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Abstract 

The method of Levenberg-Marquardt learning algorithm 
was investigated for estimating tropospheric ozone 
concentration. The Levenberg-Marquardt learning 
algorithm has 12 input neurons (6 pollutants and 6 
meteorological variables), 28 neurons in the hidden layer, 
and 1 output neuron for the Ozone (O3) estimate. The 
Multilayer Perceptron Model (MLP) performance was 
found to make good predictions with the mean square 
error (MSE) less than 1 µg/m3 (0.002 µg/m3). In addition, 
the correlation coefficient ranges from 0.74 to 0.95 in The 
Levenberg-Marquardt learning. The Levenberg-Marquardt 
learning algorithm that a multilayer perception method of 
Artificial Neural Network (ANN) has performed well and an 
effective approach for predicting tropospheric ozone. 
Ozone concentration was influenced predominantly by the 
nitrogen oxide (NOx, NO2, NO), SO2 and temperature. The 
model did not predict solar radiation to ozone with 
sufficient accuracy.   
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1. Introduction 

Tropospheric ozone is formed in the troposphere when the 
photochemical equilibrium between ozone and nitrogen 
dioxide is disturbed by the presence of nitrogen oxide and 
volatile organic compounds under the influence of sunlight 
and high temperatures (Lissens et al., 2000; Wang et al., 
2003). The daily maximum temperature ranges and other 
temperature related variables are crucial parameters for 
identifying episodes of ozone pollution. Exposure to ozone 
also induces damage to human health, agricultural cops, 
forest, and ecosystems, as well as to materials such as 
rubber and paints (Lissens et al., 2000; WHO,2006).  

Statistical models were used to explain the relationships 
between ozone concentrations, other pollutants and 
meteorological variables, then to adjust the ozone time 
trends (Wang et al., 2003; Lu et al., 2005; Spelmann, 1999; 
Abdul-Wahab et al., 2002; Baur et al., 2004; Khatibi, 2013). 
Multilayer perceptron (MLP) neural network model 
received a large attention and was applied in predicting air 

pollutants or estimating meteorologically adjusted ozone 
trends 

This study aims to present two correction methods to 
improve the predictions of ozone concentrations achieved 
by the statistical models (MLR and MLP). MLR and MLP 
methods were used to estimate the meteorologically-
adjusted trends of daily average ozone concentration in 
Samsun, Turkey. 

1.1. Tropospheric Ozone Forecasting Using Artificial Neural 
Network 

An ANN is defined as a massively parallel distributed 
information processing system made up of simple 
processing units, having a natural propensity for storing 
experiential knowledge and making it available for use. The 
purpose of an ANN is to build a model for problems such as 
pattern recognition and classification. Once an ANN has 
been trained on samples of datasets, it can predict outputs 
from inputs (Bui, 2012). 

A list of the training algorithms that are available in the 
Neural Network Toolbox in Matlab v8.1 software and that 
use gradient or Jacobian-based methods, is shown in 
Table.1. 

Table 1. Training algorithms in the Neural Network Toolbox 
in Matlab v8.1 

trainlm Levenberg-Marquardt 

trainbr Bayesian Regularizarization 

traincgp Polak-Ribiére Conjugate Gradient 

traincgf Fletcher-Powell Conjugate Gradient 

trainscg Scaled Conjugate Gradient 

trainrp Resilient Backpropagation 

trainbfg BFGS Quasi-Newton 

traincgb 
Conjugate gradient with 
Powell/Beale Restarts 

traingdx 
Variable Learning Rate Gradient 

Descent 

trainoss One Step Secant 

traingdm Gradient Descent with Momentum 

traingd Gradient Descent 
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2. Experimental section 

2.1. Site Description 

Samsun (is a one of the largest city in northern Turkey on 
the Black Sea coast. The study area is the Organized 
Industrial District (OID) in Tekkeköy, Samsun, where there 
are small and medium scale unit different sectors of 
industries. OID, whose altitude, longitude and latitude are 
8 m above the ground, 36o26'02'' W and 41o14'20'' N 
respectively, is located 12 km east of downtown Samsun.  

2.2. Measured Data 

The Artificial Neural Networks (ANNs) models employed 
the meteorological data affecting surface ozone behavior 
comprising: temperature (T), global radiation (GR), wind 
speed (WS), wind direction (WD), relative humidity (NN), 
atmospheric pressure (P) and nitrogen oxides (NOx, NO2, 
and NO), sulphur dioxide (SO2), particulate matter (PM), 
carbon monoxide (CO) and ozone (O3). Surface 
meteorological data recorded at intervals of the fifteen 
minute. Both meteorological data and pollutant data were 

collected started from 6 October 2011 to 6 May 2013. 
Meteorological sensors, which are produced by Lastem 
Company, were placed on the top of air quality 
measurement vehicle so the height of these sensors is 4.5 
m from the ground.       

The ozone concentration was measured by using an 
analyzer O3 41 M of Environnement S.A based on 
absorption of UV radiation. The concentration of ozone 
was related to the magnitude of the attenuation. The Error 
of the measurement was ±1.0 ppb.  Meteorological 
variables (daily mean wind speed (m.s-1), daily mean wind 
direction (o), daily mean temperature (°C), daily mean 
relative humidity (%), solar radiation (W/m2), and 
atmospheric pressure (hPa) and the average 
concentrations of air pollutants (NOx, SO2, PM10, ve CO) 
were used as ozone predictors. These meteorological and 
pollutant parameters were measured at the interval of 
hourly. The statistical information on the data is presented 
in Table 2.

Table 2. Statistics for meteorological and air quality 
variables in Samsun, period: 2011-2013. 

Parameters Mean Min. Max. Std. 
Deviation 

Skew. 

Output O3 (µg.m-3) 26.04 0.1 272.3 35.27 2.35 

Input 

NO (µg.m-3)  1.98 0.088 130 7.58 3.88 

NO2 (µg.m-3)  7.44 0.1 149.4 10.98 3.88 

NOx (µg.m-3)  7.59 0.1 238.2 16.94 4.63 

SO2 (µg.m-3)  10.85 0.1 500.3 23.40 9.00 

PM10 (µg.m-3)  47.12 0.3 597.5 47.95 3.55 

CO (µg.m-3)  0.45 0.001 4.02 0.57 1.59 

Solar 
Radiation 
(W.m-2) 

104.86 0.0 893.6 181.25 2.01 

Temperature 
(oC) 

11.26 -8.4 31.9 7.87 0.36 

Pressure (hPa) 1011.08 897.2 1032.1 7.16 -0.07 

Reletive 
Humidity (%) 

74.19 3.9 99.4 27.19 -0.76 

Wind Speed 
(m.s-1) 

2.2 0.1 37.3 4.18 3.56 

Wind 
Direction (o) 

50.31 0.0 360 92.78 1.87 

The regression model associated ozone concentration, 
meteorological variables and other air pollutants can be 
expressed as; 

Yi=β0+β1Xi1+β2Xi2+......+βnXn1+εi (1) 

In the regression model above, while O3(t) refers to the 
daily maximum ozone concentration at different time, 

0 1, ,and n   , which are determined by the linear 

regression, are the coefficients of the independent 
variables 

( 1 2 1, ,...i i nX X X ). On the other hand, the i corresponds 

to the residual error of regression model (Özbay et al., 
2011).  

The hypotheses required to apply MLP are the predictor 
variables must be independent, the residual error must be 
independent, and they must be normally distributed, with 
0 mean and 2  constant variance. The least square method 

is the technique used to estimate the parameters (Basurka 
et al., 2006).  

Meteorological, ozone, and other pollutants data were 
standardized before application of MLR procedure, which 
normalized data were calculated in regard to following 
equation; 

Ni,j=
I(i,j)-min(j)

max(j)-min(j)
 (2) 

where, I is the input value, NI is the standardized value, i is 
the number of data, and j is the measured value of the 
variable (Özbay et al., 2011).    

The MLP neural network was used since it can represent 
the complex nonlinear relationships between ozone 
concentration, meteorological variables, and air pollutants. 
The MLP network is a feed forward network and contains 
the input layer, the hidden layer and the output layer.  

The raw data obtained from measurement sensors 
contains a large number of missing data due to 
maintenance and repair. The hourly raw datum is removed 
from the dataset if the values of seven or more parameters 
are not recorded. Thus, the number of hourly recorded 
values in dataset is reduced from 13872 to 12863. 
Additionally, these variables are normalized by using the 
equation below to minimize the impact of instantaneous 
changes in recorded values on the prediction performance; 

Xnorm=
X-Xmin

Xmax-Xmin

 (3) 

Via the normalization equation, the values of those 
parameters are ranged from 0 to 1. After the prediction of 
the ozone concentration through the model, the predicted 
values are converted to original values via the reverse 
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normalization to find the correlation between the 
measured ozone concentration and the predicted ozone 
concentration. 

Table 3 below shows a list of the training algorithms using 
gradient- or Jacobian-based methods in the Neural 
Network Toolbox software. 

All training algorithms of NNT software are used for both 
the prediction of the tropospheric Ozone concentration 
and the effects of the parameters on the prediction of the 
tropospheric Ozone concentration.

Table 3. Training algorithms that are available in the Neural Network Toolbox software 

Acronym Function Neural Network Algoritm 

LM trainlm LMNN Levenberg-Marquardt 

BR trainbr BRNN Bayesian Regularization 

CGP traincgp CGPNN Polak-Ribiere Conjugate Gradient 

CGF traincgf CGFNN Fletcher-Powell Conjugate Gradient 

SCG trainscg SCGNN Scaled Conjugate Gradient 

RP trainrp RPNN Resilient Backpropagation 

BFG trainfg BFGNN BFGS Quasi-Newton 

CGB traingb CGBNN Conjugate Gradient with Powell/Beale Restarts 

GDX traingdx GDXNN Variable Learning Rate Gradient Descent 

OSS trainoss OSSNN One Step Secant 

GDM traingdm GDMNN Gradient Descent with Momentum 

GD traingd GDNN Gradient Descent 

3. Results and discussion 

The mean square error (MSE) is used to test the 
performance of each algorithm of the NNT software. The 
mean square error is equal to the variance of the estimator 
plus the squared bias (Ross, 2009). The mean square error 
(MSE) was calculated in regard to following equation; 

MSE=
1

N
∑ ei

2

N

i=1

=
1

N
∑(αi-ti)

2

N

i=1

 (4) 

where, (a) input data and (t) output data 

After eliminating missing data, a total of 12863 hours long 
data is left. Whereas 8899 hours of it used for training of 
the algorithms, 1907 hours of it used for testing purpose. 
Additionally, 1907 hours of it is used for validation purpose 
whilst 150 hours of it is used for finding prediction 
performance. 

The number of neurons in the hidden layer is strongly 
related to the performance of the model, so it is one of the 
most important factors for building (training ya da 
developing) the model. The number of neurons in the 
hidden layer of each model is found by calculating the 
performance of the model based on from 5 neurons to 30 
neurons. The number of neurons having the least mean 
square error (MSE) and the highest R2 is used for the 
identifying model. For instance, the graph below shows the 
mean square error (MSE) of LMNN algorithm relying on the 
number of neurons. As seen, the mean square error (MSE) 
is the highest provided that the number of neurons is 5, 
since the mean square error (MSE) is the lowest for 28 
neurons. Therefore, the LMNN is identified as 12-28-1. In 
addition, the number of neurons in the hidden layer of 
Gradient Descent with Momentum (traindgm) and 
Gradient Descent (traingd) could not be found based on the 
given number of neurons. 

The model networks are created based on the appropriate 
number of neurons in their hidden layer. These created 
models are trained with 12713 hour long data to update 
the biases and weights of each model. Finally, the ozone 
concentration based on 6 pollutant parameters and 6 
meteorological parameters is predicted through the 
updated models. The correlation (R2) between the 
predicted ozone concentration and the measured 
concentration is calculated to find the prediction 
performance of the trained networks.  

The table below illustrates the model of the networks 
consisting of the number of neurons in their hidden layers, 
the number of loops, The mean square error (MSE), 
training performance and prediction performance. 

Τable 4 illustrates that LMNN algorithm is the best 
predictor of Ozone concentration because in addition to 
being the fastest; it has the lowest measurement error, the 
best training and prediction performance as compared to 
the others. Considering the measurement error, training 
and prediction performance, BRNN algorithm performs as 
well as LMNN algorithm does, yet the training period of 
BRNN algorithm is extremely longer than the training 
period of LMNN algorithm. Thus, even though either LMNN 
algorithm or BRNN algorithm could be used for smaller 
data sets, LMNN algorithm should be used for relatively 
larger data sets. Additionally, although not only is the 
training period of CGPN algorithm is shorter than many 
algorithms, but also the prediction performance of it better 
than the majority of the algorithms, its prediction 
performance is poorer than LMNN algorithm and BRNN 
algorithm. Since CGPN algorithm is trained in the relatively 
shorter period, it might be chosen for predicting larger data 
sets instead of LMNN algorithm. Furthermore, the training 
performance of CGBNN algorithm is extremely better than 
the prediction performance of it as compared to the other 
algorithms. In addition, the prediction performance of 
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CGFNN algorithm, SCGNN algorithm, OSSNN algorithm, 
RPNN algorithm and BFGNN algorithm are found almost 
the same, but the training period of RPNN algorithm takes 

longer than the others. Finally, GDMNN algorithm and 
GDNN algorithm are unable to be trained, so their 
prediction performance could not be found.

 

 

 

 

 

Figure 1. Results of the mean square error (MSE) values 

Table 4. Predict performance values of training algorithms in the Neural Network Toolbox. 

Neural network Model Epoch MSE Training (R2) Predict (R2) 

LMNN 12-28-1 27 0.00195 0.95 0.846 

BRNN 12-28-1 829 0.00293 0.91 0.764 

CGPNN 12-13-1 197 0.00857 0.68 0.637 

CGFNN 12-6-1 159 0.00935 0.65 0.573 

SCGNN 12-11-1 135 0.00938 0.62 0.571 

OSSNN 12-12-1 199 0.01000 0.62 0.550 

RPNN 12-17-1 500 0.00897 0.66 0.547 

BFGNN 12-24-1 188 0.00961 0.65 0.494 

CGBNN 12-18-1 210 0.00815 0.70 0.483 

GDXNN 12-17-1 182 0.0124 0.49 0.321 

GDMNN -- 0 0.0 0.0 0.0 

GDNN -- 0 0.0 0.0 0.0 
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Figure 2. Comparison of the observed with the predictions of ANN with time delay of 1 h.

It is found that the prediction performance of LMNN 
algorithm is the best so the effect of the parameters on 
Ozone concentration is predicted by using LMNN 
algorithm. The figure below shows the significance level of 
these parameters for estimating ozone concentration. 

 

Figure 3. The importance levels of the parameter 
estimates correlation with ozone 

In this study, the high importance level was observed 
totally 62 % with nitrogen oxides (NOx, NO2, and NO) as this 
issue supports in literatures (Arsic et al., 2011; Karaca and 
Öztürk, 2012). Although the effect of solar radiation was 
expected to be higher, the importance level for solar 
radiation was observed 4 % due to the measurement errors 
for solar radiation.  

In similar studies in the literature, three parameters (NO, 
NO2, NOx) were evaluated separately and have been 
associated separately. They cannot be considered apart 
from the high correlation between them (Gardner and 
Dorling, 1999; Vlachogianni et al., 2011; Özbay et al., 2011; 
Khedairia and Khadir, 2012). 

4. Conclusions  

The Levenberg-Marquardt learning algorithm that a 
multilayer perception method of ANN has performed well 
and is found that an effective approach for predicting 



108 AKDEMIR et al. 

tropospheric ozone due to having the highest R2 (0.74 to 
0.95) and the lowest mean square error (MSE) (0.002 
µg/m3). Likewise, the prediction performance of BRNN 
algorithm is found acceptable as compared with the other 
algorithms, but its training period takes relatively longer 
than the others. Considering this issue, BRNN algorithm is 
more proper for predicting the ozone concentration based 
on the smaller data sets. Since the training of GDMNN 
algorithm and GDNN algorithm could not be succeeded, 
the prediction performance of these algorithms is unable 
to be calculated. Back propagation is an achieve method for 
network training in ambient air quality ozone 
concentrations but proper training algorithm and model 
configuring. 

There are previous studies in which ozone meteorological 
parameters and regression, ARIMA, and ANN studies 
related to nitrogen oxides in particular (Yi and Prybutok, 
1996). Ozon habercisi olan temel iki grup azot oksitler ve 
uçucu organik bileşiklerdir (Comrie, 1997; Xing et al., 2017). 
The two main precursors of ozone are the nitrogen oxides 
(NOx) and volatile organic compounds (VOCs) (Comrie, 
1997; Xing et al., 2017). But, when the pollutant sources of 
the region to be measured are examined, there are plants 
that are predominantly sources of nitrogen oxides. In 
addition, when the emission reports of the installations in 
the region are examined, volatile organic compound 
release from the stacks is not realized. Another reason why 
VOC is not taken into consideration is the absence of 
continuous volatile organic measuring instrument 
according to research possibilities. It is considered that the 
estimation error of one of the reasons for the weakness of 
the ozone relation with solar radiation (Zhang et al., 2017) 
is increased and the ANN does not show the desired 
performance according to the empirical models. 

For further studies, the application of the multilayer 
perceptron (MLP) model should be extended to forecast of 
O3 hourly levels in the industrial area. In addition, the 
incorporation of number variables such as volatile organic 
compounds and hydrocarbons ought to be included in 
predictors. But, the effect of VOCs could not explain for 
ozone because VOCs was not measured in this study.    
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