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Abstract  

This paper presents new and explicit equations to estimate 
aeration-related parameters such as standard oxygen 
requirement, daily energy consumption and total mass 
transfer coefficient for the diffused aeration. The proposed 
formulations are derived for the steady-state completely 
mixed activated sludge process based on the nonlinear 
regression analysis by using the Richardson’s extrapolation 
method and the Levenberg–Marquardt algorithm. The 
applicability of the proposed models has been investigated 
for a wide range of thirteen inputs consisting of the 
fundamental biological, hydraulic, and physical design 
variables, and tested against a total of 1500 additional 
computational scenarios. All estimations are proven to be 
satisfactory with very high determination coefficients (R2) 
between 0.961–0.965, 0.967–0.972 and 0.980–0.984, 
respectively, for the prediction of standard oxygen 
requirement, daily energy consumption and total mass 
transfer coefficient for diffused aeration. The proposed 
models offer sufficiently simple and practical mathematical 
formulations incorporating routinely obtainable 
parameters, which are readily available for all activated 
sludge-based treatment plants. Besides eliminating the 
need for additional time or computational effort typically 
performed in the theoretical procedure, the developed 
equations have simple coefficients to be easily used for 
manual calculations with a hand-held calculator. The 
statistical results clearly exhibit that the proposed 
equations are accurate enough to be used in estimation of 
the studied aeration parameters based on the practical 
ranges of the corresponding design variables. 

Keywords: Completely mixed activated sludge; Energy 
consumption; Mass transfer coefficient; Nonlinear 
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1. Introduction 

The activated sludge-based process currently represents 
one of the most widespread and commonly used 
technology to remove organic pollutants from the 

wastewater. The aeration tank, where the biological 
reactions occur and air (or oxygen) is injected in the mixed 
liquor, constitutes the hearth of this process. Nevertheless, 
aeration is a critical operation and a major energy 
consumer in most wastewater treatment plants (Roman 
and Mureşan, 2014). From the economical point of view, 
the supply of oxygen accounts for an important part of the 
running costs of an activated sludge-based wastewater 
treatment process. For conventional wastewater activated 
sludge plants, aeration systems are usually the single 
largest consumer of energy at wastewater treatment 
installations, typically accounting for 30% (or 45%) to 50% 
(or 60%) of a treatment facility’s total electrical energy use 
(Bolles, 2006; Casey, 2009). Therefore, an effective control 
and optimization of the air supply may significantly reduce 
the operational costs of an activated sludge-based 
wastewater treatment plant (Makinia and Wells, 1999; 
Fayolle et al., 2007). Aeration control aims not only at 
energy savings but will also guarantee that the 
microorganisms are adequately supplied with oxygen at all 
times (Roman and Mureşan, 2014). In this regard, it is clear 
that careful attention is essential to the adequate design, 
operation and control of aeration equipment, particularly 
at large wastewater treatment plants. 

Diffused (or fine bubble) air systems are broadly classified 
as coarse or fine bubble systems, depending on the size of 
bubble generated. Fine bubble diffused air systems are 
probably superior to all other commercially available 
systems in terms of their energy efficiency in oxygen 
transfer (Casey, 2009; Fayolle et al., 2007). However, under 
activated sludge process conditions, the oxygen transfer 
efficiency of diffused air systems is influenced by several 
factors, including geometry of the reactor, temperature, 
barometric pressure, and the liquid composition 
(Varolleghem, 1994). Because the characteristics of the 
aerobic process are time-varying and site-specific, it is 
necessary to calculate the mass transfer efficiencies under 
field conditions. Therefore, a number of process-related 
variables are needed to be taken into account with 
sufficient accuracy for purposes of optimal aeration 
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control, failure diagnosis and process performance in full 
operation (Varolleghem, 1994). Considering these complex 
interactions of variables associated with this process, 
various aeration strategies can be implemented by means 
of computational methods for a realistic evaluation of the 
aeration system (Makinia and Wells, 1999; Makinia, 2010). 

The oxygen is transferred to the water by a mass transfer 
coefficient (kLa), which describes how fast the oxygen is 
transferred to be dissolved in water. It has been stated that 
for a good aeration performance, the rate of dissolved 
oxygen supplied to the bioreactor should be equal to the 
rate of oxygen consumed by the mixed liquor under any 
given set of circumstances (Roman and Mureşan, 2014). In 
this regard, Painmanakul et al.(2009) have reported that it 
is frequently necessary to determine this coefficient when 
designing and evaluating the performance of the aeration 
systems. They also emphasized that a better forecast of the 
kLa value would help the optimization of the installations in 
term of both cost and effectiveness. In another study, Al-
Ahmady (2011) conducted a dimensional analysis 
procedure to evaluate the factors affecting the oxygen 
mass transfer coefficient (kLa).The study concluded that 
increasing airflow rate, diffusers coverage area and 
submergence of diffusers increased the value of kLa while 
increasing Froude number, ratio of the height of water in 
the tank to the length of the tank, and bubbles diameter 
showed an adverse influence on this coefficient. 
Concerning to the estimation of the value of mass transfer 
coefficient, however, there are almost no papers in the 
literature proposing a practical equation that takes into 
account the most common biological, hydraulic, and 
physical design variables used in the design of activated 
sludge plants. Many of the proposed correlations are highly 
theoretical, and not always applicable in practice, since the 
most of parameters used in the mathematical structure of 
these models are not readily available or routinely 
obtainable for all activated sludge-based treatment plants. 
On the other hand, although some of the previous 
expressions (Chenet al., 1980; Goto and Andrews, 1985; 
Holmberg, 1986; Reinius and Hultgren, 1988) seem to have 
a simple mathematical structure, however, they neglect 
the effect of several process-related variables, and do not 
directly reflect the actual behavior the large-scale aeration 
units. To overcome the limitations and problems 
associated with the existing models, a more practical 
approach for the accurate prediction of the value of the 
mass transfer coefficient could be interesting for engineers 
and researchers who are concerned with the aeration in 
activated sludge process. 

Mathematical modeling and computer simulation of 
biological systems are valuable and powerful tools for 
describing and evaluating their performance under both 
dynamic and steady-state conditions (Yetilmezsoy, 2010; 
Kumar, 2011; Yetilmezsoy, 2012; Yetilmezsoy et al., 2015). 
With the increasing practical experience, continuously 
developed and improved activated sludge-based models 
have been utilized to quantify and to evaluate the process 
performance (Makinia and Wells, 1999; Makinia, 2010; 
Yetilmezsoy, 2010; Yetilmezsoy, 2016). In recent years, 

various mechanistic models have been introduced for the 
assessment of a number of activated sludge-based 
problems such as modeling of activated sludge thickening 
in secondary clarifiers (Giokas et al., 2002), modeling of the 
steady-state biofilm activated sludge reactor under 
substrate limiting conditions (Fouad and Bhargava, 2005a; 
Fouad and Bhargava, 2005b), modeling of temperature 
dynamics for activated sludge systems (Makinia et al., 
2005), estimation of completely mixed activated sludge 
reactor volume (Yetilmezsoy, 2010), prediction of the 
reduction of biosolids production by ozonation of the 
return activated sludge (Isazadeh et al., 2014), and 
prediction of the waste sludge volumetric flow rate 
(Yetilmezsoy, 2016). Although many other studies 
(Nuhoglu et al., 2005; Mulas, 2006; Pamukoglu and Kargi, 
2007; Szilveszter et al., 2010; Bagheri et al., 2015; Liu and 
Wang, 2015) have focused on different modeling 
methodologies in the operation of activated sludge-based 
treatment plants, however, to date, there are no sound 
papers in literature regarding the development of explicit 
mathematical formulations that can be directly used for 
the prediction of the present aeration-related parameters 
in the steady-state completely mixed activated sludge 
process without writing a set of theoretical statements.To 
the best of the author’s knowledge, this work is the first 
study specifically aimed at investigating new and practical 
expressions for the direct estimation of aeration-related 
parameters as a function of the most common biological, 
hydraulic, and physical design variables used in the design. 

In consideration of the foregoing facts, the overall 
objectives of this study were: (1) to develop simple and 
explicit equations for practising engineers and researchers, 
which makes it possible to accurately estimate aeration-
related parameters (standard oxygen requirement, daily 
energy consumption, and total mass transfer coefficient for 
diffused aeration) for the diffused aeration in the steady-
state completely mixed activated sludge process; (2) to 
verify the model predictions by means of various powerful 
statistical performance indicators; (3) to assess the 
predictive capabilities of the developed models by 
comparing the model outputs with the results of a total of 
1500 additional and different computational scenarios; and 
(4) to validate the applicability of the proposed equations 
by comparing the consistency of simulation results with the 
existing literature data. 

2. Methodology 

2.1. Representation of input and output variables 

In the planning stage of modeling and simulation-based 
studies, selection of the most appropriate model 
components is a crucial factor in order to recognize 
possible technical faults and to reduce computation time, 
as well as to develop an accurate modeling methodology 
for a specific environmental process (Yetilmezsoy et al., 
2015; Kanat and Saral, 2009; Yetilmezsoy and Sapci-Zengin, 
2009). For the present case, the model variables and their 
respective ranges were chosen in accordance with the 
relevant literature (Yetilmezsoy, 2010; Yetilmezsoy, 2016; 
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Orhon and Artan, 1994; Muslu, 1996a; Muslu, 1996b; 
Qasim, 1998; Crites and Tchobanoglous, 1998). 

For modeling and simulation purposes, thirteen 
fundamental biological, hydraulic, and physical design 
variables, which are the most commonly used design 
parameters, were considered as the following inputs: X1 = 
Q: influent wastewater flow rate (m3/sec), X2 = θc: mean 
cell residence time (days), X3 = Y: growth yield coefficient 
(kg MLVSS/kg BOD5), X4 = Si: influent soluble substrate 
concentration (kg BOD5/m3), X5 = X: concentration of the 
cells (volatile suspended solids) in the reactor (kg 
MLVSS/m3), X6 = φ = X/XTSS: volatile suspended solids to 
total suspended solids ratio (kg MLVSS/kg MLSS), X7 = Se: 
effluent total substrate concentration (kg BOD5/m3), X8 = 
Xe: effluent total suspended solids concentration (kg 
MLSS/m3), X9 = kd: microorganism endogenous decay 
coefficient (day–1), X10 = Ta: ambient air temperature (°C), 
X11 = Ti: influent wastewater temperature (°C), X12 = H: 

static pressure caused by wastewater depth in the areation 
basin, measured in head of water (m), and X13 = Ha: 
elevation or altitude above sea level (m). These input 
variables were used for the estimation of three aeration-
related outputs: f1= SORd: standard oxygen requirement for 
the diffused aeration (kg O2/h), f2= Ec: daily energy 
consumption (kWh/day), and f3= kLad: total mass transfer 
coefficient for the diffused aeration (day–1).  

Detailed definitions of the present model components, 
which are among the most widely used and monitored 
parameters in activated sludge-based treatment plants, 
can be found in several studies (Bolles, 2006; Yetilmezsoy, 
2010; Orhon and Artan, 1994; Muslu, 1996a; Muslu, 1996b; 
Qasim, 1998; Crites and Tchobanoglous, 1998; Eroglu, 
1991; Celenza, 1999; Toprak,, 2000; Shammas et al., 2009; 
Loehr, 2012). 

The general schematic of the major parameters used in the 
proposed models is depicted in Figure 1. 

 

Figure 1. General schematic of the major parameters used in the proposed models

2.2. Steady-state procedure for the completely mixed 
activated sludge process 

In this study, a theoretical procedure (Table 1) was 
conducted as the primary step of the nonlinear-based 
computational analysis to produce a sufficient number of 
data points to be used in modeling and simulation of 
standard oxygen requirement for the diffused aeration 
(SORd), daily energy consumption (Ec) and mass transfer 
coefficient (kLad) for diffused aeration.  

2.3. Assumptions  

In this study, the following assumptions are made to 
describe the specific aspects of the process: (1) the system 
is assumed to run under a steady-state condition for 
biomass (dX/dt = 0, X0 = 0) and substrate (dS/dt = 0), (2) the 

volume used for calculation of mean cell residence time 
(θc) accounts volume of the aeration tank only, (3) 
completely mixed flow regime is maintained in the aeration 
tank, (4) wastewater was distributed along with return 
sludge uniformly from one side of the tank to the other, (5) 
waste stabilization occurs only in the aeration tank, (6) all 
reactions take place in the aeration basin so that the 
substrate in the aeration basin is of the same concentration 
as the substrate in the secondary clarifier and in the 
effluent, (7) there is no microbial degradation of organic 
matter and no biomass growth in the secondary clarifier, 
and (8) waste stabilization is carried out by the 
microorganisms occurs in the aerator unit. The design 
parameters and numerical assumptions considered in the 
present computational analysis are summarized in Table 2.
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Table 1.Set of steady-state designequations considered in theoretical procedure 

Steady-state design equations  Equation no 

[1] The effluent soluble substrate concentration (C: mg BOD5/l) and the substrate utilization efficiency (or biological 
treatment efficiency: Eb) are calculated as follows (Yetilmezsoy, 2010; Yetilmezsoy, 2016; Muslu, 1996a; Muslu, 
1996b): 

( )e e bC S X f A       (1a) 

 (%) ( )/ 100b i iE S C S    (1b) 

where Si is the influent substrate concentration (mg BOD5/l), Se is the total effluent substrate concentration as the 
discharge standard for the receiving water (mg BOD5/l), Xe is the effluent total suspended solids concentration (mg 
MLSS/l), fb is the biodegradable fraction of Xe, A is the ultimate biochemical oxygen demand (BODu ≈ COD) of per kg of 
bacteria cells (or the oxygen requirement for oxidizing per unit of biomass: g O2 equivalent/g MLVSS), and ψ is the ratio 
of BOD5 to ultimate BODu (commonly ψ = BOD5/BODu = 0.68 for the substrate decay coefficient of k = 0.1 day–1). 

[2] The volume of the completely mixed activated sludge reactor (VR: m3) is determined by the following steady-state 
or empirical equations (Yetilmezsoy, 2010; Fouad and Bhargava, 2005a; Fouad and Bhargava, 2005b; Muslu, 1996a; 
Muslu, 1996b; Toprak, 2000): 
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where Q is the influent wastewater flow rate (m3/day), θc is the mean cell residence time (MCRT) or the sludge age (day) 
or the solids retention time (SRT), Y is the growth yield coefficient (kg MLVSS/kg BOD5), Yobs is the observed growth yield 
coefficient (kg MLVSS/kg BOD5), X is the concentration of the cells (volatile suspended solids) in the reactor (kg 
MLVSS/m3), kd is the coefficient of endogenous respiration (day–1), and others (Si and C) are defined in previous equations. 

[3] The food to microorganism (F/M: kg BOD5/kg MLVSS/day) ratio, the volumetric organic loading (Lv: kg 
BOD5/m3/day), the hydraulic retention time (θh: hour), and the waste (excess) sludge mass flow rate (Px: kg 
MLVSS/day) as a function of Si, Q, X, VR, θc, kd, Y, Eb, substrate utilization rate (rsu: kg BOD5/m3/day) are obtained from 
the following equations (Yetilmezsoy, 2016; Mulas, 2006; Orhon and Artan, 1994; Muslu, 1996a; Muslu, 1996b; 
Qasim, 1998; Toprak, 2000; US EPA, 1977): 
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In the computational analysis, the following control ranges were considered for the present activated sludge process 
(Yetilmezsoy, 2010; Yetilmezsoy, 2016; Muslu, 1996a; Muslu, 1996b; Qasim, 1998): F/M = 0.2–0.6 kg BOD5/kg 
MLVSS/day, Lv = 0.8–2.0 kg BOD5/m3/day, θc = 5–15 days, θh = 3–5 h, and r = Qr/Q from 0.20 (or 0.25) to 0.50 (or 1.0). 

[4] The wastewater temperature within the aeration basin (Tww: °C) is calculated by conducting a heat balance around 
the reactor, resulting the following equation (Muslu, 1996a;  Celenza, 1999; Loehr, 2012; Wang et al., 2009): 

( )( )( ) ( )( ) ( / )( )( ) ( )( )

( )( ) ( / )( )
R a i R a i

ww

R R

A f T Q T V H f T Q T
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 (4) 

where AR is the surface area of the aeration basin (m2), f is the proportionality factor (f = 0.5 for Eastern United States 
and f = 2.5 for Midwestern United States), Ta is the ambient air temperature (°C), Ti is the influent wastewater 
temperature (°C), H is the average wastewater depth in the areation basin (m), and others (Q and VR) are defined in 
previous equations. 

[5] The air pressure (pa) and the density of air (ρa) as a function of altitude Ha (above sea level) are determined by 
using the following equations (Bugbee and Blonquist, 2006): 



144  YETILMEZSOY K. 

 

1 0

0

1

gM

RL
aLH

p p
T

 
  

 
 (5a) 

5.25588

2 0 5

2.25577
1

10
ap p H

  
    

  
 (5b) 

5.25328

3 0 0 1 1
44307.69231

aH
p p p

   
          

 (5c) 

3
1 2 31 2

1

...1

3

n
n

a i
i

p p pp p p
p p

n n





   
    (5d) 

3 3

0

( 10 )( ) ( 10 )( )

( )
a a a a

a

a

p M p M

RT R T LH


 
 


 (5e) 

where p1, p2 and p3 are the air pressure (kPa) at altitude Ha (m), p0 is the sea level standard atmospheric pressure (101.325 
kPa), pa is the average air pressure (kPa) to be used in calculation of the density of air, L is the temperature lapse rate 
(0.0065 K/m), T0 is the sea level standard temperature (288.15 K), g is the earth-surface gravitational acceleration 
(9.80665 m/s2), Ma is the molar mass of dry air (0.0289644 kg/mol), R is the ideal (universal) gas constant (8.31447 
J/mol/K), and ρa is the density of air based on the molar form of the ideal gas law (kg/m3). 

[6] The effective oxygen percentage as a function of barometric pressure (pa: kPa) from sea level to any elevation is 
determined as follows (Bugbee and Blonquist, 2006): 

2 0O (%) 20.95 (100/ )(0.2095)( )a ap p p    (6) 

[7] The theoretical oxygen requirement (ThOR: kg O2/day) is calculated by knowing influent and effluent BOD of 
wastewater, and the amount of organisms wasted from the system (Yetilmezsoy, 2010): 
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[8] The dissolved oxygen saturation concentration (Cs: mg O2/l) at a given temperature (between T = 4°C – 30°C) and 
total dissolved solids (TDS) concentration (mg/l) is obtained by one of the following empirical equations (Eroglu, 1991; 
ASCE, 1997; von Sperling, 2007; Ma et al., 2013): 
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[9] The comprehensive oxygen solubility correction factor (Fa) is calculated from the following equations (Muslu, 
1996b; Qasim, 1998; von Sperling, 2007): 
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where EO2 is the oxygen transfer efficiency of air diffusers (or mass of O2 transferred/mass of O2 supplied, usually EO2 = 
0.06 – 0.12), 10.33 and 101.325 are the water column (m) and kilopascal (kPa) equivalents of the absolute atmospheric 
pressure at sea level (1 atm), respectively, and others (pa and H) are defined in previous equations. 

[10] Based on the above definitions, the value of standard oxygen requirement (SOR: kg O2/h) is calculated from the 
following equation (Roman and Mureşan, 2014; Makinia, 2010; Muslu, 1996b; Qasim, 1998; Makinia and Wells, 2000): 
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 (10) 

where Cww is the dissolved O2 concentration (mg O2/l) in wastewater at temperature Tww, β is the salinity surface tension 
factor (a ratio of O2 saturation concentration in wastewater to that in clean water) for wastewater (usually β = 
C20(wastewater)/C20(clean water) = 0.70 – 0.98 and typically 0.90 for wastewater), Cmin is the minimum dissolved O2 concentration 
(mg O2/l) maintained in the areation basin, C20 is the dissolved O2 concentration (mg O2/l) at standard 20 °C, α is the 
oxygen transfer correction factor (a ratio of O2 transfer in wastewater to that in clean water) for diffused aeration 
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(usually α = kLa(wastewater)/ kLa(clean water) = 0.40 – 0.80), θ is the Arrhenius constant or temperature correction coefficient 
(usually θ = 1.015 – 1.040 and typically θ = 1.024) for both diffused and mechanical aeration applications, and others 
(ThOR and Tww) are defined in previous equations.  

[11] The peak factor (T1: h/day) for oxidizing carbonaceous biological matter (or fluctuation factor for BOD5 
concentration) is selected depending on the equivalent population (Ep), which is computed for a given amount of 
wastewater (q: l/capita/day) discharged per capita and per day as follows (Toprak, 2000): 
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[12] The total hourly oxygen requirement (Ro: kg O2/h) and the standard oxygen requirement (Oc: kg O2/h) are also 
determined as complementary alternatives to Eqs. (7) and (10), respectively, from the following equations (Eroglu, 
1991; Toprak, 2000): 
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where T1 is the peak factor for oxidizing carbonaceous biological matter (or fluctuation factor for BOD5 concentration: 
hour/day), a is the oxygen requirement for oxidizing carbonaceous biological matter (or oxygen requirement for 
removing per unit of BOD5: kg O2/kg BOD5), T2 is the time factor for endogenous respiration (24 h/day), kre is the 
respiration rate coefficient (kg O2/kg MLSS/day), σ is a correction factor for dissolved O2 saturation concentration, C10 is 
the dissolved O2 concentration (mg O2/L) at 10°C, D10 ve DTww are the diffusion coefficients (10-9 m2/s) at 10°C and 
temperature Tww, respectively, and others (Eb, Q, Si, X, φ, VR, Cww, and Cmin) are given in previous parts. 

[13] Based on the data (Eroglu, 1991) showing the effect of the sludge load (Ls: kg BOD5/kg MLSS/day) on the 
respiration rate coefficient (kre: kg O2/kg MLSS/day), a third order inverse polynomial empirical function with a very 
high determination coefficient (R2 = 0.9994, minimum residual =  –0.00285, maximum residual = 0.00158) was also 
derived by the author within the scope of the present study as follows: 
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[14] According to Eqs. (10) and (12b), the average standard oxygen requirement for the diffused aeration (SORd: kg 
O2/h), which is used as the first output variable (f1) in the subsequent modeling study, is obtained as follows to take 
into account the effects of different parameters (i.e., Fa, T1, kre, etc.): 
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[15] Based on the value of standard oxygen requirement obtained from Eq. (14), the theoretical air requirement under 
field conditions (ThARfc: m3/h), the theoretical air requirement (ThAR: m3/h), actual air requirement (AAR: m3/h), 
and the air flow rate (Qb) in m3/min are computed from the following expressions: 
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where (SF)a is the safety factor for air requirement, and others (SORd, ρa, O2(%), and EO2) are defined in previous 
equations. 

[16] The daily energy consumption (Ec: kWh/day) of the diffused aeration system is computed based on the 
assumption of adiabatic conditions as follows (Casey, 2009; Muslu, 1996b; Qasim, 1998): 
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where Pm is the total power requirement (kW) for blowers, t is the effective operating time (i.e., t = 24 h/day if the power 
is supplied at full power all day), w is the air mass flow rate (kg/s), 8.41 is the constant (kg/kmol), ηb is the blower 
efficiency for the diffused aeration system, T0 is the inlet or ambient air temperature (T0 =Ta + 273 [=] K), pout is the 
absolute outlet or air supply pressure (atm), pin is the absolute inlet or ambient barometric pressure (atm), ∑hL is the total 
head losses (see Table 1) in air piping system and diffusers (m), hd is the distance between the bottom of the areation 
basin and the top of submerged diffusers, (SF)b is the safety factor for blower power, and others (Qb, ρa, R, Ta, pa, and H) 
are explained in previous steps. 

[17] According to Eq. (16b), the daily energy consumption (Ec: kWh/day) of the diffused aeration system, which is 
considered as the second output variable (f2) in the nonlinear regression analysis, is defined as follows: 

2 2 1 2 3( )( ) ( ) ( , , ,..., )c m i nE P t f X f X X X X    (17) 

[18] Finally, the total mass transfer coefficient for the diffused aeration (kLad: day–1) is computed from the following 
equation (Henderson, 2002): 
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where αf is the admixtures correction factor, Rair is the O2 flow per volume and immersion depth in clean water at S0 = 0 
and a specified temperature T = 20°C (g/m3/m), and others (H, hd, C20, and VR) are expressed in previous equations.  

[19] Based on the gas/liquid mass transfer (film or penetration) theory, kLad describes the oxygen transfer coefficient 
for the diffused aeration, which has the dimension of the inverse of time, ad is defined as AG/VL (where AG: total gas 
surface [=] m2, and VL: liquid volume [=] m3) and describes the interfacial area (m2/m3) in diffused aeration, while kL 
is the liquid film coefficient (m/s) and describes the velocity of the transport (Henkel, 2010). 

According to Eq. (19), the total mass transfer coefficient for the diffused aeration (kLad: day–1), which is considered as 
the third output variable (f3) in the nonlinear regression analysis, is given as follows: 

20 3 3 1 2 3( , , , , , , ) ( ) ( , , ,..., )L d f air d b R i nk a f R H h Q C V f X f X X X X    (19) 

Table 2.Design parameters and assumptions to be used in the computational analysis 

Constituents Values used in the computational analysis 

Empirical formula of bacteria cells C5H7NO2 (MW = 113 g/mol) (Yetilmezsoy, 
2010; Comeau, 2008) 

Ultimate biochemical oxygen demand (BODu ≈ COD) of per kg of bacteria 
cells (or oxygen requirement for oxidizing per unit of biomass) 

A = 1.42 g O2 equivalent/g cell (MLVSS) 
(Yetilmezsoy, 2010; Martinez et al., 2004) 

Biodegradable fraction of Xe(in terms of effluent total suspended solids 
concentration)  

fb = 65% (Muslu, 1996b; Toprak, 2000) 

Substrate decay coefficient k = 0.1 day–1 (Yetilmezsoy, 2010) 

Ratio of BOD5 to ultimate BOD (BODu) ψ = BOD5/BODu = 0.68 (Celenza, 1999) 

Propotionality factor (or overall heat transfer coefficient)  f = 0.50 (Muslu, 1996b; Celenza, 1999) 

Oxygen transfer efficiency of air diffusers (or mass of O2 transferred/mass 
of O2 supplied) (EO2 = 0.06 – 0.12) 

8% or EO2 = 0.08 (Qasim, 1998) 

Salinity surface tension factor (a ratio of O2 saturation concentration in 
wastewater to that in tap water) for wastewater (β = 0.70 – 0.98) 

β = 0.90 (Roman and Mureşan, 2014; Qasim, 
1998; Toprak, 2000) 

Minimum dissolved O2 concentration maintained in the areation basin 
(Cmin= 1.0 or 1.5 – 2.0 mg/l) 

Cmin= 1.5 mg/l (Bolles, 2006; Toprak, 2000; 
Ghangrekar and Kharagpur, 2014) 

Oxygen transfer correction factor (a ratio of O2 transfer in wastewater to 
that in tap water) for diffused aeration (α = 0.4 – 0.8) 

α = 0.75 (Roman and Mureşan, 2014; Qasim, 
1998) 

Arrhenius constant or temperature correction coefficient (θ = 1.015 – 
1.040) for diffused aeration application 

θ = 1.024 (Qasim, 1998; Toprak, 2000) 

Safety factors for air requirement and blower power (SF)a = 1.50 (Bolles, 2006; von Sperling, 
2007) and (SF)b = 1.20, respectively. 

Blower efficiency for diffused aeration systems (ηb = 0.70 – 0.90) 75% or ηb = 0.75 (Bolles, 2006) 

Amount of wastewater discharged per capita and per day q = 200 l/capita/day 

Oxygen requirement for oxidizing carbonaceous biological matter (or 
oxygen requirement for removing per unit of BOD5) (a = 0.45 – 0.65 kg 
O2/kg BOD5) 

a = 0.5 kg O2/kg BOD5 (Eroglu, 1991; Toprak, 
2000) 
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Respiration rate coefficientused for computation of Ro. kre= 0.010 – 0.20 kg O2/kg MLSS/day 
depending on the Ls (Eroglu, 1991) 

Peak factor for oxidizing carbonaceous biological matter (or fluctuation 
factor for BOD5 concentration) (T1= 8 – 21 hour/day) 

T1= 8 – 21 h/day depending on the 
equivalent population (Toprak, 2000) 

Time factor for endogenous respiration T2= 24 h/day (Toprak, 2000) 

A correction factor for dissolved O2 saturation concentration(σ = 0.60 – 
0.90 for wasterwater, and σ = 1.0 for pure water) 

σ = 0.80 (Eroglu, 1991; Toprak, 2000) 

Oxygen flow per volume and immersion depth in clean water (S0 = 0, T = 
20°C) 

Rair = 16 g/m3/m (Makinia and Wells, 2000) 

Total head losses in air pipings = 5-25 cm 25 cm (Muslu, 1996b; Qasim, 1998) 

Air filter losses for the centrifugal blower = 13-76 mm  50 mm (Muslu, 1996b; Qasim, 1998) 

Silencer losses for the centrifugal blower = 13-38 mm 30 mm (Muslu, 1996b; Qasim, 1998) 

Check valve and fittings losses = 20-203 mm  200 mm (Muslu, 1996b; Qasim, 1998) 

Diffuser losses for fine bubble aeration = 40-50 cm  400 mm (Muslu, 1996b; Qasim, 1998) 

Allowance for clogging of diffusers and miscellaneous head losses under 
emergency conditions  

100 cm (Muslu, 1996b; Qasim, 1998) 

Depth of submergence (water depth above the diffusers) (H – hd) = (H – 0.30) m (Muslu, 1996b; 
Qasim, 1998) 

2.4. Computational procedure  

In this study, MATLAB® R2009b (V7.9.0.529, The MathWorks, Inc., Natick, MA, US) and DataFit® (V8.1.69, Oakdale 
Engineering, PA, US) softwares running on a CPU N280 (Intel® Atom™ Processor 1.66 GHz, 0.99 GB of RAM) PC, were used 
for simulation and modeling purposes, respectively. The main structure of the present calculation protocol and the 
corresponding computational pathways are depicted in Figure 2.  

In the first step of the computational analysis, A MATLAB®-based algorithm (Figure 2) was constructed for the processing 
of a series of compulsory design calculations (i.e., several biological conversions, determination of reactor volume, 
definition of a heat mass balance around the aeration basin, calculation of air pressure as a function of the elevation factor, 
determination of the saturation concentration of the oxygen at operating temperature, determination of oxygen content 
and density of air as a function of absolute atmospheric pressure at elevation above sea level, formulation of equivalent 
population as a function of peak factor (or fluctuation factor for BOD5), computation of required blower power, etc.) based 
on the theoretical procedure (see Section 2.2).  

In the second step of the computational analysis, a total of 500 different operating scenarios were implemented at random 
for simulating a wide range of thirteen inputs consisting of thirteen fundamental biological, hydraulic, and physical 
variables (see Section 2.1). Then the simulated data was stored as a [500×16] matrix (for Xi and Yj, i = 1,2,..13 and j = 1,2,3) 
in the workspace of MATLAB® software for the further nonlinear regression-based analysis (see Section 2.5). Data statistics 
of the simulated operating variables in the present computational analysis are summarized in Table 3. 

 

Figure 2. Flowchart of the computational prediction process in MATLAB® environment 

START
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X1 = Influent wastewater flow rate (m3/sec)

X2 = Mean cell residence time (days)

X3 = Growth yield coefficient (kg MLVSS/kg BOD5)
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X6 = Volatile suspended solids to total suspended solids ratio (kg MLVSS/kg MLSS) 
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X8 = Effluent total suspended solids concentration (kg MLSS/m3)

X9 = Microorganism endogenous decay coefficient (day-1)
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Table 3. Data statistics of the simulated operating variables considered in the present computational analysis (n = 1000 for 
each variable) 

Component Units Minimum Maximum Average SDa 

Input variables (Xi)      

X1 = Q [m3/sec] 0.047 0.579 0.323 0.150 

X2 = θc [days] 5.03 14.97 10.27 2.87 

X3 = Y [kg MLVSS/kg BOD5] 0.401 0.799 0.606 0.115 

X4 = Si [kg BOD5/m3] 0.20 0.40 0.30 0.059 

X5 = X [kg MLVSS/m3] 2.0 5.48 3.77 1.05 

X6 = φ [kg MLVSS/kg MLSS] 0.600 0.899 0.744 0.091 

X7 = Se [kg BOD5/m3] 0.020 0.045 0.033 0.007 

X8 = Xe [kg MLSS/m3] 0.005 0.020 0.013 0.004 

X9 = kd [day–1] 0.040 0.075 0.057 0.010 

X10 = Ta [°C] –5.0 30.0 12.7 10.6 

X11 = Ti [°C] 5.0 24.9 15.2 5.8 

X12 = H [m] 3.0 5.0 3.98 0.59 

X13 = Ha [m] 3 2998 1511.5 857.6 

Output variables (Yi)      

Y1= SORd [kg O2/h] 60.70 1676.5 608.8 319.7 

Y2= Ec [kWh/day] 3441.3 149,630 41,031 25,811 

Y3= kLad [day–1] 159.73 2324.8 709.79 333.07 
aStandard deviation.

2.5. Nonlinear regression analysis-based modeling 

The simulated data was imported from the MATLAB® 
workspace used as an open database connectivity data 
source, and then the nonlinear regression analysis was 
conducted within the framework of DataFit®software 
package containing 298 two-dimensional (2D) and 242 
three-dimensional (3D) nonlinear regression models. The 
nonlinear convergence criteria were selected for the 
following values of the solution preferences: regression 
tolerance = 1×10–10, maximum number of iterations = 1000, 
and diverging nonlinear iteration limit = 10. When 
performing the nonlinear regression, the Richardson’s 
extrapolation method was used to calculate numerical 
derivatives for the solution of the models (see Section 3.1). 
The nonlinear regression analysis was conducted based on 
the Levenberg–Marquardt method with double precision. 
Each independent operating variable (Xi) was assumed to 
be equally important (Ii = 1.0), and no particular safety 
precautions were considered in the construction of the 
models, as similarly conducted in the previous studies of 
the author (Yetilmezsoy, 2010; Yetilmezsoy, 2012; 
Yetilmezsoy, 2016; Yetilmezsoy and Sapci-Zengin, 2009; 
Yetilmezsoy, 2005; Yetilmezsoy, 2006; Yetilmezsoy, 2007; 
Yetilmezsoy and Sakar, 2008; Yetilmezsoy, 2012; 
Yetilmezsoy and Abdul-Wahab, 2014). 

In the computational analysis, the stepwise selection 
procedure (SSP) was performed as the combination of the 
forward selection and backward elimination procedures for 
variable selection process within the framework of DataFit® 
software. The SSP begins with a forward step (with no 
variables in the model). After the forward step, the p values 
of the variable coefficients are re-examined and any now 
insignificant variables are removed in a backward step. This 
process continues until no variables are either added or 
removed from the model. The SSP is more generally 
popular than either the forward or backward procedures. 

As the nonlinear regression models were solved on the 
DataFit® numeric computing environment, they were 
automatically sorted according to the goodness-of-fit 
criteria into a graphical interface. Additionally, regression 
variables (i.e.,β0 and β1, β2, β3, …, β13), standard error of the 
estimate (SEE), coefficient of multiple determination (R2), 
adjusted coefficient of multiple determination (Ra

2), 
number of nonlinear iterations (NNI) were computed to 
evaluate the performance of the regression models. 
Moreover, t-ratios and the corresponding p-values were 
also calculated for the appraisal of the significance of the 
regression coefficients. An alpha (α) level of 0.05 (or 95% 
confidence) was used to determine the statistical 
significance of the model components. 

2.6. Verification of simulation results 

Finally, the predictive capabilities of the developed models 
were tested against the results of a total of 1500 additional 
and different computational scenarios. For this purpose, 
the overall testing set (a total of 24,000 different data 
points composed of an input matrix of [1500×13] and an 
output matrix of [1500×3]) was randomly allocated into 
three sub-testing groups (as three [500×16] matrices 
including output variables) for each model (i.e.,n1 = 500 for 
SORd, n2 = 500 for Ec and n3 = 500 for kLad, where n1, n2, n3 
are the number of randomly generated testing scenarios) 
to evaluate the predictive capability of the proposed 
formulations. 

2.7. Statistical analysis  

In order to describe the overall performance of the 
proposed equations, quantifying the goodness of the 
estimate should be implemented as a crucial part of the 
model development (Yetilmezsoy and Abdul-Wahab, 
2014). For this purpose, various descriptive statistical 
indicators such as coefficient of determination (R2), mean 
absolute error (MAE), root mean square error (RMSE), 
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systematic and unsystematic RMSE (RMSES and RMSEU, 
respectively), index of agreement (IA), the factor of two 
(FA2), fractional variance (FV), proportion of systematic 
error (PSE), coefficient of variation (CV) and Durbin–
Watson statistic (DW) were computed as helpful 
mathematical tools and robust statistics to assess the 
model’s prediction performance and determine the 
residual error of the estimation.  

The obtained output data (SORd, Ec, and kLad) were 
statistically evaluated by means of several appropriate 
parametric (unpaired or two-sample and matched-pair t 
tests) or non-parametric tests (the Mann-Whitney U (or the 
Wilcoxon rank-sum) test and the Kruskal-Wallis test with 
the Dwass-Steel-Chritchlow-Fligner method). Prior to 
applying parametric tests, the Shapiro-Wilk W and the 
Levene’s tests were consecutively implemented as 
preconditions to ensure that the considered subsets 
(theoretically calculated values and predicted values) had a 
normal or non-normal distribution, and variances (or 
standard deviations) of the paired groups were 
homogeneous or unequal. When the output values were 
not normally distributed, non-parametric tests were 
implemented. Results were assessed with two-tailed p 
values to reflect the statistical significance between paired 
groups (α = 0.05 or 95% confidence). The parametric or 
non-parametric tests were conducted by using a licensed 
statistical software package (StatsDirect, V2.7.2, 
StatsDirect Ltd., Altrincham, Cheshire, UK). 

Based on the other descriptive statistics (i.e., minimum, 
lower quartile (Q1), median (Q2), upper quartile (Q3), 
maximum) of independent samples (theoretical data and 
testing outputs), box-and-whisker plots were also drawn by 
writing a solution script in the M-file Editor within the 
framework of MATLAB® software to appraise the statistical 
results in a pictorial manner. The built-in functions 
boxplot([x1,x2],'Param1',val1, 

'Param2',val2,...) (Statistics Toolbox) and 

subplot(m,n,p) (MATLAB® Function Reference) were 
implemented in MATLAB® for creating these types of 
display. 

3. Results  

3.1. Proposed formulations and estimation of SORd, Ec and 
kLad 

The computational analysis including a total of 8000 
different data points (or 500 random operating scenarios in 
the form of a [500×16] matrix for Xi and Yj, where i = 
1,2,..,13 and j = 1,2,3) was carried out for thirteen input and 
three output variables. The results of the nonlinear 
regression analysis give the final form of the proposed 
models as a new function of the selected biological, 
hydraulic, and physical design variables in Eqs. (20)–(21). 
These are shown below.
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where Q is the influent wastewater flow rate (m3/sec), Y is 
the growth yield coefficient (kg MLVSS/kg BOD5), Si is the 
influent soluble substrate concentration (kg BOD5/m3), θc is 
the mean cell residence time (days), Se is the total effluent 
substrate concentration (kg BOD5/m3), Xe is the effluent 
total suspended solids concentration (kg MLSS/m3), and kd 
is the microorganism endogenous decay coefficient (day–

1),X is the concentration of the cells in the reactor (kg 
MLVSS/m3), φ= X/XTSS is the volatile suspended solids to 
total suspended solids ratio (kg MLVSS/kg MLSS), Ta is the 
ambient air temperature (°C), Ti is the influent wastewater 
temperature (°C), Ha is the elevation or altitude above sea 
level (m), and H is the average wastewater depth in the 
areation basin (m). 

The relationship between the proposed models given in 
Eqs. (20)–(21), and the steady-state theoretical data is 

outlined in Figure 3. The determination coefficients (R2 = 
0.9704 for SORd, R2 = 0.9795 for Ec, and R2 = 0.9824 for kLad) 
demonstrated that only 2.95%, 2.05%, and 1.77% of the 
total variations were unexplained by the proposed SORd, Ec, 
and kLad models respectively. As seen from Figure 3, the 
predictions of Eqs. (20)–(21) correspond very well with the 
theoretical values, implying that the proposed equations 
satisfactorily account for the prediction of the aeration-
related parameters in a wide range of the studied variables. 

The analysis of variance (ANOVA) showed that the 
proposed SORd model was highly significant, as was evident 
from the Fisher’s F-test ((MS)model-1/(MS)error-1 = Fmodel-1 = 
1189.3725) with a very low probability value (Prob(F)model-1 

≈ 0.0000). Additionally, the calculated F value (Sr
2/Se

2 = Fcal-

1 = 1189.3725) was found to be greater than the critical (or 
tabulated) F value (Fα,df,n−(df+1)) = F0.05,13,486 = Sr

2/Se
2 = Fcr = 
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1.7403) at the 5% level, indicating that the computed 
Fisher’s variance ratio at this level was large enough to 
justify a very high degree of adequacy of the SORd model. 
According to the Fisher’s F-test, the ANOVA indicated that 
the proposed Ec model was also highly significant (Fmodel-2 = 
1765.5427 >>Fcr = 1.7403, Prob(F)model-2 ≈ 0.0000). 
Furthermore, the Fisher’s F-test concluded with 95% 
certainty that the proposed kLad model explained a 
significant amount of the variation in the dependent 
variable (Fmodel-2 = 2085.9952 >>Fcr = 1.7403, Prob(F)model-3 ≈ 
0.0000). 

In the literature, it has been reported that the t-ratio 
represents the ratio of the estimated parameter effect to 
the estimated parameter standard deviation. Moreover, 
the p-value is used as a useful tool to check the significance 

of each of the coefficients. The variable with the larger t-
ratio and with the smaller p-value is considered as the more 
significant parameter in the regression model (Yetilmezsoy 
and Sapci-Zengin, 2009; Yetilmezsoy and Sakar, 2008; 
Yetilmezsoy et al., 2009; Yetilmezsoy and Abdul-Wahab, 
2012). It is also noted that values that yield Prob(t) factors 
(or p-values) of greater than 0.9 may be neglected until all 
remaining factors are calculated at once (Fingas and 
Fieldhouse, 2009). In other words, the Prob(t) or p-value is 
the probability that input can be dropped without affecting 
the regression or goodness-of-fit (Yetilmezsoy et al., 2011). 
The regression variable results including standard errors, t-
statistics (determined by Student’s t-test) and the 
corresponding p-values for Eqs. (20)–(21) are summarized 
in Tables 4–6. 

 

Figure 3. Relationships between the proposed models and the steady-state theoretical data

According to absolute t-ratios and p-values given in Table 
4, the influent wastewater flow rate (X1 = Q), the influent 
soluble substrate concentration (X4 = Si), and the mean cell 

residence time (X2 = θc) have more importance than other 
variables for the derived exponential model in prediction of 
SORd. 

Table 4. Nonlinear regression results and significance of model variables in estimation of standard oxygen requirement 
(SORd) 

                         1 2 3 4 5 6 7 8 9 10 11 12 13 0expd c i e e d a i aSOR Q Y S X S X k T T H H                              
 

Variablesa Coefficients Values Standard error t-ratio p-valueb 

X1 = Q β1 2.93 0.0311 94.0644 0.00000 

X2 = θc β2 0.024 0.0013 18.4747 0.00000 

X3 = Y β3 –0.077 0.0334 –2.3055 0.02156 

X4 = Si β4 3.64 0.0671 54.2803 0.00000 

X5 = X β5 0.0097 0.0035 2.7213 0.00674 

X6 = φ β6 –0.281 0.0407 –6.8864 0.00000 

X7 = Se β7 –3.28 0.5373 –6.0973 0.00000 

X8 = Xe β8 2.58 0.9048 2.8509 0.00454 

X9 = kd β9 0.227 0.3665 0.6186 0.53646 

X10 = Ta β10 0.0005 0.000353 1.4125 0.15845 

X11 = Ti β11 0.0048 0.000622 7.7476 0.00000 

X12 = H β12 –0.0162 0.006390 –2.5349 0.01156 

X13 = Ha β13 0.00003 0.000004 6.9558 0.00000 

Constant β0 4.19 0.0645 64.9898 0.00000 
aUnits of variables are previously defined in Eqs. (20)–(21); bp values < 0.05 were considered to be significant.
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As seen from Table 5, the influent wastewater flow rate (X1 
= Q), the elevation or altitude above sea level (X13 = Ha), and 
the influent soluble substrate concentration (X4 = Si) 
showed more importance compared to the others for the 
derived exponential model in prediction of Ec. 

The concentration of the cells (volatile suspended solids) in 
the reactor (X5 = X), the elevation or altitude above sea 

level (X13 = Ha), and the growth yield coefficient (X3 = Y) 
were found to be more significant parameters than others 
for the proposed kLad  model (Table 6). 

Descriptive statistics of the residuals errors in estimation of 
SORd, Ec, and kLad are listed in Table 7.  

Scatter plots of SORd, Ec, and kLad as a function of each of 
the predictor variables are illustrated in Figures 4–6.  

Table 5. Nonlinear regression results and significance of model variables in estimation of daily energy consumption (Ec) 

                         1 2 3 4 5 6 7 8 9 10 11 12 13 0expc c i e e d a i aE Q Y S X S X k T T H H                              
 

Variablesa Coefficients Values Standard error t-ratio p-valueb 

X1 = Q β1 2.92 0.0306 95.2579 0.00000 

X2 = θc β2 0.024 0.0013 18.5309 0.00000 

X3 = Y β3 –0.101 0.0330 –3.0440 0.00246 

X4 = Si β4 3.72 0.0671 55.5219 0.00000 

X5 = X β5 0.013 0.0035 3.7774 0.00018 

X6 = φ β6 –0.257 0.0397 –6.4766 0.00000 

X7 = Se β7 –3.20 0.5196 –6.1675 0.00000 

X8 = Xe β8 2.01 0.8859 2.2662 0.02388 

X9 = kd β9 0.403 0.3542 1.1375 0.25589 

X10 = Ta β10 0.0036 0.000348 10.2297 0.00000 

X11 = Ti β11 0.0050 0.000619 8.0777 0.00000 

X12 = H β12 0.088 0.006218 14.0900 0.00000 

X13 = Ha β13 0.00045 0.000005 85.4257 0.00000 

Constant β0 7.23 0.0663 109.0137 0.00000 

aUnits of variables are previously defined in Eqs. (20)–(21); bp values < 0.05 were considered to be significant. 

Table 6. Nonlinear regression results and significance of model variables in estimation of mass transfer coefficient for 
diffused aeration (kLad) 

                         1 2 3 4 5 6 7 8 9 10 11 12 13 0expL d c i e e d a i ak a Q Y S X S X k T T H H                              
 

Variablesa Coefficients Values Standard error t-ratio p-valueb 

X1 = Q β1 –0.177 0.0185 –9.5215 0.00000 

X2 = θc β2 –0.048 0.0010 –50.3091 0.00000 

X3 = Y β3 –1.88 0.0232 –81.0003 0.00000 

X4 = Si β4 0.063 0.0486 1.2867 0.19882 

X5 = X β5 0.271 0.0028 95.1186 0.00000 

X6 = φ β6 –0.246 0.0305 –8.0714 0.00000 

X7 = Se β7 0.153 0.3805 0.4034 0.68683 

X8 = Xe β8 –1.00 0.6400 –1.5609 0.11919 

X9 = kd β9 6.42 0.2753 23.3185 0.00000 

X10 = Ta β10 0.0001 0.000261 0.1918 0.84800 

X11 = Ti β11 0.0038 0.000475 8.0784 0.00000 

X12 = H β12 0.253 0.004696 53.8576 0.00000 

X13 = Ha β13 0.00032 0.000003 94.5400 0.00000 

Constant β0 5.34 0.0498 107.1153 0.00000 
aUnits of variables are previously defined in Eqs. (20)–(21); bp values < 0.05 were considered to be significant. 
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Table 7. Descriptive statistics of the residuals errors for the derived nonlinear regression models 

Residual statistics Calculationa Regression resultsb 

Sum of residuals 
1

( )
n

a p
i

SR Y Y


   

–2053.647 

–119,806.225 

429.199 

Average residual 
1

1
( )

n

a p
i

AR Y Y
n 

   

–4.107 

–239.612 

0.858 

Standard error of the estimate   
2

1

( )
n

a p
i

Y Y
SSE

SEE
n p n p





 
 


 

54.177 

3877.351 

45.516 

Adjusted coefficient of multiple determination 
2 2( 1) /( 1 )aR n R k n k     

 
 

0.969 

0.979 

0.982 

Durbin–Watson (DW) statistic (e = Ya – Yp) 
2 2

1
2 1

( )
n n

i i i
i i

DW e e e

 

    

1.969 

1.892 

1.943 

aYa is the actual data point, Yp is thepredicted values, n is the number of data points or observations, p is the number of parameters or variables in the 

regression model, R2 is the determination coefficient, and k is the number of regression parameters in the model; bResults have been given in vertical order 

for SORd, Ec, kLad models, respectively. 

 

Figure 4. Scatter plots of the standard oxygen requirement (Y1 = SORd) as a function of each of the predictor variables (Xi 
for i = 1,2,..,13) 
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Figure 5. Scatter plots of the daily energy consumption (Y2 = Ec) as a function of each of the predictor variables (Xi for i = 
1,2,..,13) 

 

Figure 6. Scatter plots of the total mass transfer coefficient (Y3 = kLad) as a function of each of the predictor variables (Xi 
for i = 1,2,..,13)

Based on the above-noted facts, the resulting regression 
models (Tables 4–6) showed that all parameters 
contributed to the final result, and that none of them could 
be cut without affecting the outcome of the models. 
Furthermore, considering the density of clusters in specific 
ranges (Figures 4–6), all variables showed a certain 
importance, indicating that they should not be eliminated 
from the models.  

3.2. Measuring of the goodness of the estimate 

After a considerable consistency was obtained between 
the computed results and the theoretical data, varying 
inputs were randomly applied to observe the prediction 
stability of the proposed model under various operating 
conditions. For this purpose, a total of 24,000 new data 
points (or 1500 new random operating scenarios) were 

introduced to the MATLAB® algorithm (see Section 2.2) and 
used as the testing data. The whole testing set was 
arbitrarily divided into three sub-testing sets (as three 
[500×16] matrices) labeled testing sets 1, 2 and 3 for each 
model. This was conducted to evaluate the predictive 
performance of the proposed model on various input 
scenarios.  

In order to verify the predictive capability of the proposed 
models (SORd, Ec, and kLad), the goodness of the estimates 
was appraised by calculating various statistical indicators 
for each sub-testing set. The obtained results for 
descriptive performance indicators are presented in Table 
8. Applying a linear regression analysis between each of 
testing outputs and the corresponding theoretical results 
indicated that Eqs. (20)–(21) can be reliably utilized to 
predict the aeration-related parameters such as standard 
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oxygen requirement, daily energy consumption and total 
mass transfer coefficient for the diffused aeration. As seen 
in Table 8, the values of the determination coefficients (R2) 
were computed between R2 = 0.9614–0.9646,  R2 = 0.9672–
0.9717, and R2 = 0.9803–0.9844 for SORd, Ec and kLad 

models, respectively, The R2 values demonstrated that 

unexplained variations were calculated only between 
3.54–3.86%, 2.83–3.28%,1.56–1.97% of all the variations in 
prediction of the SORd, Ec, and kLad, respectively, revealing 
that the proposed formulations satisfactorily estimated the 
expected targets with very small deviations.

Table 8. Descriptive performance indicators used for testing the goodness of the estimate for the proposed formulations 
(given in vertical order for each testing set) 

Performance indice Calculationa 

Testing sets 1, 2 and 3 

SORd Ec kLad 

1,2,3 1,2,3 1,2,3 

Determination coefficient (R2) 

2

12

2 2

1 1

( )( )

( ) ( )

n

i m i m
i

n n

i m i m
i i

O O P P

R

O O P P



 

 
   

 


 



 

 

0.9614 
0.9646 
0.9620 

0.9672 
0.9711 
0.9717 

0.9844 
0.9803 
0.9818 

Mean absolute error (MAE) 
1

1 n

i i
i

MAE P O
n 

   
53.3285 
50.0345 
50.2999 

3800.8 
3334.0 
3500.8 

35.0215 
34.5944 
35.3596 

Root mean squared error (RMSE)  
0.5

2

1

1 n

i i
i

RMSE P O
n 

 
   
 
  

66.1589 
64.2315 
63.2041 

5047.3 
4535.6 
4715.1 

48.8225 
47.0747 
49.3155 

Systematicroot mean squared error 
(RMSES)  

0.5
2

1

1 n

S i ireg
i

RMSE P O
n 

 
     

 
  

27.3782 
29.6355 
28.2099 

1409.5 
1449.0 
1666.5 

11.9493 
9.4401 

11.1685 

Unsystematicroot mean squared 
error (RMSEU)  

0.5
2

1

1 n

U i ireg
i

RMSE P P
n 

 
     

 
  

60.2281 
56.9862 
56.5594 

4846.5 
4297.9 
4410.7 

47.3376 
46.1185 
48.0342 

Proportion of systematic error (PSE) 

   
2 2

/S UPSE RMSE RMSE  

0.2066 
0.2704 
0.2488 

0.0846 
0.1137 
0.1428 

0.0637 
0.0419 
0.0541 

Index of agreement (IA) 

 

 

2

1

2

1

1

n

i i
i

n

i m i m
i

P O

IA

P O O O





 
 

  
 
   
 
 





 
0.9890 
0.9895 
0.9889 

0.9913 
0.9922 
0.9922 

0.9959 
0.9949 
0.9952 

Fractional variance (FV) 2( )/( )o p o pFV        
0.0641 
0.0744 
0.0738 

0.0294 
0.0352 
0.0453 

0.0163 
0.0044 
0.0085 

Factor of two (FA2)  
1

0.5 2 (1/ ) / 2.0
n

i i
i

FA n O P


    
0.9458 
0.9455 
0.9591 

0.9438 
0.9442 
0.9575 

1.0121 
1.0150 
1.0149 

Coefficient of variation (CV, %) CV ( / ) 100mRMSE O   
11.6070 
11.1222 
10.8790 

12.6107 
11.8569 
11.6362 

6.4877 
6.5136 
6.6331 

Durbin–Watson (DW) statistic 
(ei = Oi – Pi)  

2 2
1

2 1

DW ( )
n n

i i i
i i

e e e

 

    
2.1218 
1.7793 
1.8741 

2.1700 
1.7806 
1.8224 

1.9839 
1.9426 
2.1060 

aO, P, σ, and the subscripts m and reg indicate the observed, predicted, standard deviation, mean and regression, respectively.

The determined IA (0.9889–0.9895, 0.9913–0.9922, and 
0.9949–0.9959 for SORd, Ec, and kLad, respectively) and FA2 
(0.9455–0.9591, 0.9438–0.9575, and 1.0121–1.0150 for 
SORd, Ec, and kLad, respectively) values were computed to 
be very close to 1, indicating that very good agreements 
were achieved between the theoretical values and the 
outputs of the models. The low values of the coefficient of 
variation (CV = 10.88–11.12%,  CV = 11.64–12.61%, and CV 
= 6.49–6.63% for the testing data sets of SORd, Ec, and kLad, 

respectively) demonstrated a high degree of precision and 
a good deal of the reliability of the proposed equation, as 
similarly reported in previous works (Yetilmezsoy, 2016; 
Yetilmezsoy et al., 2009). Other descriptive performance 
indices such as PSE and FV also revealed that the proposed 
empirical models gave very small residuals and 
demonstrated a noticeable estimation performance on 
forecasting of the studied the aeration-related parameters. 
Furthermore, the DW statistics (DWmodel-1 = 1.969, DWmodel-
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2 = 1.892, and DWmodel-3 = 1.943) were determined to be 
very close to 2, indicating the goodness of fit of the derived 
models (Yetilmezsoy, 2016; Yetilmezsoy et al., 2009; 
Yetilmezsoy and Abdul-Wahab, 2012; Hewings et al., 2002). 

3.3. Non-parametric tests and box-and-whisker plots 

For the proposed SORd model (first model), both the 
Mann–Whitney U test and the Kruskal-Wallis test (with the 
Dwass-Steel-Chritchlow-Fligner method) showed that 
there was no statistically significant difference between 
the outputs of the testing set 1 (a matrix of [500×2]) and 
the corresponding theoretical data (pMW = pKW = 0.648). In 
this case, because the p value was higher than the chosen 
α level of 0.05 (or 95% confidence), the null hypothesis (H0) 
was not rejected in favor of the alternative hypothesis (Ha). 
Similarly, for a total of 1000 observations (n1 = 500 for the 
first model + n2 = 500 for testing set 1), the same non-
parametric tests concluded that there was insufficient 
evidence for a significant difference between the 
predictions of the testing set 2 and the theoretical 
responses (pMW = pKW = 0.721). Moreover, the non-
parametric tests revealed that no sufficient evidence was 
found for a significant difference between the estimated 
data (testing set 3) and the respective theoretical values 
(pMW =  pKW = 0.712).  

For the proposed Ec model (second model), the non-
parametric tests indicated that no sufficient evidence was 
generated for a significant difference between Ec values 
obtained from both the outputs of the testing set 1 and the 
corresponding theoretical data (pMW =  pKW = 0.446). Once 
again, Ha was rejected in favor of H0, since no statistically 
significant difference was recorded between the outputs of 
the testing set 2 and the corresponding theoretical data 
(pMW = pKW = 0.491). The non-parametric tests indicated 
that no sufficient evidence was produced to prove that 
there was a significant difference between Ec values 

obtained from the testing set 3 and the respective 
theoretical values (pMW = pKW = 0.462). 

For the proposed kLad model (third model), both the Mann–
Whitney U test and the Kruskal-Wallis test demonstrated 
that no sufficient evidence was offered to support a 
significant difference between the forecasted kLad values 
(testing set 1) and the respective theoretical data set 
(pMW =  pKW = 0.772). Likewise, the same non-parametric 
tests concluded that there was insufficient evidence for a 
significant difference between the predictions of the 
testing set 2 and the theoretical responses (pMW = pKW = 
0.681). Furthermore, H0 was not rejected in favor of the Ha, 
since no statistically significant difference was found 
between the outputs of the testing set 3 and the 
corresponding theoretical data (pMW = pKW = 0.651).  

The above statistical findings obtained from the non-
parametric analysis confirmed with 95% certainty that the 
proposed models satisfactorily described the behavior of 
the present aeration-related parameters (standard oxygen 
requirement, daily energy consumption and total mass 
transfer coefficient for diffused aeration) even in a widely 
varying input regime.  

Finally, all local differences between the testing outputs 
and the theoretical data sets have been described 
graphically by means of the box-and-whisker-plots, which 
are shown in Figure 7. These diagrams summarize each 
variable by four components as follows: (1) a central line in 
each box is the sample median to indicate central tendency 
or location, (2) a box to indicate variability around this 
central tendency (the edges of the box are the 25th and 
75th percentiles), (3) whiskers around the box to indicate 
the range of the variable, and (4) observations beyond the 
whisker length are marked as outliers displayed with a plus 
(+) sign where its value is more than 1.5 times the 
interquartile range (IQR = Q3 – Q1) away from the top or 
bottom of the box (Singh et al., 2010; Nasr et al., 2012; 
Sharma et al., 2014). 

 

Figure 7. Box-and-whisker plots of the theoretical data sets and the outputs of the proposed models for testing sets 1, 2 
and 3 (top line: the maximum level, the bottom line: the minimum level, top line of the box: 75th percentile (or upper 
quartile), the bottom line of the box: 25th percentile (or lower quartile), middle line of the box: 50th percentile or the 

median)
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As seen in Figure 7, the box-and-whisker plots indicate that 
the proposed models (SORd, Ec and kLad) produce 
quantatively similar results compared to the theoretical 
data sets. According to the minimum, lower quartile (Q1), 
median (Q2), upper quartile (Q3) and the maximum 
categories, the box-and-whisker plots suggest that the 
distributions of independent samples (theoretical data sets 
and testing outputs) are close enough to be comparable for 
statistical purposes. The box-and-whisker plots readily 
convey that the shape of the predicted data sets (box plots 
on the right for each testing set) come from an exponential 
distribution (Martinez and Martinez, 2001; Martinez et al., 
2004). The outliers on the boxes represent extreme points 
that arise randomly according to the range of simulations 
conducted in the computational analysis (Yetilmezsoy, 
2016). 

On the basis the overall results, the general applicability 
and universality of the proposed models were further 
investigated by a validation study presented in the next 
section. 

3.4. Validation of models 

Finally, a validation study was implemented to assess the 
consistency of simulation results with the results calculated 
based on the existing literature data (Kumar, 2011; Muslu, 
1996b; Toprak, 2000; von Sperling, 2007; Ong, 2005; 
NPTEL, 2015). The results are summarized in Table 9. As 
similarly conducted for the sub-testing sets, (see Section 
3.3), both the Mann–Whitney U test and the Kruskal-Wallis 
test (with the Dwass-Steel-Chritchlow-Fligner method) 
demonstrated that there was no statistically significant 
difference between the outputs of the proposed models 
and the corresponding validation data set given in Table 9 
(pMW = 0.8182 and pKW = 0.7488 for SORd model, pMW = 
0.9372 and pKW = 0.8728 for Ec model, and pMW = 0.3939 
and pKW = 0.3367 for kLad model). Therefore, the null 
hypothesis (H0) was not rejected in favor of the alternative 
hypothesis (Ha), since the p values were higher than the 
chosen α level of 0.05 (or 95% confidence) for all cases. 
Furthermore, the determination coefficients (R2 = 0.9734 
for SORd model, R2 = 0.9847 for Ec model, and R2 = 0.9652 
for kLad model) indicated that only 2.66%, 1.53%, and 
3.48% of the total variations were unexplained by the 
proposed SORd, Ec and kLad models, respectively.

Table 9. Comparison of the model outputs with the results calculated based on the existing literature data 

Input variables 

Reference 

Output variablesa 

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 Calculated 
results  

Proposed 
models Q θc Y Si X φ Se Xe kd Ta Ti H Ha 

0.451 10 0.5 0.2 3 0.8 0.02 0.02 0.06 30 24 4.5 450 
Muslu 

(1996a) 

553.1954 
26,514 

508.1834 

553.1615 
25,354 

499.6626 

0.282 10 0.5 0.175 3.5 0.8 0.045 0.022 0.06 25 20 3.85 75.78 
Toprak 
(2000) 

261.2219 
9702.1 

466.0227 

280.0851 
10,109 

436.8962 

0.250 10 0.5 0.250 3.5 0.8 0.02 0.022 0.06 20 20 6 287 Ong (2005) 
371.9594 

19,264 
742.7382 

352.6020 
17,205 

810.2153 

0.222b 6 0.6 0.239 3 0.77 0.02 0.03 0.08 20 20 4 800 
von  

Sperling 
(2007) 

323.3133 
16,107 

600.8974 

303.7211 
14,829 

575.9397 

0.266 5 0.6 0.224 2.56 0.8 0.02 0.03 0.06 30 30 5 6 
Kumar 
(2011) 

319.0877 
13,776 

503.1022 

318.0384 
12,686 

482.1089 

0.139c 5 0.6 0.252 4 0.8 0.023 0.02 0.07 18 18 3.1 6 
NPTEL 
(2015) 

195.6992 
6067.4 

526.5417 

230.3869 
7363.1 

463.9663 

Units of input variables Units of output variables 

Q [=] m3/sec, θc [=] days, Y [=] kg MLVSS/kg BOD5, Si [=] kg BOD5/m3, X [=] kg MLVSS/m3, φ [=] [kg MLVSS/kg MLSS], Se 
[=] kg BOD5/m3, Xe [=] kg MLSS/m3, kd [=] day–1, Ta [=] °C, Ti [=] °C, H [=] m, Ha [=] m 

SORd [=] kg O2/h, Ec [=] 
kWh/day, kLad [=] day–1 

aResults have been given in vertical order for SORd, Ec, kLad models, respectively; bMaximum influent flow rate is considered for the population equivalent 

of 67,000 inhabitants; cQ value is computed for q = 200 l/capita/day (see Eq. (11) in Section 2.2, and Table 2).

Consequently, the validation results corroborated that the 
proposed models satisfactorily accounted for the behavior 
of the present aeration-related parameters. The statistical 
results clearly support the general applicability of the 
proposed formulations for any wastewater treatment plant 
within the proposed limits of the relevant input variables, 
to various operating conditions, as well as their predictive 
capability and accuracy for practical design purposes. 

4. Discussion 

Activated sludge-based models have been widely studied 
by design engineers in a variety of applications, and are 
likely to continue to beused in the future. Nevertheless, 
many of the proposed expressions are highly theoretical, 

and not always practicable, since the most of variables 
used in the mathematical structure of these models are not 
readily available or routinely obtainable for all activated 
sludge-based treatment plants. On the contrary, although 
the simplicity ofsome of other previous expressionshas 
been articulated by a number of authors, however, they 
neglect the effect of several important process-related 
variables, and do not directly reflect the actual behavior 
the large-scale aeration units.To overcome the limitations 
and problems associated with the existing deterministic 
models, some authors have also focused on solving the 
problems of activated sludge process by using stochastic 
methods or specific computational programs. Despite the 
extensive use of personal computers, practising engineers 
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frequently need to perform quick, but approximate 
calculations in a simple manner. At this point, “back-of-the-
envelope” type solutions providing simplified assumptions 
are absolutely helpful in such conditions.Although iterative 
solution of the relevant equations using a computer 
program does not seem to behard,sufficiently effortless 
and accurate explicit expressionsare always given priority 
over a software-dependent solution. For this reason, 
considering the practical needs, economic reasons and 
time constraints in engineering, the present study attempts 
to address this gap by implementingimplementing entirely 
new explicit equations as functions of thirteen 
fundamental biological, hydraulic, and physical variables, 
which are the most widely used design parameters in 
activated sludge-based treatment plants.    

The proposed explicit equations satisfactorily accounted 
for the accurate quantitative estimation of aeration-
related parameters (SORd, Ec, and kLad) in the steady-state 
completely mixed activated sludge process. The only 
requirements are limited to input variables, which are 
readily incorporated into the routine analyses performed 
in almost all activated sludge-based treatment plants. The 
empirical equations that are described in this study have 
the ability to provide realistic results, and it is therefore 
believed that these modelscan be used as alternative 
mathematical formulations to the real-world activated 
sludge-based problems. 

Engineers, designers and researches may not have enough 
time to compute all time-consuming and task-intensive 
calculations in environmental engineering practice. Hence, 
a number of attempts in developing representative 
equations will provide a new scientific contribution in 
modeling of aeration-related parameters in the completely 
mixed activated sludge process. In this regards, the 
formulations derived in the scope of this study have 
obviated the need fora number of consecutive and 
laborious design calculations performed in the 
conventionalsolution procedure. 

The regression coefficients of the model variables have 
been statistically rounded in an acceptable way (without 
changing the original determination coefficients), and 
simplified to be used for practical computations with a 
hand-held calculator. Therefore, compared with the 
conventional calculation procedure, the equations 
proposed herein are considerably simpler and more 
practical in form. The simple character mathematical 
formulations eliminated the various variable interactions 
and many unit conversions carried out in the theoretical 
approach. 

Consequently, from the engineering point of view, it is 
believed that the proposed equations can be utilized as a 
practical tool within comparatively shorter computation 
time to evaluate the values of standard oxygen 
requirement, daily energy consumption and total mass 
transfer coefficient for the diffused aerationin the steady-
state completely mixed activated sludge process. 

5. Conclusions 

The problem of predicting the aeration-related 
parameters, such as standard oxygen requirement, daily 
energy consumption and total mass transfer coefficient for 
the diffused aeration, has been studied. Complex biological 
and hydraulic interactions in the completely mixed 
activated sludge process have been attempted to be 
described by three simple mechanistic models. The 
proposed models offer sufficiently practical mathematical 
formulations incorporating the most common biological, 
hydraulic, and physical design parameters, which are 
readily available and routinely obtainable for almost all 
activated sludge-based treatment plants.  

The results have been validated by comparison of 
calculated and estimated data in terms of the present 
aeration-related parameters. The statistical results 
corroborate that the proposed equations can produce 
theoretically meaningful outputs and represented the 
aeration data very accurately. It is also noteworthy that the 
new equations may remedy shortcomings of several 
existing cumbersome correlations, since they have a 
number of motivations such as simple and explicit forms, 
wider operating ranges of both the input and output 
variables, high accuracy, relatively small computation time, 
and a fundamental basis.  

In accordance with the present results, it is believed that 
the developed formulations can facilitate the computation 
of the present aeration-related parameters and will be of 
interest to practising engineers and researchers who are 
concerned with the design of the activated sludge process. 
The proposed equations can be safely used for any 
wastewater treatment plant which has activated sludge 
system as biological process within the proposed limits of 
the relevant input data. 
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