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Abstract 

A novel method that utilizes a combination of statistical 
and clustering techniques is presented in order to classify 
statistically independent heavy rainstorm events and 
create a limited number of representative intra-storm 
temporal distribution curves. These curves represent the 
centers of many dimensionless cumulative rainstorm 
events and express the temporal distribution patterns in a 
probabilistic way. The whole process includes the 
necessary steps from importing raw precipitation time 
series data to producing the initially unknown optimal 
number of representative curves. These hyetographs can 
be used for stochastic simulation, water resources 
planning, water quality assessment and global change 
studying. The present type of analysis is fully 
unsupervised, as no empirical knowledge of local rainfalls 
is implicated or any arbitrary introduction of quartiles for 
grouping as is the case in the pertinent literature. 
It replaces the traditional Huff’s method by utilizing 
modern machine learning techniques, thus being clearly 
data driven and more rational. An example using data 
from a Greek Water Division illustrates that the proposed 
method produces clusters with superior internal structure 
and temporal distribution curves that are not coming from 
the same distribution, in contrast to the results using the 
established Huff’s curves classification. 

Keywords: Rainfall temporal distribution, design 
hyetographs, optimal number of clusters, unsupervised 
learning, hierarchical clustering, principal components 
analysis, cluster validity, Huff’s curves. 

1. Introduction 

Knowledge about the temporal distribution of rainfall is 
essential in current methods of water resources 
management such as drainage design, erosion control, 
water quality assessment and global change studies. 
A typical methodology includes the determination of total 
duration and height of rainfall and disaggregation of this 
height using a temporal pattern that represents the 
expected internal rainfall structure, the design hyetograph 
(DH). A study (Veneziano and Villani, 1999) provided 

categorization of methods for the production of DHs, 
distinguishing four types. The first two methods are based 
on Intensity-Duration-Frequency curves, the third method 
is based on standardized profiles derived from rainfall 
records and the last one relies on stochastic rainfall 
models via simulation. The first three methods are used 
more frequently in practice. 

Huff (1967) presented a probabilistic method, in which 
storm data are classified using the quartile where the 
maximum intensity occurs. In this procedure, rainstorms 
are extracted and transformed to dimensionless form 
using the normalized cumulative precipitation as a 
function of the normalized rainstorm duration. More 
details about the development and utility of Huff’s curves 
in disaggregation and stochastic simulation can be found 
in the literature (Bonta, 2004a, 2004b; Bonta and Rao, 
1987; Bonta and Shahalam, 2003). The well-known two-
sample Kolmogorov-Smirnov test (KS) and 
chi-square test has been used to indicate whether there 
are statistically significant differences between two sets of 
Huff’s curves (Bonta and Shahalam, 2003; Williams-Sether 
et al., 2004). Huff’s categorization makes the assumption 
that the rainstorms within a quartile are more similar to 
others that belong to a different one, although this 
grouping has been criticized as artificial without physical 
meaning (Koutsoyiannis, 1994). Recently, an improvement 
on Huff curves was proposed by separately describing the 
rising and falling limbs of normalized rainstorms (Pan et 
al., 2017). Also, Bezak et al. (2018) recommend the use of 
Huff’s curves for the selection of DH in hydraulic flood 
modelling. Despite the dispute, the National Oceanic and 
Atmospheric Administration provides temporal 
distributions similar to Huff’s in the Precipitation-
Frequency Atlas of the United States (Perica et al., 2012) 
and in a number of different regions or countries Huff’s 
curves were used (Azli and Rao, 2010; Guo et al., 2001; 
Loukas and Quick, 1996; Yin et al., 2016; Zeimetz et al., 
2018). Finally, the concept of cumulative mass curves was 
used in conjunction with climate models to examine 
future changes in storm properties (Jiang et al., 2016). The 
present paper presents a more rational and fully 
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unsupervised classification of intra-storm temporal 
patterns of rainfall based on modern machine learning 
methods. 

Learning algorithms fall into one of the categories of 
supervised, reinforcement and unsupervised learning 
(Abu-Mostafa et al., 2012). The problem of determining 
rainfall intra-storm temporal distribution patterns, or to 
group these data into meaningful clusters, when there is 
no output information, is one of unsupervised learning. 
A very large number of these algorithms exist in the 
literature, a classification of them can be found in 
Sheikholeslami et al. (1998), and the most common ones 
used in practice are k-means (Hartigan and Wong, 1979; 
MacQueen, 1967) and Hierarchical Clustering, (HC; Ward, 
1963). Also, a large number of methods can be found for 
the evaluation of the results of clustering analysis, a task 
termed as the cluster validity. The validity criteria are 
categorized as follows (Theodoridis and Koutroumbas, 
2009): a) external, where the results of clustering are 
compared with a priori known results, b) internal, where 
only the results of clustering from an algorithm are used 
and c) relative, where results from different clustering 
methods are used. 

The optimal number of clusters, which in most cases is 
unknown, is a major issue in unsupervised learning, 
because different algorithms or even different parameters 
for the same algorithm lead to different clusters of data. A 
number of methods for the estimation of the optimal 
number of clusters, based on the relative cluster validity, 
can be found in Milligan and Cooper, (1985). Feng and 
Hamerly (2007) utilized the univariate KS test and the 
Gaussian mixture model to learn the numbers of clusters 
in data. A comprehensive list of 30 different indices can be 
found in Charrad et al. (2014) and two recent papers 
(Zambelli, 2016; Zhou et al., 2017) provide new methods 
and indices for determining the optimal number of 
clusters based on HC. 

Applications of learning algorithms using hydro-
meteorological data, in general, has been dealt with in the 
literature, in terms of supervised learning, such as 
estimating rainfall erosivity values (Vantas and 
Sidiropoulos, 2017). The use of unsupervised methods and 
the assessment of their validity in relation to the special 
issue of temporal distribution of rainfall are scarce and 
only recently such methods are appearing in the 
literature. Self-organized maps (SOM) have been applied 
to a small data-set to estimate design storms (Lin and Wu, 
2007), wavelet transform and SOM were used to cluster 
spatial–temporal monthly precipitation data (Hsu and Li, 
2010) and  k-means clustering was used to create a 
predefined number of rainfall patterns (Nojumuddin and 
Yusop, 2015). At a recent time, Vantas, Sidiropoulos, and 
Loukas (2019) utilized HC to identify regions that have 
similar temporal distribution of rainfall erosivity density 
and Vantas, Sidiropoulos, and Vafeiadis (2019) used a data 
driven approach for the temporal classification of heavy 
rainfall using SOM. 
This paper aims to present an original, controlled, fully 
reproducible, unsupervised method that produces 

automatically the optimal number of temporal 
distribution curves using precipitation records. 
This method comprises the following steps: a) Raw 
precipitation data are imported, b) independent 
rainstorms are extracted, c) Dimensionless Cumulative 
Hyetographs (DCH) are compiled, d) a hierarchical 
algorithm is applied that produces a set of clustering 
results, e) the optimal number of clusters is determined 
by a customized cluster validity method based on the 
two-sample Kolmogorov-Smirnov test and f) the rainstorm 
records are represented in a probabilistic way using a 
limited number of temporal distribution curves. 
An earlier, shorter, version, without the extensive 
treatment of the rainfall classification problem, was 
presented in the International Conference “Protection and 
Restoration of the Environment XIV” (Vantas et al., 2018). 
The emphasis in this paper is on the method and the study 
case represents an instance of the general problem. 
Thus, the various analytical aspects are expounded in 
more detail and, furthermore, cluster tendency and the 
determination of the optimal number of clusters are given 
an additional treatment. 

2. Materials and methods 

The methodology that was applied in the study is 
presented in Figure 1 as a flowchart. High frequency 
precipitation data were imported and independent 
rainstorms were extracted, dimensionless cumulative 
mass curves were compiled, clustering validation, the 
proposed Algorithm and the Huff’s classification was used. 
Last but not least, a comparison between the previous 
methods was made. 

 

Figure 1. Flowchart of the applied methodology 
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2.1. Data acquisition and processing 

The study region, located to the north-east Greece 
(Figure 2), extends to an area of 11,243 km2 that covers 
the Water Division of Thrace. It is delimited by the 
boundaries of Greece, Bulgaria and Turkey on the north 
and east, by the Thracian Sea on the south and by the 
watershed of Nestos River on the west. The climate is 
predominantly Mediterranean and annual rainfall ranges 
from 500 mm in coastal and insular areas to 1000 mm in 
the northern mountainous areas (Ministry of Environment 
and Energy, 2013). 

 

Figure 2. Location of the study area and the 13 meteorological 

stations 

Table 1. Meteorological stations information. ID is an abbreviation for the station ID as reported in the Greek National Bank of 

Hydrological and Meteorological Information, Lon for longitude, Lat for latitude, El for elevation, L for time-series length and MCV for 

mean annual data coverage per station 

 ID Lon () Lat () El (m) From To L (years) MCV (%) 

1 200249 24.79 41.09 75 1956 1997 41 62% 

2 200259 26.10 41.32 116 1973 1997 24 63% 

3 200260 26.17 40.90 43 1962 1997 35 56% 

4 200263 26.50 41.35 25 1955 1996 41 62% 

5 200311 24.50 41.27 122 1960 1996 36 65% 

6 500250 25.53 41.14 120 1965 1996 31 21% 

7 500251 25.86 41.23 700 1965 1996 31 20% 

8 500253 25.64 41.13 70 1965 1996 31 25% 

9 500262 25.01 41.35 440 1965 1996 31 21% 

10 500265 24.83 41.20 308 1965 1996 31 26% 

11 500267 24.83 41.27 656 1965 1996 31 18% 

12 500272 24.84 41.09 65 1968 1992 24 21% 

13 500273 24.69 40.99 15 1966 1992 26 16% 

 

The data utilized in the analysis (Table 1) were taken from 
the Greek National Bank of Hydrological and 
Meteorological Information (Vantas, 2018a), measured at 
13 meteorological stations. The data coverage (i.e. the 
percentage of non-missing values) was 37% on average 
and the time series comprised a total of 413 years of 
pluviograph records with a time step of 30 minutes for the 
time period from 1956 to 1997. The time series rainfall 
records were checked for consistency and cleared from 
errors. 

2.2. Optimal intra-storm temporal distributions curves 
algorithm 

The unsupervised method that creates the optimal 
number of distribution curves utilizes a hierarchical tree 
and a top-down iterative procedure (Algorithm 1). 
A necessary step prior to the construction of Huff’s curves 
is the extraction of individual rainstorm events from 
precipitation time series. Huff used a six-hour fixed Critical 
time Duration (CD) of no precipitation to separate these 
events, and many researchers followed the same 
approach (Azli and Rao, 2010; Dolšak et al., 2016; Loukas 
and Quick, 1996; Williams-Sether et al., 2004), although 
Bonta (2001) showed that CD has seasonal variability. 

 

In the proposed Algorithm a Poisson process hypothesis is 
assumed for the division of the precipitation time series to 
statistically-independent rainstorm events, in which: a) 
the events’ interarrival times ta that come from the same 
month are distributed exponentially and b) the events are 
separated by a monthly, constant, minimum dry period 
duration of no precipitation, MDPD. The probability 
density function of ta is (Restrepo-Posada and Eagleson, 
1982): 

( ) − 
=  αω t

a af t ω e , t 0  (1) 

where ω is the average storm arrival rate and: 

= +a r bt t t  (2) 
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where tr is the storm duration and tb is the dry time 
between rainstorms. More details about the specific 
implementation of the method can be found in Vantas et 
al. (2018). 

The general approach for the development of 
Dimensionless Cumulative Hyetographs (DCH) given by 
Bonta (2004a) is followed and only the events in R with 
duration greater than 3 hours and cumulative rainfall 
greater than 12.7 mm are used in the analysis. 
The hyetographs of the rainstorms that meet these 
criteria are transformed to dimensionless form in which a) 
the cumulative rainfall expresses the percentage of total 
rainstorm height and b) the time expresses the 
percentage of the rainstorm duration: 

= i
i

h
p

H
 (3) 

where pi is the cumulative dimensionless precipitation 
height, at time i, hi is the cumulative precipitation height 
at time i and H is the total precipitation height; 

= i
i

t
d

D
 (4) 

where di is the cumulative dimensionless duration at time 
i, ti is the cumulative duration at time i and D is the total 
rainstorm duration. 

Since the DCHs’ vectors in this form have variable length, 
linear interpolation is applied to compute the 
dimensionless cumulative rainfall for every 1% of 
dimensionless time values. Finally, a matrix of DCHs, U, is 
produced with the values of dimensionless cumulative 
rainfall, in which every row represents a DCH and every 
column the dimensionless time values. 

On the grounds that the time variables (i.e. the columns of 
the U matrix) are highly correlated, Principal Component 
Analysis (PCA, Pearson, 1901) is applied to reduce the 
dimensionality of the data to a few dimensions. 
The number of dimensions to retain is determined using 
the proportion of total variance of the data explained 
(Jolliffe, 1986). In this analysis this level is set to 99.5%, to 
ensure that almost all the information from DCHs will be 
preserved. 

The clustering method applied on the Principal 
Components of the U matrix was agglomerative 
Hierarchical Clustering (HCPC), because this method does 
not depend on the prior selection of the number of the 
clusters, or a random initialization, as for example 
k-means does (Friedman et al., 2001). HC requirements 
are the selection (a) of the dissimilarity measure, for 
which the Euclidean distance was used: 

( )
=

= −
12

2

1

( , )i i i i
i

d x y x y  (5) 

where xi and yi are the dimensionless cumulative 
precipitation vectors of two different rainstorms; and (b) 
of the agglomeration method, where the Ward’s 
minimum variance criterion was selected, an algorithm 
that minimizes the total within-cluster variance (Husson 

et al., 2017), as implemented in the R language (Murtagh 
and Legendre, 2014). 

At the beginning of the algorithm, the number of the 
clusters is equal to the number of data points (all clusters 
contain a single point). At every step, the algorithm finds 
the pair of clusters that result after merging to the 
minimum increase of the total within-cluster-variance, 
which is expressed as the sum of squared differences 
between the clusters’ centers. Finally, all clusters are 
combined to one cluster that contains all the data using a 
hierarchical method. 

The result from HCPC, a tree-based representation of the 
DCHs, was used to obtain the optimal number of clusters. 
At each step of the Algorithm the dendrogram is cut into 
different groups of DCHs and the center of each group 
represents a different distribution curve. These curves, for 
all possible pairs, were tested whether they are drawn 
from the same distribution using the two-sample 
Kolmogorov-Smirnov test (William, 1971). 

Because of the multiple pairwise tests, the p-values that 
resulted are adjusted using the Benjamini and Hochberg 
method, which controls the false discovery rate 
(Benjamini and Hochberg, 1995). If any of the produced 
hyetographs’ p-values is not smaller than a predefined 
significance level α, the procedure stops and the optimal 
number of clusters is found. 

2.3. Clustering tendency 

Regarding the problem of classification of the DCHs, 
initially, and because all the clustering algorithms can 
return clusters, even if there is no structure in the used 
data, the Hopkins index, H, (Banerjee and Dave, 2004; 
Hopkins and Skellam, 1954) or clustering tendency was on 
U. H can be used to test the null hypothesis of randomly 
and uniformly distributed data, generated by a Poisson 
point process and is calculated with: 

=

= =

=
+



 
1

1 1

m d
jj

m md d
j jj j

u
H

w u
 

(6) 

where when X is a collection of n data points that have d 
dimensions, a random sample from X without 
replacement with members xi(i = 1 to m, m ≪ n) is formed 
and Y is a set of uniformly random data points, also with d 
dimensions and members yj(j = 1 to m), uj in turn is the 
Euclidean distance from yj to its nearest neighbor in X and 
wj is also the Euclidean distance from xi to its nearest 
neighbor in X. A value of H close to one, indicates that the 
data are highly clustered, 0.5 indicates randomly 
distributed data and zero indicates regularly spaced data 
(Theodoridis and Koutroumbas, 2009b). 

3. Results and discussion 

3.1. Algorithm results 

Using the calculated CD-values, that showed a temporal 
variation during summer months (Vantas et al., 2018), a 
population of 1,622 out of 25,377 extracted rainstorms 
met the criteria of minimum duration and cumulative 
height. From PCA it is concluded that the use of the first 
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two dimensions explains 78.5% of total variance and the 
first 15 explains 99.5%. That means that it was possible to 
compress the DCHs’ data and visualize them using only 
two dimensions, without losing much from their 
information. These facts are illustrated in Figure 3, which 
presents the resulting Scree Plot (Cattell, 1966) for the 
first ten dimensions of PCA. 

 

Figure 3. The Screen Plot using the first ten dimensions coming 

from applying PCA on the DCHs’ data 

Table 2. Average values of occurrence of clusters, duration, 

precipitation height and maximum 30 min duration’s intensity of 

clusters’ rainstorms 

Cluster 
Occurrence 

(%) 
Duration 

(hr) 
Prec. 
(mm) 

I30max 
(mm/hr) 

1 12.50 16.25 16.5 20.1 

2 32.80 18.75 19.4 13.0 

3 39.50 19.5 19.5 12.4 

4 15.20 16.5 18.5 16.8 

The application of the proposed Algorithm identified four 
clusters (Figure 4). Some of their statistics are presented 
in Table 2, and their monthly occurrence in Figure 5. 
The first cluster has notable higher average maximum 30 
min duration’s intensity and the highest variance in 
monthly occurrence. In Figure 5 the clusters’ 10th, 50th 
and 90th percentiles are shown with the DCHs that belong 
to them. The percentiles’ values of the clusters are given 
in Table 3 and Figure 6. 

After developing distribution curves for each station and 
for every month, correlation matrices were computed, 
utilizing Pearson’s r coefficient (Helsel and Hirsch, 2002), 
using the respective DCHs per cluster. These matrices 
showed very high similarity between a) the curves per 
station with r ≥ 0.98, despite the missing values issues of 
the used dataset, and b) the curves per month with 
r ≥ 0.95. On the basis of the above results, it may be 
concluded that these curves are representative for the 
given study area. 

 

Figure 4. This dendrogram shows the tree-based representation 

of the DCHs that is produced from HCPC. Applying the Algorithm 

and moving down, the tree is cut into different clusters until the 

optimal number of them is found. The four optimal clusters are 

symbolized with different colors 

 

Figure 5. This plot presents the variability of clusters’ monthly 

occurrence from HCPC 

 

Figure 6. Results from the proposed Algorithm. With colors are 

presented the 10th, 50th (solid line) and 90th-percentiles 

dimensionless precipitation curves derived from the four optimal 

clusters. With grey lines are shown the DCHs of each cluster. The 

four panels depict the four different clusters 
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Table 3. The percentiles’ values of the DCHs as they are classified as clusters from HCPC. SD is an abbreviation for the dimensionless 

storm duration 

SD (%) 
Cluster 1 Cluster 2 Cluster 3 Cluster 4 

10th 50th 90th 10th 50th 90th 10th 50th 90th 10th 50th 90th 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

5.0 3.9 15.7 38.4 0.4 3.1 10.0 0.4 1.7 6.6 0.4 1.9 8.1 

10.0 15.0 31.4 63.5 1.6 8.1 19.2 0.8 3.6 12.4 0.8 3.7 14.3 

15.0 29.8 44.9 73.0 3.9 14.9 28.5 1.3 6.0 17.3 1.1 5.5 18.7 

20.0 41.8 55.7 80.4 8.0 22.4 38.2 2.0 8.9 21.8 1.6 7.4 22.2 

25.0 47.8 64.5 86.8 13.5 30.5 48.6 2.9 12.0 26.0 2.2 9.2 25.3 

30.0 52.0 71.4 89.6 20.7 38.9 58.6 4.2 15.7 30.2 2.7 10.9 28.2 

35.0 55.8 76.7 92.2 29.9 46.7 67.6 6.2 20.1 35.1 3.5 12.7 31.0 

40.0 57.5 80.0 93.7 39.5 54.5 76.9 9.6 25.5 41.1 4.3 14.9 33.8 

45.0 60.3 81.8 95.2 47.5 61.8 83.5 13.8 31.6 47.3 5.2 17.6 37.7 

50.0 62.7 83.5 96.2 54.0 68.7 88.2 19.6 39.2 54.2 6.1 21.1 41.7 

55.0 65.2 85.3 96.9 60.0 75.1 92.2 26.9 47.1 63.4 7.7 24.4 45.0 

60.0 68.7 87.4 97.8 64.7 80.4 94.5 34.4 54.2 73.3 10.1 28.3 49.4 

65.0 71.8 89.1 98.3 69.0 84.9 96.0 43.4 62.4 80.9 13.0 33.6 52.6 

70.0 76.0 90.8 98.5 72.8 89.1 97.4 53.1 71.0 87.8 16.9 40.3 56.4 

75.0 79.5 92.5 98.7 77.6 92.3 98.3 62.2 78.5 93.3 22.8 47.7 62.3 

80.0 82.0 94.8 99.1 82.1 94.3 98.9 70.7 85.4 96.3 32.4 56.1 70.8 

85.0 85.5 96.6 99.3 86.7 96.0 99.3 79.0 91.3 98.1 46.2 67.0 81.3 

90.0 89.5 97.7 99.5 91.2 97.5 99.5 86.9 95.5 99.1 60.2 81.1 91.7 

95.0 94.6 98.8 99.7 95.6 98.8 99.8 94.0 98.3 99.6 78.0 92.7 98.3 

100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

 

3.2. Clustering tendency and validation 

The computed value of the Hopkins index h was 0.88, so 
the null hypothesis of random data was safely rejected. 
The previous result indicated that there was physical 
meaning in the categorization of rainstorms for the given 
dataset. As a comparison to selection of the optimal 
number of clusters of the proposed Algorithm, the 30 
different indices that are used to determine the number 
of clusters in data, among others the popular “gap 
statistic” (Tibshirani et al., 2001) and the “silhouette 
index” (Rousseeuw, 1987), listed in (Charrad et al., 2014) 
were applied. Among all indices, six proposed two and 
another six proposed also four as the best number of 
clusters. Using the majority rule and adding as a vote the 
results from the proposed Algorithm, the best number of 
clusters is four with seven votes (Figure 7). The previous 
result indicated that the proposed Algorithm identified as 
other widely used methods the optimal number of 
clusters, with the advantage that the centers of these 
clusters had statistically significant differences, a desirable 
feature of rainfall distribution curves. 

 

Figure 7. The above plot presents the frequency among all 30 

indices used plus the results from the proposed Algorithm, for 

the determination of the optimal number of clusters 

3.3. Comparing Huff’s curves with the proposed 
Algorithm’s results 

The internal structure of data can be seen in Figure 8 
where the vectors of DCHs were re-ordered based on 
their cluster from the proposed Algorithm or their quartile 
that belong into. From this figure it can be seen that the 
two different methods produced different results. 



536  VANTAS et al. 

 

Figure 8. The above two diagrams present the different ways of 

classification of DCHs from HCPC (a) and Huff’s classification (b). 

In both plots the color range represents the value of 

dimensionless cumulative rainfall and the x axis is the 

dimensionless time 

Given that the first two dimensions from PCA can be used 
to present DCHs as points, in Figure 9 the DCHs are 
presented with their corresponding ellipses around them 
as a method of visual internal validation of the clustering 
results. These ellipses create the areas of the clusters 

formed both from HCPC, which separates the points 
clearly, and Huff’s classification, where the ellipses are 
overlapping. 

 

Figure 9. In these diagrams DCH’s are plotted using the first two 

principal components and ellipses around the clusters. 

The results from HCPC are given in (a) and from Huff’s 

classification in (b) 

 

Table 4. Adjusted p-values test using the Benjamini and Hochberg method coming from the two-sample Kolmogorov-Smirnov tests. In 

(a) are tested the design curves from the HCPC and in (b) from Huff’s classification. C is an abbreviation for Cluster and Q for Quartile 

 C 2 C 3 C 4  Q 2 Q 3 Q 4 

C 1 0.01 4∙10-7 2∙10-14 Q 1 0.10 4∙10-5 3∙10-10 

C 2  0.04 10-6 Q 2  0.11 4∙10-5 

C 3   0.04 Q 3   0.12 

(a) (b) 

 

Also, all possible pairs of curves, were tested whether 
they drawn from the same distribution using the two-
sample Kolmogorov-Smirnov test (their adjusted p-values 
using the Benjamini and Hochberg method). 
These statistical tests were used as a relative validation 
method of the clustering results. Three pairs of the Huff’s 
curves failed to reject the hypothesis that are drawn from 
the same distribution for both α = 0.05 and α = 0.10 in 
contrast to HCPC results (Table 4). In other words, for the 
given dataset, Huff’s classification failed to produce 
statistical independent distribution curves in contrast to 
the ones coming from the proposed Algorithm. 

4. Conclusions 
A novel method is presented in order to classify 
statistically independent heavy rainstorm events and 
create a limited number of intra-storm temporal 
distribution curves, a fact that is interesting both from the 
methodology point of view and in regard to practical 
applications. More specifically, the conclusions from the 
followed analytical steps can be briefly outlined as 
follows. Principal Components Analysis showed that it is 
possible to compress the hyetograph data to a few 
dimensions without losing much information and 
consequently to apply the proposed method to big 
datasets. Clustering tendency analysis showed that the 
DCHs data set used with the proposed Algorithm contains 

meaningful clusters (i.e. non-random structures). 
The relative clustering validation analysis showed that the 
proposed method, in a majority voting scheme with 
another 30 indices, produced the optimal number of 
clusters. Internal structure validation and statistical 
testing showed that the proposed Algorithm provides 
better classification of the DCHs than the established 
Huff’s quartile classification. Four representative 
distribution curves were produced and such hyetographs 
have not been derived in Greece so far, especially in a way 
that covers the various Water Divisions. The production of 
only a limited number of representative distribution 
curves offers considerable advantages for practical 
purposes and the method presented here replaces more 
traditional methods, because it is more rational, as it is 
fully unsupervised, and it requires no prior empirical 
knowledge. This is achieved, because with the proposed 
Algorithm no human intervention or bias is involved in the 
selection of the clusters. 
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