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Abstract 

In this study, a new model for biomass higher heating value 
(HHV) prediction based on the Adaptive Neuro-Fuzzy 
Inference System (ANFIS) approach was proposed. 
Proximate analysis (volatile matter, fixed carbon and ash 
content) data for a wide range of various biomass types 
from the literature were used as input in model studies. 
Optimization of ANFIS parameters and formation of the 
model structure were performed by genetic algorithm (GA) 
and particle swarm optimization (PSO) algorithm in order 
to achieve optimum prediction capability. The best-fitting 
model was selected using statistical analysis tools. 
According to the analysis, PSO-ANFIS model showed a 
superior prediction capability over ANFIS and GA optimized 
ANFIS model. The Root Mean Square Error (RMSE), Mean 
Absolute Error (MAE), Mean Bias Error (MBE) and 
coefficient of determination (R2) for PSO-ANFIS were 
determined as 0.3138, 0.2545, -0.00129 and 0.9791 in the 
training phase and 0.3287, 0.2748, 0.00120 and 0.9759 in 
the testing phase, respectively. As a result, it can be 
concluded that the proposed PSO-ANFIS model is an 
efficient technique and has potential to calculate biomass 
HHV prediction with high accuracy. 

Keywords: Biomass, Higher Heating Value, Prediction, 
ANFIS, Genetic Algorithm, Particle Swarm Optimization 

1. Introduction 

Today, one of the most important global issues is enormous 
consumption of fossil fuels which are rapidly depleting and 
also causing environmental pollutions. To address this 
problem, many countries have begun to take advantage of 
alternative fuels in heat and electricity generation. Biomass 
is one of the most widely used alternative energy sources, 
and it is renewable, abundant, clean, and inexpensive. 
Utilizing biomass in a power plant or energy producing 
system requires knowledge of biomass characteristics, 
such as higher heating value (HHV).  

HHV is the enthalpy of the combustion reaction of a fuel 
where carbon and hydrogen content are oxygenated to 

form to CO2 and H2O. HHV is given at standard conditions 
(101.3 kPa, 25°C) and also contains the enthalpy value of 
water condensation. The HHV of a fuel component is a 
critical consideration for design, installment, and operation 
of power systems. The higher heating value can be 
determined by oxygen bomb calorimeter and is generally 
expressed in units of evolved energy per mass, such as 
MJ/kg, kcal/kg or BTU/Ibm. Oxygen bomb calorimeter is a 
consistent and simple way to measure HHV; however, it is 
not widely accessible in research laboratories because of 
its cost. Thus, in previous studies, various empirical 
equations have been suggested for higher heating value 
calculations based on ultimate composition or proximate 
analysis of results of fuel. However, these models have 
been proposed mainly for coal, and only a limited number 
are specifically for biomass fuel. Additionally, many of the 
previous models attempted to correlate the HHV with data 
from proximate and ultimate analyses. However, expensive 
elemental analysis equipment is needed for ultimate 
analysis to determine the final composition. Therefore, 
models that use proximate analysis results would be 
reasonable as it is convenient to use data obtained from a 
fast, easy and cheap way for a model to be formalized. Also, 
the heating value of fuels such as coal or biomass cannot 
be calculated simply from the formation enthalpies of CO2, 
H2O and other products because fuels are complex 
mixtures of compounds, and the associated bond energies 
cannot be obtained correctly. For instance, lignocellulosic 
biomass consists of different ratios of cellulose, 
hemicellulose, and lignin components. Since combustion is 
a complex process where numerous parallel reactions 
occur simultaneously, many unknown factors relevant to 
HHV are still unknown. Thus, modeling HHV is a challenging 
problem (Friedl et al., 2005; Akkaya, 2016; Suleymani and 
Bemani, 2018).  

Most of the modeling studies on estimation of HHV have 
been based on calculations using linear regression method. 
However, the relationship between the higher heating 
value of biomass and the components of proximate 
analysis cannot be explained linearly. For this reason, 
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estimation capability of linear regression models may be 
insufficient, especially when applied to a variety of samples 
(Akkaya, 2016). Therefore, in recent years, usage of 
artificial intelligence tools, which are widely applied to 
analyze, predict and describe a wide variety of nonlinear 
and complex systems, for the estimation of HHV has 
increased. Huang et al., (2008) employed Artificial Neural 
Network (ANN) to form models that enable estimation of 
HHV for straw biomass (Huang et al., 2008). They reported 
that the ANN model showed a good prediction capability. 
Uzun et al., (2017) applied different ANN models to predict 
HHV based on proximate analysis for a number of various 
biomass types and obtained an ANN model with high 
accuracy (Uzun et al., 2017). Ghugare et al., (2014) 
proposed a hybrid model of genetic programming and 
artificial intelligence in order to construct the biomass HHV 
prediction model (Ghugare et al., 2014). They reported that 
the results were better than the existing linear and/ or 
nonlinear equivalent values of the HHV prediction models. 
Ozveren (2017) studied HHV prediction using ANN models 
and reported that ANN is an efficient method for biomass 
HHV prediction (Ozveren, 2017). Estiati et al., (2016) 
studied on HHV estimation for various biomass types and 
revealed that ANN model gave better statistical results 
than linear and non-linear models (Estiati et al., 2016).  

Nowadays, new models based on adaptive neuro-fuzzy 
inference system (ANFIS) have been used widely as an 
effective predictive tool for high order nonlinear functions 
due to its learning abilities which provide rapid adaptation 
to changes in systems. Fuzzy inference systems and 
artificial neural networks combined in ANFIS method are 
advantageous for estimation of parameters or describing 
system behavior with high accuracy (Austin and 
Amanollahi, 2016a; Barak and Sadegh, 2016; Dahmardeh 
Behrooz et al., 2017; Prasad et al., 2016; Rezakazemi et al., 
2017). Akkaya, (2017) proposed ANFIS modeling for 
prediction of biomass HHV using proximate analysis and 
reported that ANFIS model was superior to existent 
models. As mentioned above, recently, different artificial 
intelligence tools have been employed to predict HHV. The 
proximate analysis data have been used as input 
parameters to enable a rapid, easy and low-cost estimation 
of the HHV where sophisticated and expensive equipment 
for experimental HHV measurement or ultimate analysis 
are not always available. The determination of the 
characteristics of the biomass is very important in terms of 
determining its fate.  

HHV is one of the most important features of biomass, and 
its determination with high accuracy and low cost is 
important for potential applications of biomass. This study 
intends to obtain an improved correlation model for 
predicting the HHV of solid biomass by using their 
proximate analyses to reduce the need for time-consuming 
and high-cost ultimate analyses or oxygen bomb 
calorimeters. ANFIS method was applied to a biomass 
proximate analysis data set different containing many 
various species with different characteristics and a model 
for HHV estimation was established. The established model 
was improved by GA and PSO algorithms and models with 

high accuracy prediction capability were obtained. The 
performances of the models were evaluated using 
statistical tools and results are compared with previously 
reported models.  

2. Material and Methods 

2.1. Dataset 

The aim of this study is to predict biomass HHV based on 
the proximate analysis results which can be obtained 
easily, rapidly and without needing expensive and 
sophisticated equipment. Thus, components of proximate 
analysis, namely volatile matter, fixed carbon and ash 
percentages are used as input parameters to obtain HHV as 
an output.  To ensure that the proposed model has a wide 
range of validity, a data set containing biomass with 
different characteristics was created by reviewing the 
literature (Akkaya, 2016; Uzun et al., 2017; Zhang et al., 
2017; Ghugare et al., 2014). Repeated samples were 
extracted from this data set and a simplified data set 
containing 353 samples was obtained. The volatile matter 
content of samples was ranged from approximately 13% to 
91% by weight. Similarly, the fixed carbon range was found 
between 9% to 47%. Ash content was between 0.2% and 
40% (by weight). The output HHV of the biomass samples 
was 10 and 17 MJ/kg. 

2.2. Adaptive Neuro-Fuzzy Inference System (ANFIS) 

Adaptive Neuro-Fuzzy Inference System (ANFIS) model 
combines both Fuzzy Inference System (FIS) and Artificial 
Neural Network (ANN) for solving complex and nonlinear 
problems. In this structure, the Takagi-Sugeno fuzzy system 
was employed as FIS. In the architecture used in this study, 
to simplify the model used, it is assumed that the 
framework of ANFIS includes two inputs (x, y) and one 
output (F). Thus, a fuzzy rule based on the Takagi–Sugeno 
type can be represented as below: (Rezakazemi et al., 
2017; Ausati and Amanollahi, 2016b)  

Rule 1: 

If x is 𝐴1 and y is 𝐵1 then F1=a1x+b1y+r1        (1) 

Rule 2:  

If x is 𝐴2 and y is 𝐵2 then F2=a2x+b2y+r2               (2) 

where, A1, A2, B1 and B2 are nonlinear parameters and 
membership functions for inputs (x and y) and a1, a2, b1, b2, 
r1, and r2 are linear, and output's (F) function parameters. 
The ANFIS architecture includes five layers with different 
functions. These layers can be named as a fuzzy layer, 
product layer, normalized layer, de-fuzzy layer and output 
layer, respectively. The function of each layer is depicted in 
Eqs. (3)-(8).  

Each node ‘i’ in this layer produces a membership grade of 
a linguistic label. The membership relationship including 
the input and output functions of this layer can be written 
as: 
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Fi
1=μAi(x);         i=1, 2, …                                             (3) 

Fi
1=μBi(y);         i=1, 2, …                                             (4) 

where 𝐹𝑖
1 and 𝐹𝑖

1 indicate the output functions and 
𝜇𝐴𝑖(𝑥) and 𝜇𝐵𝑖(𝑦) shows membership functions.   

Each node in this layer is a fixed node which calculates the 
'firing strength' (𝑤𝑖) of each rule. In this second layer, 
output is the input signal's product that is referred to as: 

Fi
2=wi=μAi(x)× μBi(y),         i=1, 2,…                 (5) 

where 𝐹𝑖
2 shows the output. 

In layer 3, the weight function is under normalization as: 

Fi
3=w=

wi

w1+w2
 ,     i=1, 2, …                                         (6) 

where 𝐹𝑖
3 was called normalized firing strength. 

In layer 4, the output from the prior layer is multiplied with 
the Sugeno fuzzy rule's function: 

Fi
4=wi̅fi=wi(aix+biy+ri),    i=1, 2,…                 (7) 

where 𝐹𝑖
4 indicates the output of the layer 4. In layer 5, the 

sum of all outputs of every rule is computed and overall 
output can be calculated as follows: 

Fi
5=overall output= ∑ wi̅fi=

∑ wifii

∑ wii
i                        (8) 

In the ANFIS structure, the first layer and the fourth layer 
include parameters that can be changed over time. The 
first layer contains the nonlinearities of the precursor 
parameters, while the fourth layer contains the linear 
result parameters. Both of these parameters can be 
modified and updated with a learning method that trains 
both of these parameters and also adapts to their 
conditions. 

2.3. Genetic Algorithm (GA) 

Genetic Algorithms (GAS) is an evolutionary heuristic search 
algorithm which depends on natural selection and genetic 
science. For this reason, it provides a random search that is 
used to solve optimization problems. Although random, 
GAs are by no means a coincidence. GAs use the available 
information to direct calls into the better performing 
region in the search area. The basic techniques of GA are 
designed to simulate the processes in natural systems, the 
evolution of which is necessary. In nature, competition 
between individuals for insufficient resources always leads 
to the emergence of the strongest individuals who 
dominate the weakest. 

For a GA that represents a solution to a particular problem, 
there is a group of individuals within the search field. To 
continue the genetic analogy, these individuals resemble 
chromosomes and the variables represent genes. However, 
each solution is given an eligibility score that presents an 
individual's "competition" abilities (Rezakazemi et al., 
2017; Anemangely et al., 2017). 

2.4. Particle Swarm Optimization (PSO) Algortihm 

Particle swarm optimization (PSO) is a population-based 
stochastic optimization technique. This algorithm was 
developed by inspiration from fish and insects moving in a 
swarm (Kennedy and Eberhart, 1995). The PSO 
optimization process begins with the selection of a 
population of random solutions or particles, and the 
generations are updated iteratively to seek optimization. 
Potential solutions, called particles in the PSO, pass 
through the problem area by following the best available 
solutions.  

PSO has many similarities with evolutionary computing 
tools such as Genetic Algorithms (GA). However, unlike the 
GA, the PSO lacks evolutionist operators such as crossover 
and mutation. The advantage of the PSO is that it is easy to 
implement, and the number of parameters that need to be 
set is low. Optimization of different artificial intelligence 
tools with PSO has had successful applications in various 
areas. 

2.5. Evaluation of Model Performances 

The performances of models were evaluated according to 
the statistical tools such as root mean square error (RMSE), 
mean absolute error (MAE), mean bias error (MBE) and 
coefficient of determination (R2). The related equations for 
calculation of, RMSE, MAE and MBE and R2, are given in 
Eqs. (9)-(12) as follows: 

RMSE=
1

n
∑ √(HHVi

actual-HHVi
predicted)2n

i=1      (9) 

MAE=
1

n
∑ |HHVi

actual-HHVi
predicted|n

i=1     (10) 

MBE=
1

n
∑ (HHVi

actual-HHVi
predicted)n

i=1     (11) 

R2=1-
∑ (HHVi

actual-HHVi
predicted

)2n
i=1

∑ √(HHVi
actual-HHVi

predicted̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
)2n

i=1

    (12) 

In these equations HHVi
actual, HHVi

predicted, and HHVi
predicted̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   

represent the HHV data from literature, HHV data 
forecasted and the the mean predicted value for ith data 
point, respectively. Also, n denotes the total number of 
data points. The success of the model in representing the 
data set can be determined by examining R2 which takes 
values between 0 and 1, where values near 1 means a 
better fit.  

RMSE is used to determine the difference between the 
data of the prediction model and the actual data. MBE 
shows the general systematic error. The MAE measures the 
average size of errors in a series of estimates and 
represents a linear score, which means that all individual 
differences are weighted equally in the mean. 

3. Results and Discussion 

3.1. Development of Models 

In this study, using the programming language of MATLAB 
2017b software, ANFIS and two hybrid models of ANFIS, 
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namely, GA-ANFIS, and PSO-ANFIS were proposed for 
biomass HHV prediction.  In the first step of modeling, 
proximate analysis parameters (volatile matter, fixed 
carbon and ash) were set as input factors, and HHV was set 
as output factor.  

In order to obtain enough prediction capability using ANFIS 
must be provided with an adequate number of clusters for 
the model. The developed ANFIS model uses fuzzy c-means 
clustering to form a fuzzy inference system. This process 
depends on the number of data that are evaluated for 
training. The rule extraction method first uses the Fuzzy c-
means (FCM) clustering function, known as genfis3, to 
determine the number of rules and membership functions 
for the antecedents and consequents. The Fuzzy c-means 
(FCM) clustering techniques (genfis3) were also used to 
optimize the result by extracting a set of rules that models 
the data and generate an initial FIS for ANFIS training. In 
order to construct a fuzzy system using ANFIS, the genfis3 
function in MATLAB is first run to create a Sugeno-type FIS 
structure using fuzzy c-means clustering to extract a set of 
rules and membership functions that model the training 
data. This function allows the specification of the number 
of clusters used to model the data.  

In order to increase the prediction capability of the ANFIS 
model, hybrid models were formed by using GA and PSO 
algorithms to optimize the ANFIS parameters. The flow 
chart indicating the procedures applied in model 
establishment for both GA-ANFIS and PSO-ANFIS are given 
in Figure 1 and 2 respectively.   

 

Figure 1. Scheme of the GA-ANFIS algorithm 

In PSO-ANFIS, ANFIS provides the search space while PSO 
seeks the best solution by comparing objective function at 
each solution point. The difference between the actual 
data and the model output can be minimized by iterating 
the PSO algorithm (Sajjadi et al., 2017). The main benefit of 
the PSO are that this algorithm has a high degree of stability 
and does not depend on the derivative nature of objective 
function and can achieve to the optimal solution by tuning 
the membership functions.  

In the current study, the Gaussian was applied as 
membership functions as recommended by many 
researchers. To develop the PSO-ANFIS, the optimum PSO 
parameters such as population size, maximum iterations 
number, initial inertia weight, inertia weight damping ratio 
and learning coefficients must be properly selected (Sajjadi 
et al., 2017). PSO-ANFIS model was applied by using a code 
was developed in MATLAB software. In GA-ANFIS, GA is 
combined with ANFIS to extend its prediction proficiency. 
GA-ANFIS method was also configured by coding in 
MATLAB to forecast biomass HHV. GA is implemented to 
improve ANFIS performance and minimize the error rates 
by tuning and optimizing the membership functions of a 
Sugeno type fuzzy inference system (Hossain et al., 2018). 
Gaussian shaped MFs were applied, which is 
recommended in previous studies. Table 1 presents both 
employed PSO and GA algorithm parameters in which 
stopping criteria only meet the number of iterations. These 
parameters are selected based on the authors’ experiences 
within a trial-and-error process (Jiang et al., 2012; Rini et 
al., 2016; Chatterjee and Siarry, 2007).   

 

Figure 2. Scheme of the PSO-ANFIS algorithm 
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3.2. Evaluation of model performances 

All developed models utilize the training data for finding 
the relationships between the output HHV of biomass and 
the results of the proximate analysis. Afterward, they use 
the test data to check the accuracy of the model building. 
To fulfill this purpose, the available data on biomass 
proximate analysis is divided into two parts, with 70% 
(training with 247 data points) and 30% (testing with 106 
data points). Comparison of the models for RMSE, MAE, 
MBE and R2 values can be observed clearly from Table 2. 

It can be noted that both GA and PSO algorithm can 
successfully improve the performance of the ANFIS model. 
The results of training and test analysis were given in Fig. 3 
a, b and c for ANFIS, GA-ANFIS, and PSO-ANFIS respectively. 
To gain a better insight on prediction success of models, as 
depicted in Fig. 4, actual values were plotted against 
predicted ones and R2 was calculated (Suleymani and 
Bemani, 2018; Keybondorian et al., 2017; Akkaya, 2016). 

Table 1. Details of the ANFIS, PSO ANFIS and GA-ANFIS for predicting HHV 

Parameter Description/Value 

ANFIS model  

Fuzzy structure Sugeno-type 
Initial FIS for training Genfis3 

MaximumIterations Number 1000 

Number of fuzzy rules 15 

Input MF Type Gaussian(‘gaussmf’) 
Output MF Type Linear 
Initial Step Size 0.01 
Step Size Decrease Rate 0.9 
Step Size Increase Rate 1.1 

PSO-ANFIS model  

Population Size  25 
Maximum Iterations Number 1000 
Initial Inertia Weight (Wmin) 1 
Inertia Weight Damping Ratio (Wdamp) 0.99 
Personal Learning Coefficient 1  1 
Global Learning Coefficient 2  2 

GA-ANFIS model  

Population Size  25 
Maximum Iterations Number 1000 
Crossover Percentage  0.4 
Mutation Percentage  0.7 
Mutation Rate  0.15 
Selection Pressure (beta) 8 
Gamma  0.7 
Selection Method Roulette wheel 

Table 2. Comparison between the performances of the developed models 

Model Training data set Test data set 

 aRMSE bMAE cMBE dR2 aRMSE bMAE cMBE dR2 

ANFIS 0.5372 0.3774 3.4349E-07 0.9339 0.6559 0.4465 -0.01920 0.9228 

GA-ANFIS 0.4347 0.3546 -0.02950 0.9585 0.4504 0.3753 -0.02950 0.9686 

PSO-ANFIS 0.3138 0.2545 -0.00129 0.9791 0.3287 0.2748 0.00120 0.9759 

a Root Mean Squared Error, b Mean Absolute Error, c Mean Bias Error, d Correlation of Determination
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Figure 3. Training and testing results for a) ANFIS, b) GA-ANFIS, c) PSO-ANFIS 
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(a) 

  

(b) 

  

(c) 

 

Figure 4. Predicted HHV data versus measured data for various models: (a) ANFIS, (b) GA-ANFIS, (c) PSO-ANFIS 
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Table 3. Comparison of prediction capability of various models and developed PSO-ANFIS 

References aRMSE bMAE cMBE dR2 

Yin et al., 2011 1.0970 0.8984 -0.4332 0.8290 
Nhuchhen and Salam, 2012 6.4262 2.94394 -2.7172 0.2404 
Callejon-Ferre et al., 2011 3.4707 2.2722 0.1707 0.3820 
Ghugera et al., 2013 0.6123 0.4768 -0.1408 0.9244 
This study 0.3287 0.2748 0.00120 0.9759 

aRoot Mean Squared Error, bMean Absolute Error, cMean Bias Error, dCorrelation of Determination

The obtained correlation coefficient of the ANFIS, and GA-
ANFIS and PSO-ANFIS models illustrate the predicted 
output HHV agrees well with the actual data. The 
correlation coefficient, which indicates the goodness of fit 
of the model, for the ANFIS, GA-ANFIS and PSO-ANFIS 
model are reported to be 0.9339, 0.9585 and 0.9791 for the 
training datasets, respectively. Similarly, PSO-ANFIS 
showed highest R2 (0.9759) and lowest RMSE (0.3287), 
MAE (0.2748) and MBE (0.00120) values in testing dataset, 
too.  

Comparison with Literature  

As mentioned above the lowest statistical errors and the 
highest correlation coefficient were obtained with the PSO-
ANFIS model. Therefore, this model was selected as the 
best model and compared with some commonly applied 
models given in literature. All models were applied to the 
current data set which was used in this study. The data set 
was kept constant and models were evaluated by using the 
same data set.  

The results are shown in Table 3 and comparison 
depending on statistical analyzes was performed. Yin et al. 
(2011) investigated various linear equations to predict 
biomass HHV. Nhuchhem and Salam (2012) proposed a 
non-linear equation. Calejon-Ferre et al. (2011) proposed 
various linear and non-linear equations. Ghugare et al. 
(2014) used artificial intelligence tools and obtained best 
results with genetic programming optimized ANFIS model. 
It is obvious that the prediction capability of this model is 
higher than conventional linear or non-linear equation 
formalisms. As can be seen from the Table 3, PSO-ANFIS 
model showed higher R2 and lower RMSE, MAE and MBE 
values which indicate its potential as a prediction model for 
biomass HHV. This can be explained by the superiority of 
artificial intelligence tool in prediction over classical 
models. 

4. Conclusion 

The higher heating value (HHV) of biomass is of great 
importance in determining the potential of biomass and its 
possible application areas. In this study, the use of 
proximate analysis results which can be determined rapidly 
and cheaply, in the estimation of HHV of biomass has been 
investigated with artificial intelligence tools such as, ANFIS, 
GA-ANFIS, and PSO-ANFIS models. The main findings have 
been summarized as below: 

• Extensive data consisting of 353 biomass from 
various geographies and of different 
characteristics were used. 

• Biomass-specific ANFIS models were developed 
for predicting higher heating values.  

• Hybrid GA-ANFIS, PSO-ANFIS models improved 
the prediction efficiency of the ANFIS model. 

• The statistical parameters demonstrated that the 
PSO-ANFIS model has the best predicting 
performance. 

• The literature comparison proved developed PSO-
ANFIS model has a great potential. 

• Developed models can help researchers in the 
design and operation of energy conversion 
systems. 
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