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Abstract 

Odour emissions from industrial plants affect air quality 
and are consequently cause of a growing number of public 
complaints. The control of odour represents a key issue in 
plant management. The starting point for an effective 
odour control is their objective measurement. The 
electronic nose represents probably the odour monitoring 
technique with the greatest potential, but currently there 
is not a universally recognized procedure for their 
application in the continuous characterization of 
environmental odours. 

The paper aims to present a novel procedure for training 
electronic noses in order to maximize their capability of 
operating a qualitative classification and estimating the 
odour concentration of ambient air. This novel approach 
reduces the uncertainty and increases the reliability of the 
continuous odour measures. 

The Electronic Nose (E.Nose) seedOA realized by the 
Sanitary Environmental Engineering Division (SEED) of the 
University of Salerno was applied to a real case in a large 
wastewater treatment plant. The papers highlights the 
characterization of the odour concentrations from the 
different treatment units and the identification of the 
principal odour sources. 

Keywords: Air quality, dynamic olfactometry, odour 
impact, sensor array, public complaints. 

1. Introduction 

Odour emissions from industrial plants are causes of 
conflict by the community living surrounding the plants and 
of complaints at the local authorities (Zarra et al., 2008; 
Belgiorno et al., 2012). The prolonged exposure to 
environmental odours causes a variety of undesirable 
reactions in people, including unease, headaches, 
respiratory problems, nausea or vomiting (Zarra et al., 
2008). The particular and complex nature of the volatile 
substances, their variability on the time, the strong 
influence from atmospheric conditions and the subjectivity 
of smell perception all delayed their regulations (Zarra et 
al., 2008). Nowadays the available techniques for ambient 

odour measurements are classifiable in analytical, sensorial 
and sensor-instrumental (Belgiorno et al., 2012; Zarra et 
al., 2014). Analytical measurements allow the 
characterization of odours in terms of chemical 
composition (GC-MS, colorimetric methods). Sensory 
measurements, such as dynamic olfactometry 
standardized by EN13725:2003, provide for using human 
nose as sensor, defining and measuring the effects of the 
odours on a panel of qualified examiners. Sensor-
instrumental techniques allows defining information about 
the chemical composition and the smell propriety of the 
investigated odour. The Electronic Nose (e.nose) appears 
as the sensor-instrumental technique with the most 
suitable potential. In fact, the use of the e.nose technology 
allows having a continuous and real time (or “near real 
time”) monitoring of odours (Munoz et al., 2010; Romain 
et al., 2010). 

According to Gardner and Bartlett (1994) an e.nose system 
consists of an array of non-specific gas sensors, a signal 
collecting unit and a pattern recognition software. The 
‘heart’ of the E.Nose technologies is their measurement 
chamber with the inner sensor array, designed to detect 
and discriminate complex odour mixtures (Rock et al., 
2008). Different numbers of sensors create the 
characteristic response called “fingerprint”. Moreover, the 
different types of sensors commercially available use a 
range of materials, including metal oxides, conducting 
polymers, surface acoustic wave devices and catalytic 
metals (Rock et al., 2008; Munoz et al., 2010). 

The principal steps in the application of e.nose 
technologies consist of an initial training phase and a 
subsequent on site measurement application. The training 
of the e.nose represents the most important phase of the 
whole process (Romain et al., 2010; Giuliani et al., 2012). 

The goal of the training phase is to create the site-specific 
‘odour measurement model’ (OMM) that are robust, 
repeatable and reliable. Different statistical techniques can 
be used to process the sampled data and define a 
qualitative and a quantitative OMM. The qualitative OMM 
has the objective to discriminate the different odour 
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classes (e.g. odour sources) into a spatial domain, while the 
quantitative OMM aims at defining the correlation 
equation between the electrical signal data, acquired 
through the sensor array, and a measure of the ‘odour 
characteristics’. In the current applications of the e.nose in 
the environmental fields, the e.nose data metrics are 
usually related to the Odour Concentration (OU/m3) 
measured with dynamic olfactometry, according to  
EN 13725:2003. 

Nowadays there are no regulations or guidelines that 
standardise the odour measurement in ambient air with 
this type of instruments. In May 2015, a new CEN/TC264 
‘Air Quality’ standardisation working group (WG41) started 
to define a new European standard for the use of 
instrumental odour monitoring in ambient air, indoor air 
and gas emissions, but they are still at work (Guillot, 2016). 
Likewise, there are currently no universally adopted and 
approved procedure that deals and regulates the training 
phase, the performance and the requirement of an e.nose. 
The definition of key points in order to guarantee an 
efficient and reliable measure with the e.nose is therefore 
a critical issue for the scientific community. 

The present work illustrates a novel procedure to training 
electronic noses in order to maximize their capability of 
operating a qualitative classification and estimating the 
odour concentration of ambient air. The proposed 
procedure optimises the performance of the e.nose system 
studying their best sensor array selection.  
The aim of the research is to reduce the uncertainty  

and increase the reliability of the continuous odour 
measures. 

2. Materials and methods 

2.1. Experimental setup and program 

Research activities were carried out at a real liquid waste 
treatment plant (LWTP), located in the municipality of 
Buccino, in the province of Salerno (Campania Region, IT). 
The LWTP has a design capacity of 60.000 p.e. (population 
equivalent) and an average daily flow rate of 6.600 m3/d. 
The plant includes different treatment lines and an 
activated-sludge process. 

To test the experimental hypothesis, six odour emission 
sources have been monitored in the LWTP, four of which 
related to the waste-wastewater treatment line  
(P1, waste influent; P2, equalization basin; P3, primary 
sedimentation; P4, aeration basin) and two to the sludge 
treatment line (P5, sludge thickening; P6, sludge 
dewatering by belt press) (Figure 1). In addition, in order to 
create the ‘blank’ point in the e.nose measurement model, 
non-odour samples in number of 5 for each campaign, 
were collected in one considered odourless place of the 
plant area (Romain et al., 2010; Giuliani et al., 2012). The 
plant was monitored through a weekly sampling campaign 
over a period of 2 months, in which nine samples were 
taken for each investigated odour sources. Air samples 
were collected according to EN 13725:2003, using the 
‘lung’ technique, using Nalophan® sampling bags with 10 
litres volume. 

 

  

  

  

Figure 1. Investigated LWTP and odour emission sources 

Each collected odour samples has been analysed with 
dynamic olfactometry to calculate the odour concentration 
(OUE/m3). All samples were submitted to the e.nose system 
to create the qualitative and quantitative ‘odour 
measurement model’ (OMM). 

 

2.2. Odour concentration characterization 

Odour concentration was carried out by dynamic 
olfactometry according to EN 13725:2003 at the 
Olfactometric Laboratory of the SEED (Sanitary 
Environmental Engineering Division) research centre of the 
University of Salerno, using an olfactometer model TO8 by 
ECOMA, based on the ‘‘yes/no’’ method, relying on a panel 
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composed of four trained persons. All the measurements 
were conducted within 14 h after sampling, according to 
Zarra et al. (2012) studies to reduce the variability of the 
mixture and increase the reliability. 

2.3. Electronic nose and data analysis 

The seedOA (Sanitary Environmental Electronic Device for 
Odour Application) multisensor system, designed and 
implemented by the SEED research group of the University 
of Salerno (IT), was used as e.nose technologies. The 
seedOA consists of a set of 12 metal oxides non-specific gas 
sensors (MOS, Figaro, USA Inc.),  
2 specific gas sensors (TGS825 for H2S and TGS826 for NH3) 
and 2 internal conditions sensors (humidity and 

temperature), placed on two different levels of an 
innovative measurement chamber (code®) (Viccione et al., 
2012) patented by the SEED research group. The code® 
chamber is composed of a hollow cylinder having a volume 
of 300 cm3 and a central cylindrical diffuser for the flow 
homogenization and regulation. The design and 
architecture of the seedAO reflect the human nose, with 
the two levels that represent the two nostrils (in which are 
located the same types of sensors in a symmetrical 
manner) and the processing system that interprets the 
brain. 

Figure 2 shows the scheme of the sensors and their location 
within the code® measurement chamber of the seedOA. 

 

Figure 2. Sensors scheme and location in the code® measurement chamber of the seedOA 

 

All samples were analysed according to the procedure 
proposed by Giuliani et al. (2012) with a cycle type "odour 
– non-odour", a running time of 10 minutes per sample and 
the extraction of the registered data set relating to only the 
last one minute of the 10-minute analysis. 

The measurements provided by the device are electrical 
resistance (R) (KΩ), recorded every 2 seconds.  
The supervised Linear Discriminant Analysis (LDA) 
processing techniques was applied to create the qualitative 
OMM, while the Partial Least Squares (PLS) method was 
used to develop the quantitative OMM, correlating the 
acquired fingerprint with the olfactometric data, 
determined by dynamic olfactometry. All statistical analysis 
were carried out using the software Statistica© (StatSoft srl, 
It). 

2.4. Optimization procedures and studies 

The performance of the seedOA system ca be increased by 
optimising their sensor array. To this purpose, nine types of 
e.nose array configurations (C1-C9) were investigated and 
compared: 

− C1: all the sensors array of the measurement 
chamber; 

− C2: only the sensors array located at the first 
level; 

− C3: only the sensors array located at the second 
level; 

− C4: only the specific gas sensors (referring to NH3 
and H2S); 

− C5-C9: couple of identical sensors or sensors 
referred to the same target gas, located of both 
levels: 

o C5: sensors for alcohol and organic 
solvent vapours (TGS822); 

o C6: sensors for methane (TGS842, 
TGS2611); 

o C7: sensors for alcohol and water 
vapours (TGS880); 

o C8: sensors for volatile organic 
compounds (TGS2620); 

o C9: sensors for air contaminants 
(TGS2602). 

For each investigated configurations the corresponding 
data sets, extracted from the complete acquired database, 
were processed with the LDA and PLS techniques.  

air

sensors (level II)

internal diffuser

sensors (level I)

code®  
LEVEL 

TARGET GAS MODEL N. 

I, II Alcohol and organic solvent vapors TGS822 

I, II Alcohol and water vapors TGS880  

I, II Methane gas TGS842 

I, II Volatile Organic Compound  TGS2620 

I, II Methane TGS2611  

I, II Air contaminants TGS2602  

II Ammonia (specific) TGS826 

II Hydrogen Sulfide (specific) TGS825  

I LP gas (e.g. propane and butane)  TGS2610 

I Water Vapor Detection TGS2180 

 



ENVIRONMENTAL ODOUR MONITORING BY ELECTRONIC NOSE  667 

 

Figure 3. Box-Whisker diagrams on measured odour 

concentrations at LWTP investigated sources 

3. Results and discussions 

3.1. Odour concentration characterization 

Figure 3 reports the results of the olfactometric analysis at 

each investigated source at the LWTP plant, over the whole 

monitored period in terms of Box-Whisker diagrams. The 

results show that the highest odour concentration (Cod) 

among the investigated sources were detected at the liquid 

waste-wastewater receiving unit (P1, 92’682 OUE/m3), 

while the lowest were measured at the aeration basin (P4, 

38 OUE/m3). The largest variability of the determined odour 

concentrations was recognized at the receiving unit, 

related to the different type of treated waste (e.g. leachate 

from landfill, sludge from dairy waste, leachate from refuse 

derived fuel plants). The preliminary units (P1, P2) of the 

waste/wastewater treatment line present the highest 

average odour concentrations, while the secondary 

treatments of the waste/wastewater treatment line shows 

the lowest average values in terms of Cod. Between the 

sludge treatments, the thickening shows the highest 

average Cod values. These results are in line with literature 

studies that identify influent liquid waste thank as one of 

the most relevant units in LWTPs in terms of odour 

concentrations (Belgiorno et al., 2012; Zarra et al., 2016). 

3.2. Optimization studies 

Table 1 highlights the accuracy percentages of correct 
classification for each investigated class (source), for each 

analysed seedOA array configuration, applying the LDA 
technique. The classification of each observation is based 
on the Mahalanobis distance between the observation and 
the centroid of each group. 

The results show the different accuracy in terms of source 
classification for different array configurations, thus 
demonstrating the importance of the proposed procedure 
to investigate the most suitable sensor array configuration. 
The total percentage of correct classification of all data is 
calculated considering a different multiplication weight for 
the odour samples (wP1-P6 = 0,090909) and for the 
odourless samples (wodourless = 0,454545), defined taking 
into account the different number of collected samples 
over the monitoring period (9 for each odour sources and 
45 for the odourless point). 

For the analysed case study, the configuration C1 (all 
sensors array) provides the most robust classification 
odour model, with a percentage of 92,93%, while the 
configuration that gives the lowest reliability are the ones 
that use only the TGS2602 sensors (62,63%). 

The odour sources related to the preliminary treatments of 
the waste/wastewater treatment line and to the sludge 
treatments showed the highest average values of correct 
classification in all investigated configurations.  
These odour sources are the only ones that reach an 
accuracy percentage of 100%, but not in every analysed 
configuration: the higher the detected odour 
concentration on the sources is, the more reliable is the 
attribution of their observation to its odour class (higher 
percentage of correct classification). 

The results of the quantitative PLS model applied on the 
acquired data in the different investigated configurations 
are reported in Table 2 as forecast probability indexes (R2). 
Likewise, to the application to the LDA model, the PLS 
application shows different values of the confidence level 
between the odour concentrations determined by 
olfactometric measurement and predicted by the PLS 
model, analysing different array configurations.  
The highest correlation coefficient is calculated even in this 
case considering the entire array of sensors (C1)  
(R2 = 0,94). 

Table 1. Qualitative classification rates with LDA model in the investigated sensor array configurations 

Sampling 
source 

% Correct classification 

Type of array configuration 

C1 C2 C3 C4 C5 C6 C7 C8 C9 

P1 100,00 77,78 100,00 77,78 77,78 44,44 77,78 77,78 77,78 

P2 100,00 100,00 77,78 55,56 100,00 100,00 100,00 100,00 55,56 

P3 77,78 55,56 55,56 44,44 22,22 44,44 00,00 00,00 00,00 

P4 55,56 44,44 55,56 22,22 11,11 11,11 00,00 22,22 00,00 

P5 88,89 44,44 100,00 55,56 44,44 44,44 22,22 77,78 44,44 

P6 100,00 77,78 77,78 77,78 44,44 55,56 11,11 11,11 44,44 

Odourless 100,00 100,00 100,00 95,56 95,56 100,00 100,00 100,00 93,33 

All data 92,93 81,82 87,88 73,74 70,71 72,73 64,65 71,72 62,63 
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Table 2. Correlation index of odour concentrations measured by dynamic olfactometry and predicted by PLS model applications in the 

various investigated seedOA sensors array configurations 

Correlation 
index 

Type of array configuration 

C1 C2 C3 C4 C5 C6 C7 C8 C9 

R2 0,94 0,81 0,84 0,67 0,75 0,68 0,66 0,69 0,61 

 

4. Conclusions 

An optimised procedure for the training of a multisensor 
array system improves their performance through the 
optimisation of the sensor array selection. The results of 
the investigations on different sensors array configurations 
show the existence of different accuracy in terms of odour 
source classification and correlation coefficients of odour 
concentrations measured by dynamic olfactometry and 
predicted by PLS model applications. The present work 
demonstrates the importance of the analysis of the most 
suitable sensor array configuration to optimise the e.nose 
performance and to maximise their ability to recognise 
qualitatively and quantitatively odours in ambient air. For 
the investigated LWWTP the optimum array configuration 
was identified as the one using the entire sensors array for 
both qualitative and quantitative OMM. 

The research highlights the importance to have e.nose 
technologies that allows the possibility to change and 
select their array of sensors for the specific analysed case 
study, to increase their reliability and repeatability. 
Moreover, the research confirms the impossibility to define 
a standard option for the e.nose technologies that 
represents the optimal measurement conditions in every 
case. 
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