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ABSTRACT 8 

A novel method that utilizes a combination of statistical and clustering techniques is presented in 9 

order to classify statistically independent heavy rainstorm events and create a limited number of 10 

representative intra-storm temporal distribution curves. These curves represent the centers of many 11 

dimensionless cumulative rainstorm events and express the temporal distribution patterns in a 12 

probabilistic way. The whole process includes the necessary steps from importing raw precipitation 13 

time series data to producing the initially unknown optimal number of representative curves. These 14 

hyetographs can be used for stochastic simulation, water resources planning, water quality 15 

assessment and global change studying. The present type of analysis is fully unsupervised, as no 16 

empirical knowledge of local rainfalls is implicated or any arbitrary introduction of quartiles for 17 

grouping as is the case in the pertinent literature. It replaces the traditional Huff’s method by 18 

utilizing modern machine learning techniques, thus being clearly data driven and more rational. An 19 

example using data from a Greek Water Division illustrates that the proposed method produces 20 

clusters with superior internal structure and temporal distribution curves that are not coming from 21 

the same distribution, in contrast to the results using the established Huff’s curves classification. 22 

 23 
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1. Introduction 27 

Knowledge about the temporal distribution of rainfall is essential in current methods of water 28 

resources management such as drainage design, erosion control, water quality assessment and 29 

global change studies. A typical methodology includes the determination of total duration and 30 

height of rainfall and disaggregation of this height using a temporal pattern that represents the 31 

expected internal rainfall structure, the design hyetograph (DH). A study (Veneziano & Villani, 32 

1999) provided categorization of methods for the production of DHs, distinguishing four types. The 33 

first two methods are based on Intensity-Duration-Frequency curves, the third method is based on 34 

standardized profiles derived from rainfall records and the last one relies on stochastic rainfall 35 

models via simulation. The first three methods are used more frequently in practice. 36 

Huff (1967) presented a probabilistic method, in which storm data are classified using the quartile 37 

where the maximum intensity occurs. In this procedure, rainstorms are extracted and transformed to 38 

dimensionless form using the normalized cumulative precipitation as a function of the normalized 39 

rainstorm duration. More details about the development and utility of Huff’s curves in 40 

disaggregation and stochastic simulation can be found in the literature (J. Bonta, 2004a, b, J. Bonta 41 

& Rao, 1987, J. V. Bonta & Shahalam, 2003). The well-known two-sample Kolmogorov-Smirnov 42 

test (KS) and chi-square test has been used to indicate whether there are statistically significant 43 

differences between two sets of Huff’s curves (J. V. Bonta & Shahalam, 2003; Williams-Sether et 44 

al., 2004). Huff’s categorization makes the assumption that the rainstorms within a quartile are 45 

more similar to others that belong to a different one, although this grouping has been criticized as 46 

artificial without physical meaning (Koutsoyiannis, 1994). Recently, an improvement on Huff 47 

curves was proposed by separately describing the rising and falling limbs of normalized rainstorms 48 

(Pan et al., 2017).  Also, Bezak et al. (2018) recommend the use of Huff’s curves for the selection 49 

of DH in hydraulic flood modelling. Despite the dispute, the National Oceanic and Atmospheric 50 

Administration provides temporal distributions similar to Huff’s in the Precipitation-Frequency 51 

Atlas of the United States (Perica et al., 2012) and in a number of different regions or countries 52 
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Huff’s curves were used (Azli & Rao, 2010, Guo et al., 2001, Loukas & Quick, 1996, Yin et al., 53 

2016, Zeimetz et al., 2018). Finally, the concept of cumulative mass curves were used in 54 

conjunction with climate models to examine future changes in storm properties (Jiang et al., 2016). 55 

The present paper presents a more rational and fully unsupervised classification of intra-storm 56 

temporal patterns of rainfall based on modern machine learning methods. 57 

Learning algorithms fall into one of the categories of supervised, reinforcement and unsupervised 58 

learning (Abu-Mostafa et al., 2012). The problem of determining rainfall intra-storm temporal 59 

distribution patterns, or to group these data into meaningful clusters, when there is no output 60 

information, is one of unsupervised learning. A very large number of these algorithms exist in the 61 

literature, a classification of them can be found in Sheikholeslami et al. (1998), and the most 62 

common ones used in practice are k-means (Hartigan & Wong, 1979, MacQueen, 1967) and 63 

Hierarchical Clustering, (HC; Ward, 1963). Also, a large number of methods can be found for the 64 

evaluation of the results of clustering analysis, a task termed as the cluster validity. The validity 65 

criteria are categorized as follows (Theodoridis and Koutroumbas, 2009): a) external, where the 66 

results of clustering are compared with a priori known results, b) internal, where only the results of 67 

clustering from an algorithm are used and c) relative, where results from different clustering 68 

methods are used.  69 

The optimal number of clusters, which in most cases is unknown, is a major issue in unsupervised 70 

learning, because different algorithms or even different parameters for the same algorithm lead to 71 

different clusters of data. A number of methods for the estimation of the optimal number of clusters, 72 

based on the relative cluster validity, can be found in (Milligan & Cooper, 1985). Feng & Hamerly 73 

(2007) utilized the univariate KS test and the Gaussian mixture model to learn the numbers of 74 

clusters in data. A comprehensive list of 30 different indices can be found in (Charrad et al., 2014) 75 

and two recent papers (Zambelli, 2016, Zhou et al., 2017) provide new methods and indices for 76 

determining the optimal number of clusters based on HC. 77 
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Applications of learning algorithms using hydro-meteorological data, in general, has been dealt with 78 

in the literature, in terms of supervised learning, such as estimating rainfall erosivity values (Vantas 79 

& Sidiropoulos, 2017). The use of unsupervised methods and the assessment of their validity in 80 

relation to the special issue of temporal distribution of rainfall are scarce and only recently such 81 

methods are appearing in the literature. Self-organized maps (SOM) have been applied to a small 82 

data-set to estimate design storms (Lin & Wu, 2007), wavelet transform and SOM were used to 83 

cluster spatial–temporal monthly precipitation data (Hsu & Li, 2010) and  k-means clustering was 84 

used to create a predefined number of rainfall patterns (Nojumuddin & Yusop, 2015). At a recent 85 

time, Vantas, Sidiropoulos, & Loukas, (2019) utilized HC to identify regions that have similar 86 

temporal distribution of rainfall erosivity density and Vantas, Sidiropoulos, & Vafeiadis, (2019) 87 

used  a data driven approach for the temporal classification of heavy rainfall using SOM. 88 

This paper aims to present an original, controlled, fully reproducible, unsupervised method that 89 

produces automatically the optimal number of temporal distribution curves using precipitation 90 

records. This method comprises the following steps: a) Raw precipitation data are imported, b) 91 

independent rainstorms are extracted, c) Dimensionless Cumulative Hyetographs (DCH) are 92 

compiled, d) a hierarchical algorithm is applied that produces a set of clustering results, e) the 93 

optimal number of clusters is determined by a customized cluster validity method based on the two-94 

sample Kolmogorov-Smirnov test and f) the rainstorm records are represented in a probabilistic 95 

way using a limited number of temporal distribution curves. An earlier, shorter, version, without the 96 

extensive treatment of the rainfall classification problem, was presented in the International 97 

Conference “Protection and Restoration of the Environment XIV” (Vantas et al., 2018).  The 98 

emphasis in this paper is on the method and the study case represents an instance of the general 99 

problem. Thus, the various analytical aspects are expounded in more detail and, furthermore, cluster 100 

tendency and the determination of the optimal number of clusters are given an additional treatment. 101 

2. Materials and methods 102 
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The methodology that was applied in the study is presented in Figure 1 as a flowchart. High 103 

frequency precipitation data were imported and independent rainstorms were extracted, 104 

dimensionless cumulative mass curves were compiled, clustering validation, the proposed 105 

Algorithm and the Huff’s classification was used. Last but not least, a comparison between the 106 

previous methods was made. 107 

 

Figure 1. Flowchart of the applied methodology. 108 

2.1. Data Acquisition and Processing 109 
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The study region, located to the north-east Greece (Figure 2), extends to an area of 11,243 km
2
 that 110 

covers the Water Division of Thrace. It is delimited by the boundaries of Greece, Bulgaria and 111 

Turkey on the north and east, by the Thracian Sea on the south and by the watershed of Nestos 112 

River on the west. The climate is predominantly Mediterranean and annual rainfall ranges from 500 113 

mm in coastal and insular areas to 1000 mm in the northern mountainous areas (Ministry of 114 

Environment and Energy, 2013). 115 

 

Figure 2. Location of the study area and the 13 meteorological stations 116 

The data utilized in the analysis (Table 1) were taken from the Greek National Bank of 117 

Hydrological and Meteorological Information (Vantas, 2018a), measured at 13 meteorological 118 

stations. The data coverage (i.e. the percentage of non-missing values) was 37% on average and the 119 

time series comprised a total of 413 years of pluviograph records with a time step of 30 minutes for 120 

the time period from 1956 to 1997. The time series rainfall records were checked for consistency 121 

and cleared from errors. 122 

Table 1. Meteorological stations information. ID is an abbreviation for the station ID as reported in 123 

the Greek National Bank of Hydrological and Meteorological Information, Lon for longitude, Lat 124 

for latitude, El for elevation, L for time-series length and MCV for mean annual data coverage per 125 

station. 126 



 

8 

 

 127 

 ID Lon () Lat () El (m) From To L (years) MCV (%) 

1 200249 24.79 41.09 75 1956 1997 41 62% 

2 200259 26.10 41.32 116 1973 1997 24 63% 

3 200260 26.17 40.90 43 1962 1997 35 56% 

4 200263 26.50 41.35 25 1955 1996 41 62% 

5 200311 24.50 41.27 122 1960 1996 36 65% 

6 500250 25.53 41.14 120 1965 1996 31 21% 

7 500251 25.86 41.23 700 1965 1996 31 20% 

8 500253 25.64 41.13 70 1965 1996 31 25% 

9 500262 25.01 41.35 440 1965 1996 31 21% 

10 500265 24.83 41.20 308 1965 1996 31 26% 

11 500267 24.83 41.27 656 1965 1996 31 18% 

12 500272 24.84 41.09 65 1968 1992 24 21% 

13 500273 24.69 40.99 15 1966 1992 26 16% 

 128 

2.2. Optimal intra-storm temporal distributions curves algorithm 129 

The unsupervised method that creates the optimal number of distribution curves utilizes a 130 

hierarchical tree and a top-down iterative procedure (Algorithm 1). A necessary step prior to the 131 

construction of Huff’s curves is the extraction of individual rainstorm events from precipitation 132 

time series. Huff used a six-hour fixed Critical time Duration (CD) of no precipitation to separate 133 

these events, and many researchers followed the same approach (Azli & Rao, 2010, Dolšak et al., 134 

2016, Loukas & Quick, 1996, Williams-Sether et al., 2004), although Bonta, (2001) showed that 135 

CD has seasonal variability.  136 

 

In the proposed Algorithm a Poisson process hypothesis is assumed for the division of the 137 

precipitation time series to statistically-independent rainstorm events, in which: a) the events’ 138 
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interarrival times ta that come from the same month are distributed exponentially and b) the events 139 

are separated by a monthly, constant, minimum dry period duration of no precipitation, MDPD. The 140 

probability density function of ta is (Restrepo-Posada & Eagleson, 1982): 141 

f(ta) = ω ⋅ e−ω⋅tα ,    ta ≥ 0 
(1) 

where ω is the average storm arrival rate and: 142 

ta = tr + tb 
(2) 

where tr is the storm duration and tb is the dry time between rainstorms. More details about the 143 

specific implementation of the method can be found in Vantas et al. (2018). 144 

The general approach for the development of Dimensionless Cumulative Hyetographs (DCH) given 145 

by Bonta (2004a) is followed and only the events in 𝑹 with duration greater than 3 hours and 146 

cumulative rainfall greater than 12.7 mm are used in the analysis. The hyetographs of the rainstorms 147 

that meet these criteria are transformed to dimensionless form in which a) the cumulative rainfall 148 

expresses the percentage of total rainstorm height and b) the time expresses the percentage of the 149 

rainstorm duration: 150 

𝑝𝑖 =
ℎ𝑖

𝐻
 (3) 

where 𝑝𝑖 is the cumulative dimensionless precipitation height, at time 𝑖, ℎ𝑖 is the cumulative 151 

precipitation height at time 𝑖 and 𝐻 is the total precipitation height; 152 

𝑑𝑖 =
𝑡𝑖

𝐷
 

(4) 

where 𝑑𝑖 is the cumulative dimensionless duration at time 𝑖, 𝑡𝑖 is the cumulative duration at time 𝑖 153 

and 𝐷 is the total rainstorm duration. 154 

Since the DCHs’ vectors in this form have variable length, linear interpolation is applied to compute  155 

the dimensionless cumulative rainfall for every 1% of dimensionless time values. Finally, a matrix 156 

of DCHs, 𝑼, is produced with the values of dimensionless cumulative rainfall, in which every row 157 

represents a DCH and every column the dimensionless time values.  158 
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On the grounds that the time variables (i.e. the columns of the 𝑼 matrix) are highly correlated, 159 

Principal Component Analysis (PCA, Pearson, 1901) is applied to reduce the dimensionality of the 160 

data to a few dimensions. The number of dimensions to retain is determined using the proportion of 161 

total variance of the data explained (Jolliffe, 1986). In this analysis this level is set to 99.5%, to 162 

ensure that almost all the information from DCHs will be preserved. 163 

The clustering method applied on the Principal Components of the 𝑼 matrix was agglomerative 164 

Hierarchical Clustering (HCPC), because this method does not depend on the prior selection of the 165 

number of the clusters, or a random initialization, as for example k-means does (Friedman et al., 166 

2001). HC requirements are the selection (a) of the dissimilarity measure, for which the Euclidean 167 

distance was used: 168 

𝑑(𝑥𝑖, 𝑦𝑖) = √∑(𝑥𝑖 − 𝑦𝑖)2

12

𝑖=1

 
(5) 

where 𝑥𝑖 and 𝑦𝑖 are the dimensionless cumulative precipitation vectors of two different rainstorms; 169 

and (b) of the agglomeration method, where the Ward’s minimum variance criterion was selected, 170 

an algorithm that minimizes the total within-cluster variance (Husson et al., 2017), as implemented 171 

in the R language (Murtagh & Legendre, 2014).  172 

At the beginning of the algorithm, the number of the clusters is equal to the number of data points 173 

(all clusters contain a single point). At every step, the algorithm finds the pair of clusters that result 174 

after merging to the minimum increase of the total within-cluster-variance, which is expressed as 175 

the sum of squared differences between the clusters’ centers. Finally, all clusters are combined to 176 

one cluster that contains all the data using a hierarchical method. 177 

The result from HCPC, a tree-based representation of the DCHs, was used to obtain the optimal 178 

number of clusters. At each step of the Algorithm the dendrogram is cut into different groups of 179 

DCHs and the center of each group represents a different distribution curve. These curves, for all 180 
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possible pairs, were tested whether they are drawn from the same distribution using the two-sample 181 

Kolmogorov-Smirnov test (William, 1971).  182 

Because of the multiple pairwise tests, the p-values that resulted are adjusted using the Benjamini 183 

and Hochberg method, which controls the false discovery rate (Benjamini & Hochberg, 1995). If 184 

any of the produced hyetographs’ p-values is not smaller than a predefined significance level α, the 185 

procedure stops and the optimal number of clusters is found.  186 

2.3 Clustering tendency 187 

Regarding the problem of classification of the DCHs, initially, and because all the clustering 188 

algorithms can return clusters, even if there is no structure in the used data, the Hopkins index, 𝐻, 189 

(Banerjee & Dave, 2004; Hopkins & Skellam, 1954) or clustering tendency was on 𝑼. 𝐻 can be 190 

used to test the null hypothesis of randomly and uniformly distributed data, generated by a Poisson 191 

point process and is calculated with: 192 

𝐻 =
∑ 𝑢𝑗

𝑑𝑚
𝑗=1

∑ 𝑤𝑗
𝑑𝑚

𝑗=1 + ∑ 𝑢𝑗
𝑑𝑚

𝑗=1

 (6) 

where when 𝑋 is a collection of 𝑛 data points that have 𝑑 dimensions, a random sample from 𝑋 193 

without replacement with members 𝑥𝑖  (𝑖 = 1 𝑡𝑜 𝑚, 𝑚 ≪ 𝑛 ) is formed and 𝑌 is a set of uniformly 194 

random data points, also with 𝑑 dimensions and members 𝑦𝑗  ( 𝑗 = 1 𝑡𝑜 𝑚), 𝑢𝑗  in turn is the 195 

Euclidean distance from 𝑦𝑗 to its nearest neighbor in 𝑋 and 𝑤𝑗 is also the Euclidean distance from 196 

𝑥𝑖 to its nearest neighbor in 𝑋. A value of 𝐻 close to one, indicates that the data are highly 197 

clustered, 0.5 indicates randomly distributed data and zero indicates regularly spaced data 198 

(Theodoridis & Koutroumbas, 2009b). 199 

3. Results and Discussion 200 

3.1. Algorithm results 201 

Using the calculated CD-values, that showed a temporal variation during summer months (Vantas et 202 

al., 2018), a population of 1,622 out of 25,377 extracted rainstorms met the criteria of minimum 203 

duration and cumulative height. From PCA it is concluded that the use of the first two dimensions 204 
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explains 78.5% of total variance and the first 15 explains 99.5%. That means that it was possible to 205 

compress the DCHs’ data and visualize them using only two dimensions, without losing much from 206 

their information. These facts are illustrated in Figure 3, which presents the resulting Scree Plot 207 

(Cattell, 1966) for the first ten dimensions of PCA. 208 

 
Figure 3. The Scree Plot using the first ten dimensions coming from applying PCA on the DCHs’ 209 

data. 210 

 211 

The application of the proposed Algorithm identified four clusters (Figure 4). Some of their 212 

statistics are presented in Table 2, and their monthly occurrence in Figure 5. The first cluster has 213 

notable higher average maximum 30 min duration’s intensity and the highest variance in monthly 214 

occurrence. In Figure 5 the clusters’ 10th, 50th and 90th percentiles are shown with the DCHs that 215 

belong to them. The percentiles’ values of the clusters are given in Table 3 and Figure 6. 216 

After developing distribution curves for each station and for every month, correlation matrices were 217 

computed, utilizing Pearson’s r coefficient (Helsel & Hirsch, 2002), using the respective DCHs per 218 

cluster. These matrices showed very high similarity between a) the curves per station with r ≥ 0.98, 219 

despite the missing values issues of the used dataset, and b) the curves per month with r ≥ 0.95. On 220 

the basis of the above results, it may be concluded that these curves are representative for the given 221 

study area. 222 

 223 
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Table 2. Average values of occurrence of clusters, duration, precipitation height and maximum 30 224 

min duration’s intensity of clusters’ rainstorms. 225 

 226 

Cluster Occurrence (%) Duration (hr) Prec. (mm) I30max (mm/hr) 

1 12.50 16.25 16.5 20.1 

2 32.80 18.75 19.4 13.0 

3 39.50 19.5 19.5 12.4 

4 15.20 16.5 18.5 16.8 

 227 

 228 

 
Figure 4. This dendrogram shows the tree-based representation of the DCHs that is produced from 229 

HCPC. Applying the Algorithm and moving down, the tree is cut into different clusters until the 230 

optimal number of them is found. The four optimal clusters are symbolized with different colors. 231 

 232 

 233 
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Figure 5. This plot presents the variability of clusters’ monthly occurrence from HCPC. 234 

 235 

 236 

 237 

 
Figure 6. Results from the proposed Algorithm. With colors are presented the 10th, 50th (solid 238 

line) and 90th-percentiles dimensionless precipitation curves derived from the four optimal clusters. 239 

With grey lines are shown the DCHs of each cluster. The four panels depict the four   240 

different clusters. 241 
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 242 
Table 3. The percentiles’ values of the DCHs as they are classified as clusters from HCPC. SD is an 243 

abbreviation for the dimensionless storm duration. 244 

 245 

SD (%) Cluster 1 Cluster 2 Cluster 3 Cluster 4 

10th 50th 90th 10th 50th 90th 10th 50th 90th 10th 50th 90th 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

5.0 3.9 15.7 38.4 0.4 3.1 10.0 0.4 1.7 6.6 0.4 1.9 8.1 

10.0 15.0 31.4 63.5 1.6 8.1 19.2 0.8 3.6 12.4 0.8 3.7 14.3 

15.0 29.8 44.9 73.0 3.9 14.9 28.5 1.3 6.0 17.3 1.1 5.5 18.7 

20.0 41.8 55.7 80.4 8.0 22.4 38.2 2.0 8.9 21.8 1.6 7.4 22.2 

25.0 47.8 64.5 86.8 13.5 30.5 48.6 2.9 12.0 26.0 2.2 9.2 25.3 

30.0 52.0 71.4 89.6 20.7 38.9 58.6 4.2 15.7 30.2 2.7 10.9 28.2 

35.0 55.8 76.7 92.2 29.9 46.7 67.6 6.2 20.1 35.1 3.5 12.7 31.0 

40.0 57.5 80.0 93.7 39.5 54.5 76.9 9.6 25.5 41.1 4.3 14.9 33.8 

45.0 60.3 81.8 95.2 47.5 61.8 83.5 13.8 31.6 47.3 5.2 17.6 37.7 

50.0 62.7 83.5 96.2 54.0 68.7 88.2 19.6 39.2 54.2 6.1 21.1 41.7 

55.0 65.2 85.3 96.9 60.0 75.1 92.2 26.9 47.1 63.4 7.7 24.4 45.0 

60.0 68.7 87.4 97.8 64.7 80.4 94.5 34.4 54.2 73.3 10.1 28.3 49.4 

65.0 71.8 89.1 98.3 69.0 84.9 96.0 43.4 62.4 80.9 13.0 33.6 52.6 

70.0 76.0 90.8 98.5 72.8 89.1 97.4 53.1 71.0 87.8 16.9 40.3 56.4 

75.0 79.5 92.5 98.7 77.6 92.3 98.3 62.2 78.5 93.3 22.8 47.7 62.3 

80.0 82.0 94.8 99.1 82.1 94.3 98.9 70.7 85.4 96.3 32.4 56.1 70.8 

85.0 85.5 96.6 99.3 86.7 96.0 99.3 79.0 91.3 98.1 46.2 67.0 81.3 

90.0 89.5 97.7 99.5 91.2 97.5 99.5 86.9 95.5 99.1 60.2 81.1 91.7 

95.0 94.6 98.8 99.7 95.6 98.8 99.8 94.0 98.3 99.6 78.0 92.7 98.3 

100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

 246 

3.2. Clustering tendency and validation 247 

The computed value of the Hopkins index h was 0.88, so the null hypothesis of random data was 248 

safely rejected. The previous result indicated that there was physical meaning in the categorization 249 

of rainstorms for the given dataset. As a comparison to selection of the optimal number of clusters 250 

of the proposed Algorithm, the 30 different indices that are used to determine the number of clusters 251 

in data, among others the popular “gap statistic” (Tibshirani et al., 2001) and the “silhouette index” 252 

(Rousseeuw, 1987), listed in (Charrad et al., 2014) were applied. Among all indices, six proposed 253 

two and another six proposed also four as the best number of clusters. Using the majority rule, and 254 

adding as a vote the results from the proposed Algorithm, the best number of clusters is four with 255 

seven votes (Figure 7). The previous result indicated that the proposed Algorithm identified as other 256 

widely used methods the optimal number of clusters, with the advantage that the centers of these 257 

clusters had statistically significant differences, a desirable feature of rainfall distribution curves. 258 
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 259 

 
Figure 7. The above plot presents the frequency among all 30 indices used plus the results from the 260 

proposed Algorithm, for the determination of the optimal number of clusters. 261 

 262 

3.2. Comparing Huff’s curves with the proposed Algorithm’s results 263 

The internal structure of data can be seen in Figure 8 where the vectors of DCHs were re-ordered 264 

based on their cluster from the proposed Algorithm or their quartile that belong into. From this 265 

figure it can be seen that the two different methods produced different results. 266 

 267 

 
(a) 

 
(b) 

Figure 8. The above two diagrams present the different ways of classification of DCHs from HCPC 268 

(a) and Huff’s classification (b). In both plots the color range represents the value of dimensionless 269 

cumulative rainfall and the x axis is the dimensionless time. 270 

 271 
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 272 

Given that the first two dimensions from PCA can be used to present DCHs as points, in Figure 9 273 

the DCHs are presented with their corresponding ellipses around them as a method of visual 274 

internal validation of the clustering results. These ellipses create the areas of the clusters formed 275 

both from HCPC, which separates the points clearly, and Huff’s classification, where the ellipses 276 

are overlapping. 277 

 278 

 
(a) 

 
(b) 

Figure 9. In these diagrams DCH’s are plotted using the first two principal components and ellipses 279 

around the clusters. The results from HCPC are given in (a) and from Huff’s classification in (b). 280 

 281 

Table 4. Adjusted p-values test using the Benjamini & Hochberg method coming from the two-282 

sample Kolmogorov-Smirnov tests. In (a) are tested the design curves from the HCPC and in (b) 283 

from Huff’s classification. C is an abbreviation for Cluster and Q for Quartile. 284 

 C 2 C 3 C 4 

C 1 0.01 4∙10
-7

 2∙10
-14

 

C 2  0.04 10
-6

 

C 3   0.04 
(a) 

 Q 2 Q 3 Q 4 

Q 1 0.10 4∙10
-5

 3∙10
-10

 

Q 2  0.11 4∙10
-5

 

Q 3   0.12 
(b) 

 285 

Also, all possible pairs of curves, were tested whether they drawn from the same distribution using 286 

the two-sample Kolmogorov-Smirnov test (their adjusted p-values using the Benjamini and 287 

Hochberg method). These statistical tests were used as a relative validation method of the clustering 288 

results. Three pairs of the Huff’s curves failed to reject the hypothesis that are drawn from the same 289 

distribution for both α = 0.05 and α = 0.10 in contrast to HCPC results (Table 4). In other words, for 290 
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the given dataset, Huff’s classification failed to produce statistical independent distribution curves 291 

in contrast to the ones coming from the proposed Algorithm. 292 

3. Conclusions 293 

A novel method is presented in order to classify statistically independent heavy rainstorm events 294 

and create a limited number of intra-storm temporal distribution curves, a fact that is interesting 295 

both from the methodology point of view and in regard to practical applications. More specifically, 296 

the conclusions from the followed analytical steps can be briefly outlined as follows. Principal 297 

Components Analysis showed that it is possible to compress the hyetograph data to a few 298 

dimensions without losing much information and consequently to apply the proposed method to big 299 

data-sets. Clustering tendency analysis showed that the DCHs data set used with the proposed 300 

Algorithm contains meaningful clusters (i.e. non-random structures). The relative clustering 301 

validation analysis showed that the proposed method, in a majority voting scheme with another 30 302 

indices, produced the optimal number of clusters. Internal structure validation and statistical testing 303 

showed that the proposed Algorithm provides better classification of the DCHs than the established 304 

Huff’s quartile classification.  Four representative distribution curves were produced and such 305 

hyetographs have not been derived in Greece so far, especially in a way that covers the various 306 

Water Divisions.  The production of only a limited number of representative distribution curves 307 

offers considerable advantages for practical purposes and the method presented here replaces more 308 

traditional methods, because it is more rational, as it is fully unsupervised and it requires no prior 309 

empirical knowledge. This is achieved, because with the proposed Algorithm no human 310 

intervention or bias is involved in the selection of the clusters. 311 
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