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Abstract 

Window length is a very critical tuning parameter in 

Singular Spectrum Analysis (SSA) technique. For finding 

the optimal value of window length in SSA application, 

Periodogram analysis method with SSA for referencing on 

the selection of window length and confirm that the 

periodogram analysis can provide a good option for 

window length selection in the application of SSA. Several 

potential periods of Florida precipitation data are firstly 

obtained using periodogram analysis method. The SSA 

technique is applied to precipitation data with different 

window length as the period and experiential 

recommendation to extract the precipitation time series, 

which determines the leading components for 

reconstructing the precipitation and forecast respectively. 

A regressive model linear recurrent formula (LRF) model is 

used to discover physically evolution with the SSA modes 

of precipitation variability. Precipitation forecasts are 

deduced from SSA patterns and compared with observed 

precipitation. Comparison of forecasting results with 

observed precipitation indicates that the forecasts with 

window length of L=60 have the better performance 

among all. Our findings successfully confirm that the 

periodogram analysis can provide a good option for 

window length selection in the application of SSA and 

presents a detailed physical explanation on the varying 

conditions of precipitation variables. 

Keywords: Singular spectrum analysis (SSA), Window 

Length, Periodogram Analysis, Linear Recurrent Formula 

(LRF). 

1. Introduction 

Singular Spectrum Analysis (SSA) is an innovative and 

reliable technique for time series analysis in many 

scientific research fields. Since firstly proposed by 

Broomhead and King (1986a); Broomhead and King 

(1986b) and Broomhead et al. (1987) in the publication, 

this method has attracted extensive attention in different 

areas, such as climatology, meteorology and geophysical 

analysis (Ghil and Vautard, 1991; Vautard and Ghil, 1989; 

Yiou et al., 1996).  

There have been many research studies on forecasting 

and simulation in individual interested fields with 

statistical methods and hydrological model(Chen et al., 

2015; Gholami et al., 2015; Nourani et al., 2008; Sun and 

Kim, 2016; Taormina and Chau, 2015; Wang et al., 2015; 

Wu et al., 2009). Much research has been devoted to the 

methodological aspects and application of the SSA 

technique, which prove that SSA is a useful tool in various 

applied areas with analysis of diverse unitary and 

multivariate time series. Vautard et al., (1992) showed 

that SSA provided an unrefined but powerful 

approximation which worked well for short and noisy time 

series in applications to geophysical data. Allen and Smith 

(1996) illustrated the basic format of SSA with an 

investigation on regulation oscillations through exploring 
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some variations on the Monte Carlo SSA algorithm, and 

considered that SSA was suitable for multivariate series. 

Using multi-scale concept from wavelet analysis, Yiou et 

al. (2000) extended the SSA method to non-stationary 

time series including intermittent variance divergence. In 

astrophysical applications, Varadi et al. (1999) explored a 

method with SSA for detecting the low-amplitude solar 

oscillations with long and noisy time series. Hassani (2007) 

compared the performance of the SSA technique with 

those of Seasonal Autoregressive Integrated Moving 

Average (SARIMA) model, plural Autoregression (ARAR) 

algorithm and Holt-Winter algorithm on the accidental 

deaths time series data in the USA, and confirmed more 

accurate forecasting of the SSA technique. Marques et al. 

(2006) applied the SSA method to some unitary 

hydrological time series, and demonstrated its ability of 

decomposing primary information and the related 

forecasting advantages. Baratta et al. (2003) proposed a 

new development about the application of SSA, and 

forecasted the separate rainfall intensity time series in the 

Tiber basin. Hassani and Zhigljavsky (2009) described the 

methodology of SSA and exhibited that SSA was also a 

very useful method for the analysis and forecasting of 

economic time series. Alonso et al. (2005) showed that 

SSA had some unique advantages in biomechanical 

analysis, as a digital filtering method to remove the noise. 

Based on the general structure of the algorithm 

underlying SSA, there are two basic and important 

parameters, i.e., the window length L and the number of 

eigentriples r in the whole procedure of the SSA 

technique. Appropriate choice of L and r can result in an 

effective decomposition of time series. Obviously, the 

selection of parameters L and r mainly depends on the 

data to be analyzed. Besides, some worthy work and 

several techniques can be used to select appropriate 

values of parameters. Elsner and Tsonis (1996) gave some 

discussion and remark about choosing parameters of SSA 

with common practice. Hassani et al. (2011) analyzed the 

theory of separability between the modulated signal and 

the noise component, and determined the optimal value 

of window length in SSA. Golyandina (2010) compared the 

related and particular characteristics of SSA with 

subspace-based methods and gave some 

recommendations on the selection of parameters.  

Considering theoretical extrapolation, window length L 

should be large enough but less than half of time series 

length (Golyandina et al., (2001). Larger value of L makes 

longer period oscillations to be solved, but too large value 

of L may involve a large number of eigentriples and miss 

some important principal components with high 

contributions. It was noticed that the variation of L could 

influence the separability feature of reconstructed 

components in the SSA technique. In some recent studies, 

window length L was chosen from experience (Marques et 

al., 2006), or repeatedly tried with varying window length 

(Chau and Wu, 2010), or taken as proportional of data 

length, like N/3, N/4 (Hassani and Zhigljavsky, 2009). 

Although lots of trial applications and various methods 

have been discussed for the selection of optimal value of 

L, there is still a lack of theoretical regulation for window 

length choosing. This study mainly focuses on the analysis 

of the most dominant component of the seasonal cycle 

and evolution of the precipitation variable. Periodogram 

analysis method with SSA for referencing on the selection 

of window length and confirm that the periodogram 

analysis can provide a good option for window length 

selection in the application of SSA. A regressive model 

linear recurrent formula (LRF) model is used to discover 

physically evolution with the SSA modes of precipitation 

variability. Precipitation forecasts are deduced from SSA 

patterns. This study presents a detailed physical 

explanation on the varying conditions of precipitation 

variables and explores a good and useful statistical 

method for singular precipitation time series forecasting. 

2. Methodology and Data 

The SSA method is particularly significant to extracting the 

essential characteristics of time series. Based on the 

component time series and considering the effect of SSA, 

Linear Recurrent Formula (LRF) is applied to forecast the 

component time series.  

2.1 Singular Spectrum Analysis 

The primary purpose of SSA is to decompose the original 

series into a few component series group where each 

component can be distinguished as a tendency 

component, periodic or quasi-periodic component and 

noise. The main descriptions of the SSA algorithm follow 

the methodology in Golyandina et al. (2001). 
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The SSA technique contains four continuous steps which 

are related to two stages: embedding and singular value 

decomposition related to the decomposition stage 

including singular value decomposition (SVD), and 

grouping and diagonal averaging related to the 

reconstruction stage. 

2.1.1 Decomposition 

Step 1: Embedding 

The embedding step projects the original time series to a 

sequence of multidimensional lagged vectors.  

Assume there is a nonzero time series X=(x1, x2, …, xN) with 

a length of N. Let window length L be an integer (1<L<N), 

and then the embedding procedure forms K=N−L+1 lagged 

vectors, Yi=(xi,…, xi+L-1)T, 1≤i≤K. Yi is an L-lagged vector with 

dimension L, and thus the L-trajectory matrix of the series 

X is Y=[Y1, Y2, …,YK], which has lagged vectors as its 

columns. That is to say, the trajectory matrix (L×K) is 
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The trajectory matrix Y has equal elements on the 

diagonals (i+j=constant). Thus, the trajectory matrix is 

corresponding to the time series when N and L are fixed. 

Step 2: Singular value decomposition 

This step refers to singular value decomposition (SVD) of 

the trajectory matrix.  

Let S= YYT. Denote the eigenvalues of matrix S by λ1, ... , λL 

in the decreasing order of magnitude (i.e., λ1 ≥…≥ λL≥0), 

and the orthonormal system of the eigenvectors 

corresponding to these eigenvalues by U1, ... , UL. Let d be 

the number of nonzero eigenvalues, 0<d≤L. Denote that 

ii
T

i /UYV  (i=1, …, d), and the elementary 

matrices can be given by Xi=
T
iii VU Thus, SVD of the 

trajectory matrix Y can be written as: Y=X1+X2+...+Xd. 

Obviously, the contribution of the first matrices to the 

norm of Y is much higher than that of the last matrices. 

2.1.2 Reconstruction 

Step 3: Grouping 

The grouping step corresponds to splitting the elementary 

matrices Xi into several groups and summing the matrices 

within each group.  

Separate the set of indices {1, …, d} into r disjoint subsets 

I1, …, Ir, and let I={i1, ..., ip}. Then, the resultant matrix YI 

corresponding to the group I can be defined as 

YI=Xi1+…+Xip. These matrices are computed for I=I1, …, Ir, 

and finally achieve the decomposition of Y=XI1+...+XIr. By 

the way, the procedure of choosing the sets I1, ..., Ir is 

called as eigentriple grouping. 

Step 4: Diagonal averaging 

In the last step, each elementary matrix of the grouped 

decomposition is transformed into a new principal 

component series with a length of N. Let eij be any 

element of the elementary matrices Xi with L×K 

dimension, 1≤i≤L, 1≤j≤K. Set L∗=min(L, K), K∗=max(L, K) and 

N=L+K−1. Let e∗ij=eij if L<K, and e∗ij=eji otherwise. Diagonal 

averaging can transfer the matrix Xi to the series f1, …, fN 

by the following formula: 
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The above expression corresponds to the average of 

matrix elements over the ‘diagonals’ i+j=k+1. Besides, it is 

necessary to point out that the application of the SSA 

algorithm needs to select the values of two parameters: 

the window length L and the number r. 

2.1.3 Separability 

The main feature of SSA is that it can well separate a time 

series into different components. So, the original series 

can be decomposed successfully only if the resultant 

components of the series are relatively separable from 

each other. The separability characteristic of two 

reconstructed component series F(1) and F(2) can be 

quantitatively measured by the weighted correlation or 

w-correlation ρ:
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If the absolute value of the w-correlation in reconstructed 

components is small, then the two corresponding 

component series are considered to be separable; 

otherwise the components should probably be grouped 

together. This trend is similar to that in SSA. 

2.2 Periodogram Analysis 

Periodogram is a nonparametric estimate of the power 

spectral density (PSD) during a wide-sense stationary 

random process. The phrase of PSD was specially 

proposed for representation of a variable quantity which 

corresponded to the spectrum (Schuster, 1989).  

Periodogram analysis of a series can determine what 

frequency is included in the series. For a sequence (x1, x2, 

…, xN), the definition of periodogram can be described as 

follows: 
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1n

fn2ie)n(x
N

1
)f(P 



  (4) 

where P is the estimation of spectral density and f is the 

embedded frequency of series.  

Substituting the period 
T

1
 for f, Eq. (4) can be rewritten 

as: 
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Eq. (5) shows the relationship between estimation of 

spectral density and embedded period of the series. It can 

tell us what period should be considered and regarded as 

the primary period. 

2.3 Linear Recurrent Formula (LRF) 

The theory of LRF and the related characteristic 

polynomials are well known and widely used. The details 

can be found in Golyandina et al. (2001). 

According to its definition, a nonzero series XN = (x1, x2 ..., 

xN) is governed by LRF with dimension not exceeding d ≥1 

if 
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where a1, ... , and ad satisfy ad ≠ 0, and 0 ≤ i ≤ N−d+1. 

LRF can be used in both theoretical and empirical analysis. 

It can turn a series data into a broad various model 

depend on different lagged variables. 

2.4 Data Description 

The data in the present study are the average monthly 

precipitation data in Florida statewide from January 1981 

to December 2014. The data are provided by National 

Centers for Environmental Information (NCEI) of National 

Oceanic and Atmospheric Administration (NOAA) which 

saves the world’s largest climate data archive and 

provides climatological services and data in United States. 

In order to ensure stationary of precipitation time series, 

data are checked using Dicky Fuller test before starting 

the research. Fig. 1 shows the singular time series data of 

monthly precipitation in 34 years (1981-2015), of which 

records of 30 years (1981-2010) are used for analysis, and 

the remaining of 5 years are used to validate the 

forecasting. Visual analysis of Fig. 1 clearly presents a 

yearly harmonic component. 

 

Figure 1. Boxplots of monthly precipitation data totals 

from 1981 to 2015 in Florida 
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3. Results and Discussion 

3.1 Analysis 

Florida monthly precipitation data for 30 years 

(1981-2010) are tested in this study, and various window 

lengths are selected in order to describe the extensive 

performance of the precipitation time series and 

meanwhile consider the proportionality to the possible 

period. To find the possible embedded periods of given 

data, periodogram analysis is applied to the original data, 

and the periodogram plot is shown in Fig. 2. As can be 

seen, four inherent periods are prominent in the figure, 

corresponding approximately to the periods of T1=12, 

T2=20, T3=42 and T4=126. These inherent possible periods 

are considered as the options for the values of window 

length. 

 

Figure 2. Periodogram plot of precipitation time series 

Then, the SSA technique is applied to the tested data of 

the 30 years. The main motivation for employing this 

technique is to extract the various trends from 

precipitation time series and further forecast the 

subsequent continuous components. 

The length N of the tested data is 360, and we take 

N/2=180, N/3=120, N/6=60 and N/12=30 as window 

lengths. With consideration of these selected window 

lengths and the SVD of the trajectory matrix, several 

bunch components are obtained and ordered according to 

their contributions to the decomposition. Fig. 3 displays 

the first leading principal components and the 

corresponding contribution percentages obtained from 

analysis. The variation trends change from fluctuation to 

smooth with increasing window length, and the 

corresponding contribution percentages are gradually 

decreased. 

As mentioned above, the main function of SSA is to 

decompose the original series into an identified trend 

(periodic or quasi-periodic) components from noise 

components. As shown in Fig. 4 and Fig. 5, each 

reconstructed component is shown. According to different 

window lengths, the 2nd-3rd reconstructed component 

pairs present annual oscillation; the 4th-5th component 

pairs present semiannual oscillation; the 6th-7th 

component pairs present quarterly oscillation; and so on. 

All of these reconstructed components will be used to 

assess its forecasts by the LRF. 

Fig. 6 shows the absolute values of w-correlations for 

reconstructed components in a grey scale corresponding 

to the values of 0 to 1 with different window lengths. In 

Fig. 6, the adjacent reconstructed components are mostly 

high correlations, belonging to one group and containing 

periodic alike oscillation with similar contribution 

percentages. The results confirm the grouping feature of 

those leading components as shown in Fig. 4 and Fig. 5. In 

most cases, the components with less percentage are 

corresponding to noise components in the series. Fig. 6 

also shows the set of leading components. Base on the 

w-correlations, the leading components numbers are 

taken among different window length. If the correlations 

are high below the line of numbers, these components are 

well separated from a block of the remaining 

components; otherwise if the correlations are messy over 

the line, these reconstructed components are possibly 

considered as noise components.  

Hence, these leading components can properly describe 

the general tendency of the series.  

Table 1. Summary of reconstruction time series 

Window 
Length 

Leading 
Components 

Contribution 
Percent (%) 

RMSE 

30 10 92.71 32.75 
60 15 92.66 34.23 

120 17 91.41 38.09 
180 24 92.41 36.59 

12 5 92.72 35.00 
20 7 92.33 33.79 
42 13 92.90 33.09 

126 19 91.73 37.38 
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Figure 3. Observation and 1st leading components with related contributions percent 

 

Figure 4. Annual, semiannual and quarter oscillation components are reconstructed from components pairs with L value 

as 30, 60, 120 and 180. 
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Figure 5. Annual, semiannual and quarter oscillation components are reconstructed from components pairs with L value 

as 12, 20, 42 and 126. 

 

Figure 6. Absolute values of w-correlation for reconstructed components (Large values mean high correlation 
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Figure 7. Observation and approximated reconstructions 

 

Figure 8. Forecasts of sample leading components time series with L value as 30, 60, 120 and 180 

Fig. 7 illustrates the approximated reconstructions of 

these leading components with different window lengths, 

as well as the original time series. It can be seen that the 

reconstruction time series fit the original time series very 

well except for some peak values. The summary of these 

reconstructions is shown in Table 1. On different window 

length Table 1 shows the leading components numbers, 

contribution percent of the leading components in all 

components and the RMSE between original and 

reconstructions data series. 
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3.2 Forecasting 

Based on the leading component time series, LRF is 

applied respectively to the time series of those extracted 

components. Normally, the key parameter d in the Linear 

Recurrent Formula is decided on experience or repeatedly 

tried with varying value. After experiment many different 

sets of value, we took it as same as window length value 

in this paper. So, the prediction of component is derived 

through these prepared LRFs, and then these new 

components are summed up to forecast the precipitation 

of 5 years (2011-2015). Figs. 8 and 9 demonstrate some 

sample time series of the leading components with 

different window lengths. These component series 

predictions are fairly similar to the variation trend and 

periodic oscillation of the previous components. 

 

Figure 9. Forecasts of sample leading components time series with L value as 12, 20, 42 and 126

According to the prediction of leading components, the 

precipitation forecasting can be acquired as shown in Fig. 

10. Meanwhile, scatter plots of the correlation between 

forecasts and observation are given in Fig. 11. It is shown 

that the all regression coefficients are less than 1, that 

means the precipitation forecasts are a little 

underestimate of the observation. Generally the two 

figures adequately indicate that the forecasts are 

approximated to the observation, and match well with the 

variation trends and evolution characteristics of observed 

precipitation. 

With different window lengths, some statistical 

quantitative verification measures of forecasts are 

calculated to evaluate their performance according to 

root mean squared error (RMSE), the coefficient of 

correlation (R), coefficient of determination (R2) and mean 

absolute error (MAE). Table 2 presents the statistical 

verification contrastive results for these window lengths. 

Table 2. Statistical quantitative verification measures of 

forecasts 

Window 

Length 

RMSE 

(mm) 
R R2 

MAE 

(mm) 

30 41.76 0.85 0.65 30.33 

60 37.92 0.86 0.72 29.06 

120 39.53 0.84 0.69 30.53 

180 41.86 0.81 0.65 32.45 

12 53.86 0.76 0.43 38.81 

20 46.80 0.81 0.57 33.12 

42 39.02 0.85 0.71 29.58 

126 38.69 0.85 0.70 29.66 

In these standards of verification, it can be found that the 

forecasts with window length of L=60 and L=42 both 

achieve a good result and that their skill measures are 
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close. The efficacy of the forecasts with window length 

L=60 is best in all forecasts. These results fully indicate 

that the SSA-LRFs model has the commendably simulating 

efficiency on the precipitation forecasting. 

 

Figure 10. Contrast figures of observation and forecasts 

 

Figure 11. Scatter plots about the correlation of forecasts and observation

4. Conclusions 

In summary, the variability of precipitation in Florida has 

been extracted and forecasted successfully using SSA and 

LRF with different window lengths. Periodogram analysis 

of precipitation time series shows that some possible 

inherent periods can be considered as the options of 

window length. Several different window lengths are 

selected and the SSA is applied to the tested data. The 

decomposed components present the characteristics of 

annual, semiannual and quarterly oscillation. The 

determined leading reconstruction components are well 

separated from a block of residual components, and the 

approximated reconstructions with these leading 

components fit the original time series very well except 

for some peak values. Further, LRF is applied to these 

leading components following the SSA technique with 

different window lengths, and the comparison of 

forecasting results with observed precipitation indicates 

that the forecasts with window length of L=60 have the 

better performance among all. It is indicated that the 

larger windows lengths L is not always better in SSA 

application. Our findings successfully confirm that the 

periodogram analysis can provide a good option for 
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window length selection in the application of SSA. It is 

capable of analyzing and forecasting the seemingly 

complex time series with potential separable structure, 

and particularly suitable for forecasting seasonal 

precipitation variations. As with all analytic methods there 

are limitations: highly dependent of the periodic signal 

characteristic and not amenable to the problem requires 

adaptive algorithms. In the future research, constant 

effort may be taken to improve the efficiency of model 

techniques. 
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