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Abstract 

For any river basin management, one needs tools to predict 
runoff at different time and spatial resolutions. 
Hydrological models are tools which account for the 
storage, flow of water and water balance in a watershed, 
which include exchanges of water and energy within the 
earth, atmosphere and oceans and utilise metrological data 
to generate flow. There are several sources of error in 
meteorological data, namely, through measurement at 
point level, interpolation, etc. When an erroneous input is 
passed to a model, one cannot expect an error free output 
from the prediction. Every prediction is associated with 
uncertainty. Quantification of these uncertainties is of 
prime importance in real world forecasting. In this study, 
an attempt has been made to study uncertainty associated 
with hydrological modelling, using the idea of data depth. 
To see the effect of uncertainty in rainfall on flow 
generation through a model, the input to a model was 
altered by adding an error and a different realisation was 
made. A Monte Carlo simulation generated a large number 
of hydrological model parameter sets drawn from the 
uniform distribution. The model was run using these 
parameters for each realisation of the rainfall. The 
parameters which are good for different realisations are 
more likely to be good parameters sets. For each 
parameter set, data depth was calculated and a likelihood 
was assigned to each parameter set based on the depth 
values. Based on this, the frequency distribution of the 
likelihood was analysed as well. The results show that 
uncertainty in hydrological modelling are multiplicative. 
The proposed methodology to assign prediction 
uncertainty is demonstrated using the ‘TopNet’ model for 
the Waipara river catchment located in the central east of 
the South Island, New Zealand. The results of this study will 
be helpful in calibration of hydrological model and in 
quantifying uncertainty in the prediction. 

Keywords: Half-space depth, Parameter estimation, 
Predictive uncertainty, TopNet. 

1. Introduction  

Hydrological models provide simplifications and theoretical 
approximations of complex natural phenomena. Hence, 

they cannot perfectly predict what happens in natural 
systems. Every stage of hydrological modelling acquires 
some uncertainty. This uncertainty can be broadly grouped 
into input forecast uncertainty and hydrologic model 
uncertainty. The input forecast uncertainty implies 
uncertainty due to forcing (input) data such as 
precipitation, temperature and other metrological inputs 
to the model. The hydrologic model uncertainty comes 
from initial conditions, imperfect model structure and 
insufficient information for parameter identification, 
complexity of the hydrological model (Patil, 2008; Regonda 
et al., 2013; Singh et al., 2013). 

In recent years quantification of uncertainty at different 
stages of hydrological modelling has received attention by 
several authors (Beven and Binley, 1992; Beven and Freer, 
2001; Götzinger and Bárdossy, 2008; Wagener et al., 2003; 
Xia et al., 2004). 

Despite several uncertainties, hydrological models are 
valuable tools for applications ranging from real time 
prediction of flood events to the design of policies and 
structures for mitigating the effects of extreme hydrologic 
events such as floods and droughts (Gupta et al., 1999).   

Most hydrological models require parameters to be 
estimated by calibration, so that the runoff calculated from 
the model provides an accurate simulation of recorded 
runoff from some historical period (Beven, 2004; Jakeman 
and Hornberger, 1993). The calibration procedure must be 
conducted very carefully to maximize the reliability of the 
model for the given application (Gupta et al., 1999). It is 
well known that the physics governing the path of a drop 
of water through a catchment to the stream involves 
complex relationships, but evidence indicates that the 
information content in a rainfall-runoff record is sufficient 
to support models of only very limited complexity 
(Jakeman and Hornberger, 1993). The quality and quantity 
of observed rainfall and flow data therefore has a great 
influence on the identification of hydrological model 
parameters (Andréassian et al., 2001; Singh and Bárdossy, 
2012). Ideally, calibration data should be fully 
representative of the range of flow conditions experienced 
by the watersheds (Sorooshian et al., 1983).  
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Uncertainty in model prediction is a cumulative effect of 
input and hydrological model uncertainty. Each uncertainty 
has cascading effects. Out of this, observation uncertainty 
is recognized as a serious issue undermining the reliability 
of hydrological studies (Montanari and Di Baldassarre, 
2013).   

In this study, an attempt has been made to study the effect 
of observational uncertainty on parameter estimation of 
hydrological models and provide a new way of defining the 
uncertainty using data depth. We have tried to look into 
the kind of uncertainty invoked by observational errors in 
hydrological variables. The input error is very basic and the 
most important error, as one cannot expect a good result if 
the input itself is incorrect. These input errors can be 
mostly due to measurement error, or from methods used 
in recording the data. The observational error is the first 
error in modelling and it can multiply further in the 
modelling. So, observational errors can introduce 
significant amounts of uncertainty in hydrological 
modelling. There have been numerous studies (Ibbitt, 
1972; Oudin et al., 2006; Singh and Dutta, 2016) to quantify 
such uncertainties, but there is still need to develop some 
tools to quantify and reduce such uncertainties. 

The objective of this study is to use data depth (Liu, Parelius 
and Singh, 1999) to yield a likelihood which will be used in 
quantifying uncertainty in hydrological forecasting arising 
from input errors. This study was carried out in the Waipara 

catchment located in the South Island of New Zealand using 
semi-distributed physically based on the hydrological 
model TopNet (Bandaragoda et al., 2004)   

2. Methodology 

In this section, we first describe the study area and the 
hydrological model used in this study. Data depth function 
and its application to quantify uncertainty in hydrological 
prediction due to input error is described later in this 
section.  

2.1. Study Area 

The present study was carried out at the Waipara 
experimental catchment which is located on the South 
Island of New Zealand, in the headwaters of the Waipara 
River (see Fig. 1). McMillan and Srinivasan (2015) give a 
detailed description of the basin and its monitoring 
network. In this study, the model was set up in the Langs 
Gully.  The catchment area of the Langs Gully is 0.7km2. 
The elevation ranges from 500 to 723 m a s l. The annual 
precipitation ranges from 500 to 1100mm/yr. A rather 
broad range and hard to believe over a long time.  It 
contains surface slopes of 0.22-34 degrees with a mean 
slope of 17 degrees. The soil is gravelly sandy loam, with 
depth ranging from 0.25 to 1.5m and an average depth of 
0.5m. The primary vegetation includes grasses and exotic 
forest. 

 

Figure 1. Location map with DEM for the Waipara experimental basin on the South Island of New Zealand, show the area 
modelled by TopNet 
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2.2 Model 

TopNet is a semi-distributed hydrological model which 
simulates catchment water balance and river flow. It was 
developed using the TOPMODEL (Beven and Kirkby, 1979) 
concepts for parameterization of soil moisture deficit, 
using a topographic index to model the dynamics of 
variable source areas contributing to saturation excess 
runoff (Bandaragoda et al., 2004; Beven and Kirkby, 1979). 
TopNet models a catchment as a collection of sub-
watersheds, linked with a branched river network (Clark et 
al., 2008). The flow is routed through the river network 
using kinematic waves using the shock-fitting technique of 
Goring (1994). Modelled streamflow is generated in three 
ways:  

 rain falls on a location where soil water storage 
equals its capacity (Saturation excess runoff), 

 rain rate exceeds infiltration rate (Hortonian 
runoff), and 

 saturated zone discharge into stream (base flow). 

TopNet assumes that available soil water storage can vary 
within a sub-watershed because of topographic effects - 

valley bottoms and flat places are wetter than the ridges. 
TopNet provides a prediction of flow in each modelled 
reach within a catchment (Bandaragoda et al., 2004; Clark 
et al., 2008; Ibbitt et al., 2000). The model inputs are 
rainfall and temperature time series (e.g., at hourly time 
steps with rain from one or more locations), relative 
humidity, solar radiation, maps of elevation, vegetation 
type, soil type and rainfall patterns. These map data are 
used with tables of model parameters for each soil and 
vegetation type, to produce initial estimates of the model 
parameters. A schematic representation of the model is 
given in Figure 2. TopNet has 31 parameters to define the 
hydrological processes of a catchment. Whenever possible, 
parameter values are determined from physical catchment 
properties; however, 15 parameters (see Table 1) typically 
require calibration. During calibration, TopNet model uses 
a spatially constant multiplier for each parameter, to adjust 
the parameters while retaining the relative spatial pattern 
obtained from the soil and vegetation data (Bandaragoda 
et al., 2004). This procedure is adopted in order to reduce 
the dimensionality of the calibration problem. 

Table 1. TopNet model parameters which need calibration, description and allowed range for the parameter multiplier 

Parameter Description 
Initial 

Min Max 
topmodf TOPMODEL f parameter (m-1) 0.001 2 
hydcon0 Saturated hydraulic conductivity (ms-1) 0.01 9999 
swater1 Drainable water(m) 0.05 20 
swater2 Plant-available water(m) 0.05 20 
Dthetat Soil water content(m) 0.1 10 
Overvel Overland flow velocity (ms-1) 0.1 10 
Gucatch Gauge under-catch for snowfall(-) 0.5 1.5 
th_accm Threshold for snow accumulation(K) 272.16 275.16 
th_melt Threshold for snow melt (K) 272.16 275.16 
snowddf Mean degree-day factor for snow melt (mm K-1 day-1 = kg m-2 K-1 day-1) 0.1 7.5 
Minddfd Minimum degree-day-factor day (julian day: 1 to 366) 1 366 
maxddfd Maximum degree-day-factor day (julian day: 1 to 366) 1 366 

snowamp 
Seasonal amplitude of degree-day factor for snow melt (mm K-1 day-1 = kg 

m-2 K-1 day-1) 0 7.5 

cv_snow Coefficient of variation in sub-grid SWE(-) 0.5 1.5 
r_man_n Manning's n(-) 0.1 10 

 

Figure 2. Systematic Representation of TopNet model structure
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2.3. Data depth function 

Data depth is a quantitative measurement of how central 
(or deep) a point is with respect to a multivariate data 
cloud, or a probability distribution. It gives us a central 
outward ordering of multivariate data points and yields 
simple new ways to quantify complex multivariate features 
of the underlying multivariate distribution (Liu et al., 1999). 
The first depth function was introduced by Tukey (1975) to 
identify the centre (a generalized median) of a multivariate 
dataset. Generalizations of this concept have been defined 
by (Barnett, 1976; Liu, 1990; Liu et al., 2006; Zuo and 
Serfling, 2000). Several types of data depth functions have 
been developed, e.g., half-space, projection and 
Mahalanobis depth functions. The half-space depth 
function (Tukey, 1975) was used in this study because it 
satisfies all the properties of a depth function, and it leads 
to robustness. 

The idea is perhaps best conveyed by first focusing on the 
univariate case. Given some point x and a finite collection 
of points X. Consider any partitioning of all real numbers 
into two components: those values below x and those 
above. All values less than or equal to x form a closed 
halfspace. In a similar manner, all points greater than or 
equal to x also represent a closed halfspace. Tukey’s 
halfspace depth associated with the value x is intended to 
reflect how deeply x is nested within the data cloud X. It is 
estimated to be the smaller of two proportions, namely, 
the proportion of observed values less than or equal to x, 
and the proportion greater than or equal to x. Clearly, the 
maximum possible halfspace depth (which is close to 0.5) 
in a sample of observations corresponds to the sample 
median. While the minimum possible halfspace depth 
(which is 0) corresponds to any observation which lies 
outside the interval with the lower (respectively, the 
higher) end point as the minimum (respectively, the 
maximum) value of the observations in the set X. 

Now, we generalize to the bivariate case, d = 2. For any line, 
the points on or above this line form a closed halfspace, as 
do the points on or below the line. For d = 3, any plane 
forms two closed halfspaces: those points on or above the 
plane, and the points on or below the plane. The notion of 
a halfspace generalizes in an obvious way for any 
dimension d. 

For the general d-variate case, consider any point p and H 
be any closed halfspace containing the point p. Let P(H) be 
the empirical probability associated with H. Then, the 
halfspace depth of the point p is the smallest value of P(H) 
among all halfspaces H containing p. More formally, 
Tukey’s halfspace depth is 

D(p) = inf{P(H): H is a closed halfspace containing p}. 

For p > 1, halfspace depth can be defined instead as the 
least depth of any one-dimensional projection of the data 
(Donoho and Gasko, 1992). To elaborate, let us consider 
any point p and any d-dimensional (column) vector u 
having unit Euclidean norm, i.e., ||u|| = u1

2+…+ up
2 = 1. 

Then, a one-dimensional projection of p is defined as the 
inner product 〈𝑢, 𝑝〉 . For any projection, meaning any 
choice for u, depth is defined as in the univariate case 

above. In the d-variate case, the depth of a point is defined 
to be its minimum depth among all possible projections u. 
From a practical point of view, this does not immediately 
yield a viable algorithm for computing halfspace depth 
based on a sample of n observations, but it suggests an 
approximation that has been found to be relatively 
effective. 

Formally, the half-space depth of a point p with respect to 
the finite set X in the d-dimensional space is defined as the 
minimum number of points of the set X lying on one side of 
a hyperplane through the point p. The minimum is 
calculated over all possible hyperplanes. Formally, the half-
space depth of the point p with respect to set X is defined 
as: 

Dx (p)= inf ൫min(|{x∈X |〈u,x-p〉>0}|, 
|{x∈X |〈u,x-p〉<0}|)൯ 

(1) 

Here 〈𝑥, 𝑦〉 is the scalar product of the d-dimensional 
vectors, u is an arbitrary unit vector in the d-dimensional 
space representing the normal vector of a selected 
hyperplane and |S| is the cardinality of the set S. If the 
point p is outside the convex hull of X, then its half-space 
depth is 0. The convex hull of a set of points S is the smallest 
convex set (e.g., convex polygon in 2D) which encloses S 
(Fig. 3). Points on and near the boundary of this convex hull 
have low depth, while points deep inside have high depth. 
One advantage of this depth function is that it is invariant 
to affine transformations of the space. This means that the 
different ranges of the variables have no influence on the 
calculated depth. 

 

Figure 3. Example of a convex hull using hydrological 
variables in 2-D 

2.4. Quantify the uncertainty using data depth function 

Let us assume that the accuracy of the measured 
precipitation PM is A% due to observational errors. Thus, 
the real but unknown precipitation PE can be written as: 

PE(t)=PM(t)+ξ(t) (2) 
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where ξ(t) is a random error. This random error is due to 
uncertainties of the aerial distribution of precipitation, 
recording of precipitation, instrument error etc. Here, we 
assume that the error follows a normal distribution N(0, 
A/100). Using Eq. (2), and A=20%, 100 perturbed 
precipitation series were generated in this study.  

Figure 4. Flow chart of the methodology adopted in this 
study 

Considering upper and lower range of the model 
parameters (Table 1), 10000 parameters sets from uniform 
distribution were generated for the ‘TopNet’ hydrological 
model. The model was run using these parameters with the 
100 perturbed precipitation time series as input. The 
likelihood is assigned to each parameter based on a 
threshold Nash-Sutcliffe coefficient greater than 0.6. A 
convex hull of those parameters (which have higher values 
of the likelihood) was constructed. A new parameter set 
was generated, and it was checked if it lies within, or 
outside the convex hull. If it is within this hull, a likelihood 
value was assigned using logistic regression. Depth of the 
new parameters sets (which are inside the convex hull) was 
calculated with respect to the space of the convex hull. A 
flow chart of the methodology adopted in this study is 
given in Figure 4.  

3. Results and Discussion 

3.1 Effect of input error on the output of the model 

The TopNet hydrological model was setup for the Langs 
Gully of Waipara experimental catchment using Strahler 
order 1 catchments. The model was calibrated using 
Robust Parameter estimation (ROPE) algorithm (Bárdossy 
and Singh, 2008). Unlike other global optimisation 
algorithm, ROPE try to find an optimal parameter space 
instead of a best parameter set. Figure 5 shows the model 
and the observed hydrograph. The model was able to 
reproduce the observed hydrograph dynamics very well. 
But it reproduces the volume slightly less than 
observed.This can be due to several factors like error in 
precipitation, model structure, and error in flow 
measurement.  

Figure 6 illustrates the perturbed precipitation series, and 
the corresponding hydrograph using an optimal parameter 
set obtained during the calibration of the hydrological 
model. 

 

Figure 5. Observed and model hydrograph, along with precipitation during calibration time period



494  SINGH and DUTTA 

 

The following equations were used to quantify the effect of 
perturbation error at each time step on the precipitation to 
the total precipitation over the study time period and the 
total flow as follows:    

Pprecipitation= 
∑ P- ∑ Pperturbed

∑ P
*100 

(3) 

Pdischarge= 
∑ Qobs- ∑ Qmodel

∑ Qobs
*100 

(4) 

At the first step, we calculate the percentage error in model 
discharge if there is no perturbation. In this case, the model 
had an error of 3.7%. This error can come from many 
sources, e.g., model structure error, parameterization 
error, or error in the precipitation series. We assume this is 
a basic error for further comparison. Using Equations 3 we 
calculated the percentage error in the precipitation time 

series. The error in model discharge with respect to 
observed discharge due to perturbed precipitation was 
calculated using Equation 4. An example is given in Figure 
7. We can see that +5% error in total precipitation can lead 
to +13 to -5% error in total discharge. Even if we consider 
the median discharge error of +3.7% (low bias) which may 
come from the model itself, the range of percentage errors 
from input precipitation to discharge is almost double. It 
was also found that the Gaussian error in the input leads to 
a Cauchy distribution in the output error. The uncertainty 
started with known error in precipitation and includes 
uncertainty associated with the model. This illustrates that 
uncertainty is not additive, but it is multiplicative. Error in 
the input leads to an error in fitting the model parameters. 
This can lead to unrealistic catchment process 
representation, wrong model structure and ultimately 
error in the output. Trivial statement.

 

Figure 6. Illustration of the perturbed precipitation series (above) and corresponding hydrograph (below) using an 
optimal parameter set

  

Figure 7. Illustration of translation percentage error from precipitation to discharge
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3.2. Data depth function to quantify the uncertainty 

Following the methodology described in Section 2, the 
calibrated TopNet hydrological model was run for 10000 
parameters set with 100 perturbed rainfall time series, and 
hence we obtain 10000*100 simulations. Nash-Sutcliffe 
(NS) coefficient (Nash and Sutcliffe, 1970) of 0.6 was used 
as threshold to get the frequency of goodness for each 
parameter set. Using the NS threshold, the parameter set 
were selected and called as Case 1. The Case 1 was further 
utilised to create a convex hull. From the given range of 
model parameters, randomly parameters were generated 
from uniform distribution and the frequency of the 
parameter set that lies within the convex hull of Case 1 was 
evaluated. The generated parameter sets were termed as 
Case 2. Data depth of Case 2 with respect to Case 1 was 
calculated, and correlated with the frequencies of 
goodness of fit in 100 ensembles. Figure 8 shows the 
relationship between the frequency and the depth values. 
There is no clear relationship between the two but we can 
see that higher depth corresponds to high values of the 
frequency. This is because deeper parameters perform 
better even if there is a slight error in the input. Hence, 
depth was classified in a different bin and a contour of 
convex hull was constructed. The inner convex hull 
parameters which have higher depth correspond to lower 
uncertainty. However, if the parameters for a higher 
convex hull have been used, then uncertainty will be 

higher. An example is given in Figure 9. We can see that 
95% and 5% discharge bound is narrow for higher depth 
convex hull as compared to the lower depth outer convex 
hull. 

 

Figure 8. Data Depth vs Frequency 

 

 

Figure 9. Example of uncertainty sample from different location in depth contour
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In a previous study, Bárdossy and Singh (2008), showed 
that parameter sets having higher depths contain robust 
parameters which are good in transferability (transferring 
parameters for other time periods), and are less sensitive 
(small change in parameters set does not significantly 
change the performance of the model). This phenomena is 
attributed to the fact that the parameter set is trying to 
compensate all types of uncertainty. Hence, if we have a 
very compact and structured parameter set it will have 
higher depth and it will have higher model performance, 
and less predictive error which leads to less uncertainty. 
The results from this study demonstrate that depth of 
parameter sets can be used as a surrogate to define the 
uncertainty in our prediction.    

4. Conclusions 

The present study analyses the effect of the input error on 
the output of the hydrological model. It has been found 
that the observed error can give very different parameter 
sets. The results indicate that the input to output 
uncertainty is multiplicative. The other results are based on 
an application of data depth function and demonstrate that 
the depth of parameters set can be used as a surrogate to 
define uncertainty in our prediction. Hence, we can 
conclude that geometrical properties (namely, depth) of 
parameter sets can be used to define uncertainty as well as 
location of parameter sets in parameter space can tell us 
about the uncertainty associated with that prediction. The 
results of this study will be helpful in robust calibration of 
hydrological models, and in quantifying the uncertainty in 
predictions. A further study with other model and area may 
require to generalise the finding of this study.  
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