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Abstract 

In this study, dehydrated cottonseed cake as a low-cost and 
abundant byproduct in Turkey was utilized as an adsorbent 
for the decolorization of Reactive Blue 19 (RB19) and 
Reactive Yellow 145 (RY145) from aqueous solutions based 
on adsorption and ultrasound-assisted adsorption (UAA). 
Decolorization efficiency was optimized as a function of 
changes in process type, initial pH value, adsorbent 
concentration, temperature, reaction time, and initial dye 
concentrations of RY145 and RB19 based on response 
surface methodology (RSM) using Box-Behnken Design. 
The maximum decolorization efficiency of 99.9% for both 
RY145 and RB19 was obtained with ultrasound-assisted 
adsorption under the RSM-optimized conditions (with 
unity desirability) of 76.98 and 79.40 min reaction times, 
233.20 and 254.29 mg L-1 initial dye concentrations, 1.37 
and 1.44 g L-1 adsorbent concentrations, and 35.42 and 
49.37 °C, respectively. The best-fit multiple non-linear 
regression models of decolorization efficiency with the 
highest adjusted coefficients of determination (R2

adj) 
explained 99.52% and 99.48% of variations through 
adsorption of RY145 and RB19 and 98.14% and 98.01% of 
variations through UAA of RY145 and RB19, respectively, 
while artificial neural networks accounted for 99.82%. 

Keywords: Adsorption; Data-driven modeling; Dehydrated 
cottonseed cake; Methylene blue; Ultrasound 

1. Introduction 

There exist thousands of commercially available dyes that 
are extensively used in such industries as pharmaceutics, 
leather, textile, paper printing, food, and cosmetics. 
However, these dyes when disposed also pose potential 
risks to public health and wildlife due to their such 
properties as low biodegradability, chemically complex 
structures, and toxicity (Sayan and Edecan, 2008; Tanyildizi, 
2011). Thus, it is necessary for dyes to be removed from 
industrial wastewaters and effluents using innovative 
treatment techniques that are environmentally benign and 
economically feasible (Chen et al., 2015; Liu et al., 2015). 
Traditional treatment methods to achieve decolorization of 
wastewaters include chemical coagulation (Yang et al., 

2011), electrochemical treatment (Sahinkaya, 2013), and 
biological treatment (Onat et al., 2010). However, these 
methods are often ineffective in decolorizing of complex 
dyes (Hamdaoui et al., 2008). Thus, advanced oxidation 
processes have gained popularity in the removal of dyes 
(Zhou et al., 2013). In particular, the applications of 
sonochemical adsorption such as ultrasound-assisted 
adsorption (UAA) to wastewaters laden with dyes, 
aromatic compounds, and/or chlorinated hydrocarbons 
have been showed to be an effective removal process for a 
wide range of dye wastewaters and effluents owing to its 
efficiency, flexibility and economic feasibility. Such UAA 
treatments cause the formation, growth, and sudden 
collapse of acoustic cavitation-induced micro bubbles in an 
irradiated liquid, thus leading to localized but high 
temperatures up to 5000 °C and hundreds of bars of 
pressures (Guo et al., 2011). Movement of liquid induced 
by sonic waves; that is, the conversion of sound to kinetic 
energy increases the rate of mass transfer near the surface 
(Guo et al., 2011). 

Although activated carbon is the most commonly used 
adsorbent for the removal of dyes, exploring alternative 
low-cost adsorbents with a potential comparable to 
activated carbon is highly desired (Yang et al., 2011). 
Examples of such low-cost adsorbents used in wastewater 
treatment include peanut hull (Gong et al., 2015; 
Buyukada, 2016), sol meal hull (Arami et al., 2006), caol-
based bottom ash (Dincer et al., 2007), bentonite (Korkut 
et al., 2010), wheat bran (Ozer and Dursun, 2007), tomato 
waste (Yargic et al., 2015), dead pine needles (Hamdaoui et 
al., 2008), sludge and straw (Ren et al., 2016), and wood 
sawdust (Ofamaja and Ho, 2008). Another low cost and 
abundant agricultural by-product is cottonseed 
(Gossypium hirsutum) cake (CC) obtained when cottonseed 
oil is extracted from cotton crops. Given the world’s and 
Turkey’s annual cottonseed productions of 46 and 1.3 
million tons in 2014, respectively, CC appears to have a 
great potential to be used as an adsorbent in wastewater 
treatment about which there exist limited experimental 
studies.  

On the other hand, optimization designs and data-driven 
modeling are the integral part of such scientific studies of 
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experimental nature as they are leveraged not only to 
maximize information extracted from data and minimize 
experimental random errors and runs but also to provide 
quantification, generalization, and thus, predictive power, 
respectively. Artificial neural networks (ANNs) and multiple 
non-linear regression (MNLR) models are the most 
commonly used tools to quantify and predict non-linear 
patterns and behaviors. Likewise, response surface 
methodology (RSM) is the most utilized design to 
determine optimum operating conditions to maximize or 
minimize non-linear response surfaces by taking into 
account second-degree interactions.  

As is evident from the above introduction, the motivation 
behind the present study was threefold: increased efficacy 
of UAA, high potential of CC as an adsorbent, and empirical 
optimization and modeling as a leverage for a better 
understanding. The objective of this study was therefore to 
model and optimize decolorization efficiency for the two 
toxic dyes of Reactive Blue 19 (RB19) and Reactive Yellow 
145 (RY145) through ANNs, MNLR models, and RSM 
optimization as a function of changes in process type 
(adsorption versus UAA), initial pH, initial CC and dye 
concentrations, temperature, and reaction time. 

2. Materials and methods 

2.1. Sampling and characterization of CC  

Cottonseed cake was utilized as an adsorbent and was 
supplied from a local textile plant in Adana, Turkey. After 
being washed with deionized water for the removal of 
soluble impurities, CC samples were obtained after being 
dried in an oven (DV452, Chanel, China) at 80 °C for 24 h 
for the removal of moisture. Immediately after being 
grinded using a ball mill (Mertest LB 220, England), the CC 
samples were sieved to obtain various fractions, using 
American Society for Testing and Materials (ASTM) 
standard sieves. The CC samples were stored in a CaCl2-
desicator during the experimental study.  

Specific surface areas of the CC samples were estimated 
from N2 adsorption isotherm data obtained at 77 K using a 
BET surface analyzer (Micnometrics, ASAP 2020). Prior to 
N2 adsorption isotherm experiments, CC was degassed at 
131 °C (up to 1.33*102 bar) for 6 h. Pore size distribution of 
CC was also calculated from N2 adsorption isotherm, while 
particle size distribution of CC was obtained using a particle 
size analyzer (Malvern-Mastersizer 2000). Fourier 
Transform Infra Red (FTIR) spectrum of CC was obtained 
using a FTIR spectrometer (Matsson 1000 FTIR) based on 
the KBr pellet technique in the range of 400 to 4000 cm-1. 
XRD analysis was carried out to determine organic matter 
type of CC, using a diffractometer (Multiflex–DD2759N, 
Rikagu, Japan) with Cu Kα radiation (λ = 1.568 Å). Zero point 
charge (pHzpc) of CC was measured using a zeta potential 
meter (Zetasizer, 3000HSA, Malvern, UK). The surface 
morphologies and elemental mapping of CC were analyzed 
using a SEM–EDX (JSM–6390V, Jeol, Japan). Chemical 
composition of CC was analyzed using an X-ray 
fluorescence spectrometer (XRF, Thermoscientific Lumina).  

2.2. Preparation of reactive dye solutions 

The commercial azo dyes with the following Color Index 
generic names of Reactive Yellow 145 (RY145, 
C28H20ClN9O16S5Na4; molecular weight = 1026.26 g/mol; 
λmax = 420 nm) and Reactive Blue 19 (RB19, molecular 
weight = 626.54 g/mol; λmax = 592 nm) were obtained from 
a local textile firm in Corlu (Turkey) and used without 
further purification. The stock solutions of the reactive 
dyes were prepared in a constant concentration of 1.0 g/L 
and then diluted to appropriate concentrations. Working 
solutions of the desired concentrations were obtained 
using successive dilutions. The initial pH of each solution 
was adjusted to the required value with concentrated and 
diluted HCl and NaOH solutions before the experiments. 

2.3. Experimental procedure 

Batch sorption experiments were carried out in a 1000mL 
cylindrical jacketed vessel put on an overhead mechanical 
stirrer (IKA RW 20, Kutay Group, Turkey) which stirred the 
mixture at various agitation speeds. The mechanical stirrer 
was used to have well mixed suspension characteristics for 
the solid particles. Ultrasonic irradiation was chosen as one 
of the mandatory effects of the removal process and was 
obtained from a digital ultrasonic cleaner (WiseClean 
WUC–DH, Wisd, Germany) operating at the frequencies of 
5 to 40 kHz and the ultrasonic powers of 16 to 344 W. The 
vessel was set in ultrasonic cleaner vertically. Total mixture 
volume was determined as 500 mL and the experiments 
were effectuated according to Box-Behnken Design (BBD) 
considering the previous experiments (Buyukada, 2015).  

2.4. Spectrophotometric analysis 

The solutions were analyzed at predetermined time 
intervals for the final concentrations of RY145 and RB19 
using a UV/vis spectrophotometer (SHIMADZU UV-2100, 
Biomerieux, France) for the maximum absorbance value. 
Dye concentration was calculated from a calibration curve. 
Decolorization efficiency (DE, %) at any time was estimated 
as follows (Buyukada, 2015; Buyukada and Evrendilek, 
2016a): 

DE=
C0-Ct

C0

×100 
(1) 

where Co and Ct are the initial and measured concentration 
(mg L-1) values of the samples at a specified interval during 
a four-hour reaction, respectively. Dye concentrations 
(CRY145 and CRB19, mg L-1) after each experiment were 
calculated using the best-fit calibration plot (absorbance 
expressed in IU = 0.0189*CRY145; R2 = 0.99; p < 0.001; A = 
0.0161*CRB19; R2 = 0.99; p < 0.001).  

2.5. Empirical modeling 

120 experiments were performed totally with three 
replicates considering the Box-Behnken design schedule. 
Effects of six explanatory variables of adsorbent 
concentration (AC, 0.5 – 1.5 g L-1) (1), initial dye 
concentration (IDC, 225 – 375 mg L-1) (2), reaction time (RT, 
30 – 120 min) (3), temperature (T, 25 – 50 °C) (4), process 
type (PT, ads and UAA) (5), and dye type (DT, RY145 and 
RB19) on color removal efficiency (DE, %) were investigated 
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experimentally and statistically. Design Expert 9.0.6 
(Statease), Minitab 17 (Minitab, Inc., State Collage, PA), 
and Matlab 2012b (Matworks Inc.) were used to apply RSM 
and develop MNLR models and ANNs, respectively. The 
stepwise procedure was used to choose the best-fit MNLR 
models with the highest goodness-of-fit measured by 
adjusted coefficient of determination (R2

adj), and the 
highest predictive power measured by coefficient of 
determination based on leave-one-out cross-validation 
(R2

CV). All the predictor variables were treated as the 
categorical variables in the RMS optimization. The process 
type of adsorption versus UAA was incorporated in the 
MNLR models as a categorical variable with adsorption 
being held as the baseline. Variance inflation factor (VIF) 
for multicollinearity and Durbin-Watson (DW) statistics for 
autocorrelation were reported with the best-fit MNLR 
models (Buyukada, 2017). The parametric test assumptions 
of normality and constant variance were also tested during 
the implementation of one-way analysis of variance 
(ANOVA) and MNLR. Tukey’s multiple comparison test 
following ANOVA at a confidence interval of 95% was used 
to detect the significant differences in decolorization 
efficiency among the explanatory variables. 

In this study a single-layer perception (SLP) was used to 
predict decolorization efficiency based on feedforward 
Gradient descent with momentum (GDX), adaptive 
learning rate, and backpropagation algorithm. GDX is not a 
commonly used model such as Levenberg-Marquardt (LM), 
and Quasi-Newton (BFG) because of its high iteration time. 
The SLP network consisted of inputs, and hidden and 
output layers connected by weights and biases. The input 
layer included the following four neurons: (1) adsorbent 
concentration (for all the processes), (2) temperature (for 
adsorption only) and frequency (for UAA only), (3) reaction 
time (for all the processes), and (4) initial dye concentration 
(for adsorption only) and ultrasonic power-dependent 
weight loss ratio (for UAA only).  

Hidden layers were used to solve the complex non–linear 
functions on the ANNs. The number of neurons in the 
hidden layers, and training epochs were selected by trial 
and error. Training and independent validation 
performances of the ANNs were determined considering 
root mean square error (RMSE) in Eq. (2) and mean 
absolute error (MAE) in Eq. (3). An ANN model with the 
highest R2 value and the lowest RMSE and MAE values were 
selected as the best-fit ANN model according to 
independent validation data. 

RMSE=√
1

N
(∑(Oi-Pi)

2

N

i=1

) (2) 

MAE=
1

N
(∑|Oi-Pi|

N

i=1

) 
(3) 

where Oi and Pi are observed and predicted values, 
respectively. 

3. Results and discussion 

3.1. Characterization of CC  

The chemical composition of CC obtained from XRF analysis 
is presented in Table 1. Its main components included 
organic carbon, cellulose, hemicelluloses, and lignin.  

The FTIR spectra of CC illustrated in Fig. 1 showed bonded 
hydroxyl groups (phenolic and alcoholic groups) at 
3350 cm-1, C–H vibrations (non-ionic carboxyl groups) at 
2750 cm-1, C=O vibrations (carboxyl groups) at 1750 cm-1, 
C=C vibrations (aromatic rings) at 1550 cm-1, C–H vibrations 
(phenol groups) at 1250 cm-1, and C–O vibrations (ether 
groups) at 1150 and 1070 cm-1.

Table 1. Chemical composition of dehydrated cottonseed cake (CC) 

 Compound Value (wt %) 

As received 

Moisture content 5.7 

Cellulose 28.6 

Oil content 7.3 

Dry weight (%) 

Proximate analysis 

Ash 5.2 

Volatile matter 80.6 

Fixed carbon* 8.9 

Dry weight on ash-free basis (%) 

Ultimate analysis 

Organic C 53.1 

H 5.7 

N 1.2 

O* 41.4 

C/H 1.3 

*Estimated by difference 
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(a) (b) 

Figure 1. (a) FTIR spectrum of cottonseed cake (CC) before and after adsorption of RY145, (b) FTIR spectrum of 
cottonseed cake (CC) before and after adsorption of RB19

Fig. 2 also pointed to hydroxyl and amino groups of CC in a 
wide vibration range at 3400 cm-1 which decreased 
significantly with acid hydrolysis of CC. Mean surface area 
of CC according to the BET analysis were estimated at 26.7 
m2 g-1, while the total pore volume of CC was determined 
as 0.253 cm3 g-1. N2 adsorption isotherm and pore size 

distribution of CC are shown in Figure 2a. As can be seen 
from pore size distribution in Figure 2b, CC contained both 
micropores (< 25 Å) and mesopores (25 Å < pore width < 
400 Å).  

The physicochemical properties of CC are shown in Table 2.  

 

Figure 2. (a) BET surface area and (b) pore size distribution analyses of cottonseed cake (CC) 

Table 2. Physicochemical properties of dehydrated cottonseed cake (CC) 

Physicochemical properties Value 

Density (picnometric method, g cm-1) 1.683 

Specific surface area (m2 g-1) 4.72 

Zeta potential (pHzpc) 5.12 

According to the particle size distribution analysis 
illustrated in Figure 3, the size of CC particles was lower 
than 50 mesh. In addition, the maximum volume was 
observed in the particle size of 100 mesh. 

3.2. Linear effects of operating conditions 

A positive correlation was found between reaction time 
and decolorization efficiency through adsorption (r = 0.454, 
p = 0.011) and UAA (r = 0.472, p = 0.009) (Fig. 4). Consistent 
with our findings, the increased reaction time was also 
reported to increase decolorization efficiency through 
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many wastewater treatment processes (Mall et al., 2006). 
The extended duration of reaction time was most likely to 
contribute to a long equilibrium time of the removal 
process that resulted in increased decolorization efficiency. 

The increased initial dye concentration decreased 
decolorization efficiencies through both adsorption and 
UAA. This negative correlation between initial dye 

concentration and decolorization efficiency is illustrated in 
Figure 4a and c for the adsorption process (r = -0.612; p < 
0.01) and in Figure 4b and d for the UAA process (r = -0.624; 
p < 0.001). The decreased decolorization efficiency, and the 
equilibrium time were attributed in the related literature 
to the increased amount of organic effluent in mixture 
medium (Mall et al., 2006). 

 

Figure 3. Particle size distribution of cottonseed cake (CC) 

 

Figure 4. Interaction effects of initial dye concentration (IDC, mg L-1) by reaction time (RT, min) on decolorization 
efficiency (DE, %) through (a) adsorption and (b) ultrasound-assisted adsorption (UAA) of RY145 and (c) adsorption and 

(d) UAA of RB19 under 37.5 oC and 1.0 g L-1 CC concentration

Temperature was found as the least significant predictor of 
decolorization efficiency regardless of the process type 
(p = 0.03). A positive correlation was found between 

temperature and decolorization efficiency through 
adsorption (r = 0.112; p = 0.032) and UAA (r = 0.121; p = 
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0.028). Likewise, Mall et al. (2006) found increased 
temperature to lead to increased decolorization efficiency. 

Increased quantity of adsorbent in the mixture medium 
resulted in an increase in decolorization efficiencies 
through both processes. The strength of the positive 
correlation between adsorbent concentration and 
decolorization efficiency gave r values of 0.522 through 
adsorption (p = 0.002) and 0. 573 through UAA (p = 0.001). 
Similar results were also obtained in the study by Mohan et 
al., (2002).  

3.3. Interaction effects of operating conditions 

According to our ANOVA results, impacts of the following 
four interaction terms were found significant on the 

decolorization efficiencies via both adsorption and UAA: (1) 
initial dye concentration by reaction time (p < 0.001), (2) 
initial dye concentration by temperature (p < 0.001), (3) 
initial dye by adsorbent concentrations (p = 0.001), and (4) 
the quadratic effect of initial dye concentration (p < 
0.0001). Similar results were obtained in related literature 
(Sayan and Edecan, 2008; Hamdaoui et al., 2008; Buyukada 
and Evrendilek, 2016ab). Interaction effects of initial dye 
concentration by reaction time through adsorption and 
UAA are illustrated in Figure 4. Our results also showed that 
all the linear effects of the explanatory variables were 
significant on the decolorization efficiencies through 
adsorption and UAA (Table 3). 

Table 3. Analysis of variance (ANOVA) results of response surface methodology (RSM) using Box Behnken Design (BBD) 

Source Sum of Squares df Mean Square F Value p value 

Model 31527.40 25 1322.18 81.23 < 0.0001 

RT 10852.40 1 10852.40 666.71 < 0.0001 

IDC 7936.72 1 7936.72 487.59 < 0.0001 

CC 4565.24 1 4565.24 280.46 < 0.0001 

T 1869.71 1 1869.71 114.86 < 0.0001 

PT 4013.82 1 4013.82 246.59 < 0.0001 

DT 363.37 1 363.37 22.32 < 0.0001 

RT*IDC 1172.18 1 1172.18 72.01 < 0.0001 

RT*CC 8.22 1 8.22 0.51 0.4790 

RT*T 56.65 1 56.65 3.48 0.0652 

RT*PT 52.58 1 52.58 3.23 0.0755 

RT*DT 6.51 1 6.51 0.40 0.5285 

IDC*CC 267.81 1 267.81 16.45 0.0001 

IDC*T 720.62 1 720.62 44.27 < 0.0001 

IDC*PT 0.00677 1 0.00667 0.00042 0.9838 

IDC*DT 4.76 1 4.76 0.29 0.5898 

CC*T 0.17 1 0.17 0.011 0.9185 

CC*PT 1.34 1 1.34 0.082 0.7748 

CC*DT 2.74 1 2.74 0.17 0.6825 

T*PT 1.36 1 1.36 0.084 0.7732 

T*DT 1.12 1 1.12 0.069 0.7934 

RT 2 2.41 1 2.41 0.15 0.7013 

IDC 2 285.56 1 285.56 17.54 < 0.0001 

CC2 1.90 1 1.90 0.12 0.7337 

T2 10.11 1 10.11 0.62 0.4326 

Residual 705.28 1 705.28 43.33 < 0.0001 

Lack of fit 3.09 94 6.28 0.36 0.5228 

Pure error 1375.02 74 18.58 2.40 0.0153 

Total 155.07 20 7.75   

CC: Adsorbent concentration (g L-1); DE: Decolorization efficiency (%); df: degrees of freedom; DT: Dye type; IDC: Initial dye concentration 

(mg L-1); PT: Process type; RT: Reaction time (min); and T: Temperature (°C).

3.4. Effect of ultrasound 

Enhanced adsorption may be due to altered equilibrium 
time and improved adsorption kinetics. Ultrasonic energy 
may shift the adsorption equilibrium to a new one 
(Hamdaoui et al., 2008). Ultrasound may also increase 
adsorption rate by accelerating mass transfer due to hydro 
dynamical effects generated by acoustic cavitation 
(Buyukada and Evrendilek, 2016b). Micro jets and 
shockwaves produced by cavitation can disrupt the 

adsorbent structure and lead to a higher adsorption 
capacity. Enhanced decolorization of dyes was also 
reported to stem from thermal properties induced by 
localized hot spots formed when bubbles were cavitated 
(Hamdaoui et al., 2008; Buyukada and Evrendilek, 2016b). 
The significant and positive effect of ultrasound on color 
removal efficiency was illustrated in Figure 5 and 6. As it 
was seen from these figures, ultrasound leaded an increase 
in color removal efficiency. 
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Figure 5. Interaction effects of initial dye concentration (IDC, mg L-1) by adsorbent concentration (AC, g L-1) on 
decolorization efficiency (DE, %) through (a) adsorption and (b) ultrasound-assisted adsorption (UAA) of RY145 and (c) 

adsorption and (d) UAA of RB19 under 37.5 °C and 75 min of reaction time 

 

Figure 6. Interaction effects of initial dye concentration (IDC, mg L-1) by temperature (T, °C) on decolorization efficiency 
(DE, %) through (a) adsorption and (b) ultrasound-assisted adsorption (UAA) of RY145 and (c) adsorption and (d) UAA of 

RB19 under 75 min of reaction time and 1.0 g L-1 CC concentration
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Figure 7. Effects of adsorption, ultrasound, and ultrasound-assisted adsorption (UAA) on decolorization efficiency (DE, %)

Another statement of significant effect of ultrasound on 
adsorption efficiency was illustrated in Figure 7. 

As a result, both rate and amount of adsorption 
significantly increased with the presence of the UAA 
process owing to sonication-enhanced removal of the dyes 
through the extreme conditions generated by cavitation 
bubbles. UAA-induced decolorization efficiency of 99.9% in 
5 min can be attributed to the strong convective currents 
occurring within the reactor. These effects associated with 
the hydrodynamic phenomena due to cavitation and 
mechanical stirring are responsible for the perfect mixing 
of the vessel content. Thus, the vessel used under the 
ultrasonic irradiation appeared to be a completely stirred 
tank reactor which was in close agreement with results of 
similar studies (Hamdaoui et al., 2008; Buyukada and 
Evrendilek, 2016b).  

3.5. Empirical models  

The best-fit MNLR models of decolorization efficiencies 
through adsorption and UAA for RY145 and RB19 are 
presented in Table 4. The most important explanatory 
variable regardless of the process type was the initial CC 
concentration given the magnitude of its coefficient. The 
quadratic and interaction terms of the explanatory 
variables were significantly influential on the 
decolorization efficiencies. R2

adj of 99.48% and R2
cv of 

97.52% were found for adsorption of RB19, while R2
adj of 

98.01% and R2
cv of 96.52% were found for UAA of RB19. The 

following two types of ANNs were derived from the 
experimental data for RY145: single layer perception (SLP) 
and multilayer perception (MLP). SLPs had an input and 
only one hidden layer based on tangent sigmoidal, and an 
output layer based on linear. MLPs had an input and two 
hidden layers based on sigmoidal and an output layer 
based on linear.  

A total number of 69 ANNs models were built and divided 
into the three groups: (1) SLPs with 3 to 25 neurons in the 
hidden layer, (2) MLPs with three neurons in the first 
hidden layer and 3 to 25 neurons in the second hidden 
layer, and (3) MLPs with five neurons in the first hidden 
layer and 3 to 25 neurons in the second hidden layer (Table 

5). All the ANNs models were derived using Levenberg–
Marquardt (TRAINLM) feedforward and backpropagation 
algorithms. Our results in Table 5 showed that the best-fit 
ANN45 model had RMSE of 2.04, MAE of 0.012 according 
to the highest predictive power (R2 value of 98.57%) for the 
independent validation. The predictive power of the best-
fit MNLR models was 97.79% for adsorption of RY145 and 
96.61% for UAA of RY145 (Table 4), while that of ANNs 
ranged from 98.11% to 99.09% (Table 5). However, the 
ANN45 had the highest goodness-of-fit value 
(R2

adj = 99.82%), while the best-fit MNLR models had 
R2

adjvalues of 99.52% for adsorption of RY145 and 98.14% 
for UAA of RY145. 

 

3.6. RSM optimization, validation and ANNs 

The optimal operating conditions for the maximum 
decolorization efficiency of 99.99% were determined for 
both adsorption and UAA consistently thus: 119.99 and 
76.98 min reaction times, initial MB concentrations of 
225.41 and 233.20 mg L-1, CC concentrations of 1.41 and 
1.37 g L-1, and 50 and 35.42 °C, respectively, for RY145 
(Table 6). The reaction times of 120 and 79.40 min, initial 
MB concentrations of 226.50 and 254.29 mg L-1, CC 
concentrations of 1.50 and 1.44 g L-1, and 50 and 49.37 °C 
were determined as the optimal operating conditions with 
the maximum decolorization efficiency of 97.84% and 
99.99% for adsorption and UAA, respectively, for RB19 
(Table 6).   

Following the development of the best-fit MNLR and ANN 
models, validation experiments were performed to test the 
RSM-optimized conditions. Based on the independent 
validation dataset, ANN45 had the highest R2 value of 
98.57% (Table 5). RSM-optimized conditions for the 
predicted and experimental decolorization efficiencies 
through adsorption and UAA of RY145 and RB19 are 
presented in Table 6. The validation process confirmed that 
the RSM optimization was successfully applied to the 
removal of RY145 and RB19 through the adsorption and 
UAA processes (Table 6). 
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Table 4. Multiple non-linear regression (MNLR) models of decolorization efficiency through adsorption and ultrasound-
assisted adsorption (UAA)* 

Categorical predictor 
 

Coefficient 
RY145 RB19 

 Adsorption UAA Adsorption UAA 

Constant  70.15 184.2713 192.3865 181.6553 189.2037 

RT  15.04 -0.0454 0.0011 -0.0618 -0.0153 

IDC  -12.86 -0.4970 -0.4973 -0.4886 -0.4889 

CC  9.75 49.9592 49.2909 49.0034 48.3352 

T  6.24 -3.8492 -3.8222 -3.8736 -3.8467 

PT  5.78     

DT  -1.74     

RT*IDC  8.56 0.0024 0.0022 0.0023 0.0021 

RT*CC  -0.72 -0.0321 -0.0319 -0.0318 -0.0316 

RT*T  -1.88 -0.0033 -0.0033 -0.0033 -0.0033 

RT*PT  1.05     

RT*DT  -0.37     

IDC*CC  -4.09 -0.1090 -0.1097 -0.1096 -0.1093 

IDC*T  6.71 0.0072 0.0072 0.0072 0.0072 

IDC*PT  -0.012     

IDC*DT  0.32     

CC*T  0.10 0.0167 0.0166 0.0169 0.0171 

CC*PT  -0.17     

CC*DT  -0.24     

T*PT  0.17     

T*DT  -0.15     

RT2  -0.14     

IDC2  -3.23 -0.0016 -0.0015 -0.0019 -0.0018 

CC2  -0.26 -0.00005 -0.00005 -0.00005 -0.00005 

T2  0.61 2.4291 2.4289 2.4287 2.4283 

R2
adj (%)  94.40 99.52 98.14 99.48 98.01 

R2
cv (%)  92.35 97.79 96.61 97.52 96.52 

Adeq. precision  42.97 87.16 69.71 85.42 68.59 

SD  4.03 1.04 1.68 1.15 1.76 

Mean  71.02 68.76 81.12 66.24 80.35 

CV  5.68 3.42 4.28 3.69 4.52 

PRESS  2644.38 4679.36 3842.24 4371.22 3689.16 

CC: Adsorbent concentration (g L-1); DE: Decolorization efficiency (%); DT: Dye type; IDC: Initial dye concentration (mg L-1); PT: Process 

type; RT: Reaction time (min); and T: Temperature (oC). *Binary process was used by which both process type with two levels and dye 

type with two levels are included 

Table 5. Best-fit artificial neural networks (ANNs) of decolorization efficiency (%) for RY145 as a function of reaction time 
(min), initial dye concentration (mg L-1), initial adsorbent concentration (g L-1), temperature (°C), process type, and dye 
type. 

Model Structure Topology RMSE MAE 

R2 value 

Training 
(70%) 

Cross-validation 
(15%) 

Independent 
validation 

(15%) 

ANN6 8*1 SLP 7.80 0.065 98.18 98.11 92.53 

ANN45 3*24*1 
MLP 

2.04 0.012 99.67 99.03 98.57 

ANN47 5*3*1 2.69 0.019 99.82 99.09 97.38 

MAE: Mean absolute error; MLP: Multilayer perceptron; RMSE: Root mean square error; and SLP: Single layer perceptron

Table 6. Validation of response surface methodology (RSM)-optimized operating conditions for predicted and 
experimental decolorization efficiencies (DE, %) 

DT RT IDC CC T PT Desirability 
DE 

(Predicted) 
DE 

(Experimental) 

RY145 119.99 225.41 1.41 50.00 Adsorption 0.99 99.99 98.73±0.26 

RY145 76.98 233.20 1.37 35.42 UAA 1 99.99 99.89±0.02 

RB19 120.00 226.50 1.50 50.00 Adsorption 0.97 97.84 95.22±0.32 

RB19 79.40 254.29 1.44 49.37 UAA 1 99.99 96.66±0.51 

CC: Adsorbent concentration (g L-1); DT: Dye type; IDC: Initial dye concentration (mg L-1); PT: Process type; RT: Reaction time (min); and 

T: Temperature (°C). Desirability ranging from 0 to 1 refers to the confirmation process by which one out of 100 runs of the optimal 

conditions generated is randomly selected for experiments to be replicated, and results are compared in terms of DE
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3.7. Comparison of adsorption and UAA with CC to those 
with different adsorbents 

The UAA treatment with the CC adsorbent used in this 
study was compared to the other adsorption and UAA 
treatments with such adsorbents as poly nanotubes, 
dehydrated wheat bran carbon, dehydrated peanut hull, 
and activated carbon under the similar initial Methylene 
Blue concentrations in terms of decolorization efficiency 

and adsorbent capacity in Table 7. From Table 7, it can be 
inferred that UAA with CC appears to be a promising 
wastewater treatment process. However, it should be 
noted that operating costs also need to be considered 
together with decolorization efficiency for comparison. For 
example, CC is an abundant, and thus, low-cost by-product 
in Turkey, thus rendering the operating cost of UAA more 
attractive to the other absorbents.

Table 7. Comparison of adsorption and ultrasound-assisted adsorption (UAA) with dehydrated cottonseed cake (CC) used 
in this study to those with other adsorbents published in related literature under the similar initial dye (Methylene Blue) 
(IDC) concentration in terms of decolorization efficiency (DE) 

Decolorization process IDC (mg L-1) RT (min) DE (%) References 

Adsorption with PN 20 15 95 Chen et al., (2015) 

Adsorption with DWBC 200 1800 99.84 Ozer and Dursun, (2007) 

Adsorption with DPH 

100 1500 97.5 

Ozer et al., (2007) 
150 1500 81.8 

200 1500 68.2 

250 1500 56.6 

Adsorption with CC 
50 120 77.28 

This study 
250 120 71.05 

UAA with CC 
50 15 87.31 

250 15 80.52 

UAA with AC 50 15 99 Sayan and Edecan, (2008) 

AC: Activated carbon; DPH: Dehydrated peanut hull; DWBC: Dehydrated wheat bran carbon; and PN: Poly nanotubes

4. Conclusions 

RSM using BBD was applied to the optimization of 
decolorization efficiencies for RY145 and RB19 by 
adsorption and UAA in a batch process. The decolorization 
efficiencies achieved under RSM-optimized conditions 
varied between 95.22% with adsorption for RB19 and 
99.99% with UAA for RB19 and RY145. When validated 
using the replication experiments, our results confirmed 
the accuracy of RSM optimization of adsorption and UAA 
operating conditions. The best-fit MNLR and ANN models 
identified the significantly linear, quadratic and interaction 
effects of the predictors. Our results pointed to the better 
performance of the ANNs than the MNLR models in 
elucidating changes in the decolorization efficiencies. 
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