the analytical 

solution is considerable.  

 

3.2 Poiseuille flow 

The computational domain for SPH Poiseuille flow consists of a simulation box, periodic on x- and z- 

dimensions, similar to the previous Couette example (Fig. 1), with stationary upper wall. Flow 

originates due to the application of an external force Fext at the x-direction on all fluid particles, which 

acts as a LAMMPS analog to the application of pressure difference to induce the flow in macroscopic 

systems. In such systems, in LAMMPS simulations, it is common to use periodic conditions for the 

channel in order to simulate the flow and the flow is driven not by a pressure difference Δp but by an 

external force Fext applied to each of the N fluid particles in the model. Consequently, 
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extN F p A   , where A is the cross-section area. Corresponding dp dx values for each value of Fext 

used in our simulations are shown in Table 1. 

 

Table 1 : Corresponding dp dx and Fext values 

Fext (
910 N ) 0.051.0 0.12.5 0.25.0 10.0 

dp dx (
310 Pa m ) -6.485-3.4 -8.512.975 -

17.025.95 

-34.0 

 

Temperature remains constant (T=300K) throughout the simulations. In the beginning of a simulation, 

water particles are assigned random initial velocities in order to reach the desired temperature. The 

system reaches equilibrium state after a run of about 1x10
6 

timesteps, where the timestep is Δt=0.01s. 

Next, Then, an external force is applied to -driven the flow simulations are performed. A 

thermostatting mechanism (a common practice in LAMMPS) is incorporated to keep system 

temperature constant at 300K, with thermostated walls to maintain constant energy distribution, and 

calculated values are averaged., since the application of the external force adds energy to the flow and 

it has to be removed through the thermostatted walls. 
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Figure 2. x-Velocity profile across the y-direction as a function of the simulation time (presented in 

time steps in the legend). .Dashed lines denote the wall limits that enclose wall particles (circles). 

 

Figure 3 presents particle number density profiles across the channel, for each magnitude of Fext used. 

Density profiles reveal density variations that develop in a fluid due to fluid structuring near the walls. 

The instantaneous particle number density is expressed as the number of particles located in each 

simulation bin at a specific timestep. This number of particles is averaged over the total simulation 

time and a time-averaged value for each bin is extracted and shown here. 

 At first, there seems to be no effect of the external driving forces on the shape of the profiles, as has 

been also shown in respective atomic-scale simulations (Spetsiotis et al., 2018). We also observe 
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significant ordering of fluid atoms at layers close to the walls and we attribute this fact to the SPH 

technique behavior at the boundaries, where interactions of wall with fluid atoms exist. This result 

comes from Eq. (13), which has the advantage of conserving the mass exactly, but it shows edge 

effects for particles at the interface between the two different materials, i.e., solid wall – fluid. In this 

way, while there exist discontinuities across the channel y-dimension, the average particle number 

density remains constant.  

. 

 

Figure 3. Poiseuille flow: Particle nNumber density profile across the y-direction for different 

magnitudes of Fext. Dashed lines denote the wall limits that enclose wall particles (circles). 
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Figure 4. Poiseuille flow: x-Velocity profile across the y-direction for different magnitudes of Fext. 

Lines are 2
nd

 order parabolic fits. Dashed lines denote the wall limit. 

 

Moreover, we investigate the impact of the magnitude of the external applied force on fluid velocity 

(Fig. 4). The Vvelocity profiles seem to fit well on parabolasic fits. Greater magnitude of Fext leads to 

greater velocity values, as expected from the continuum theory. It is of interest to note that a velocity 

bias is observed near the wall, representing the existence of slip velocities at the boundaries. We 

attribute this effect to the SPH technique behavior at the boundaries which can generate unrealistic 

effects. In Gomez-Gesteira (2010), it is noted that the velocity fall to zero when we approach the 
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boundaries, while the density does not. Creation of realistic boundary conditions is still an open topic 

in SPH methods. 

 

3.3 Water tank drainage 

In this example we present the drainage of a rectangular tank with a hole in the lower right wall. For 

the ease of simulation, the model is considered 2D, as a (x,y) = (1.05x10
-3

m, 1.05x10
-3

m) non-periodic 

simulation box. Computational cost is minimal at this dimension scale, although larger scale problems 

can be tackled without any significant change in our SPH software. Water particles fill the tank and 

exit through a hole strip in the lower part of the right wall when simulation starts due to gravity. 

Simulation runs for 43 10  timesteps, where the timestep 52 10t    sec, corresponding to a real 

simulation time of 0.6 sec and seems adequate to reveal the full evolution of the phenomenon (Fig. 5). 

Drainage time has been found short and we attribute this to the small system dimension.  

To partially check the validity of the SPH result, comparison is made with the well-known analytical 

and numerical results. The draining of a tank with a hole is a problem, first described by Torricelli. If 

S is the area ratio (“strip”/tank cross section) and g the acceleration due to gravity, then water emerges 

from the hole with velocity 2hu gy and the variation of fluid height in time is given by the 

ordinary differential equation 

2
dy

S g y
dt

   (20) 

The analytical solution of Eq. (20) can be easily found as 

2

1 2

0

2
( )

2

S g
y t y t

 
   
 

 (21) 

where 0y the initial height of water inside the tank. 
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If we plot the numerical solution by a fourth/fifth order Runge-Kutta method of Eq. (20), the 

analytical solution, Eq. (21), and the variation of fluid average depth obtained by the SPH method, we 

obtain the results of Fig. 6. Our SPH results seem to fit very well to the model of Eqs. (20) and (21). 

 

 

                  t=0 sec                     t=0.016 sec 

 

                  t=0.032 sec                     t=0.060 sec 

 

Figure 5. Water tank drainage 
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  Figure 6. Comparison of the SPH, Runge-Kutta and analytical methods for the water tank drainage 

problem 

 

4. Conclusions 

We have presented a smoothed particle hydrodynamics (SPH) numerical model and simulations 

results of water in three different examples: Couette and Poiseuille flows and the water tank drainage 

problem. We have shown that SPH, as a purely particle method, has many similarities to Molecular 

Dynamics, the well-documented atomistic simulation method, as well as to mesoscopic methods such 

as Dissipative Particle Dynamics. However, to address practical engineering problems in these fields 

we have to reduce the required CPU time for SPH and more generally for particle methods compared 

to classical CFD methods, especially when working with well-suited software platforms, such as 

Large-scale Atomic/Molecular Massively Parallel Simulator..  

It should be mentioned that the method seems to reproduce well most macroscopic problems but fails 

to incorporate nano- and micro-scale effects, such as the wall effect on fluid properties and transport 

properties. We also have pointed out unrealistic effects in fluid flows close to the wall boundaries. 

Development of realistic boundary conditions is still an open topic in SPH methods. Further research 
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on the applicability of the method in CFD and Hydraulics problems, would point out the scale limits 

and try to bridge with atomic-scale methods so as to suggest a hybrid multiscale modeling system.  
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